Opinion | Published:

Avian brains and a new understanding of vertebrate brain evolution

Subjects

Abstract

We believe that names have a powerful influence on the experiments we do and the way in which we think. For this reason, and in the light of new evidence about the function and evolution of the vertebrate brain, an international consortium of neuroscientists has reconsidered the traditional, 100-year-old terminology that is used to describe the avian cerebrum. Our current understanding of the avian brain — in particular the neocortex-like cognitive functions of the avian pallium — requires a new terminology that better reflects these functions and the homologies between avian and mammalian brains.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Edinger, L. (Translation from German) Investigations on the Comparative Anatomy of the Brain Volumes 1–5 (Moritz Diesterweg, Frankfurt/Main, 1888–1903).

  2. 2

    Darwin, C. The Origin of Species (Murray, 1859).

  3. 3

    Edinger, L. The Anatomy of the Central Nervous System of Man and of Vertebrates in General 5th edn (F. A. Davis Company, Philadelphia, 1896).

  4. 4

    Edinger, L. The relations of comparative anatomy to comparative psychology. Comp. Neurol. Psychol. 18, 437–457 (1908).

  5. 5

    Northcutt, R. G. Changing views of brain evolution. Brain Res. Bull. 55, 663–674 (2001).

  6. 6

    Ariëns Kappers, C. The phylogenesis of the paleo-cortex and archi-cortex compared with the evolution of the visual neo-cortex. Arch. Neurol. Psychiatry 4, 161–173 (1909).

  7. 7

    Ariëns Kappers, C. The ontogenetic development of the corpus striatum in birds and a comparison with mammals and man. Proc. Kon. Akad. v. Wetens. te Amsterdam 26, 135–158 (1922).

  8. 8

    Ariëns Kappers, C. Three lectures on neurobiotaxis and other subjects delivered at the University of Copenhagen (Leven and Munksgaard, Copenhagen, 1928).

  9. 9

    Edinger, L., Wallenberg, A. & Holmes, G. M. Untersuchungen über die vergleichende Anatomie des Gehirns. Das Vorderhirn der Vögel. Abhandlungen der Senckenbergischen naturforschenden Gesellschaft 20, 343–426 (1903).

  10. 10

    Rose, M. Über die cytoarchitektonische Gliederung des Vorderhirns der Vogel. J. f. Psychol. Neurol. 21 (suppl. 1), 278–352 (1914).

  11. 11

    Holmgren, N. Points of view concerning forebrain morphology in higher vertebrates. Acta. Zool. Stockh. 6, 413–477 (1925).

  12. 12

    Kuhlenbeck, H. The ontogenetic development and phylogenetic significance of the cortex telencephali in the chick. J. Comp. Neurol. 69, 273–301 (1938).

  13. 13

    Elliot Smith, G. The term 'archipallium' - a disclaimer. Anatomischer Anzeiger 35, 429–430 (1910).

  14. 14

    Ariëns Kappers, C. U., Huber, C. G. & Crosby, E. C. Comparative Anatomy of the Nervous System of Vertebrates, Including Man (Hafner, New York, 1936).

  15. 15

    Parent, A. & Olivier, A. Comparative histochemical study of the corpus striatum. J. Hirnforsch. 12, 73–81 (1970).

  16. 16

    Karten, H. J. in Comparative and Evolutionary Aspects of the Vertebrate Central Nervous System (ed. Pertras, J.) 164–179 (1969).

  17. 17

    Karten, H. J. & Hodos, W. A Stereotaxic Atlas of the Brain of the Pigeon (Columba livia) (Johns Hopkins Univ. Press, Baltimore, 1967).

  18. 18

    Dahlström, A. & Fuxe, K. Evidence for the existence of monoamine-containing neurons in the central nervous system I. Demonstration of monoamines in cell bodies of brainstem neurons. Acta Physiol. Scand. 62, 1–55 (1964).

  19. 19

    Juorio, A. V. & Vogt, M. Monoamines and their metabolites in the avian brain. J. Physiol. 189, 489–518 (1967).

  20. 20

    Karten, H. J. & Dubbeldam, J. L. The organization and projections of the paleostriatal complex in the pigeon (Columba livia). J. Comp. Neurol. 148, 61–90 (1973).

  21. 21

    Graybiel, A. M. Neuropeptides in the basal ganglia. Res. Publ. Assoc. Res. Nerv. Ment. Dis. 64, 135–161 (1986).

  22. 22

    Smeets, W. J. Comparative aspects of basal forebrain organization in vertebrates. Eur. J. Morphol. 30, 23–36 (1992).

  23. 23

    Steiner, H. & Gerfen, C. R. Role of dynorphin and enkephalin in the regulation of striatal output pathways and behavior. Exp. Brain Res. 123, 60–76 (1998).

  24. 24

    Reiner, A., Medina, L. & Veenman, C. L. Structural and functional evolution of the basal ganglia in vertebrates. Brain Res. Brain Res. Rev. 28, 235–285 (1998).

  25. 25

    Jiao, Y. et al. Identification of the anterior nucleus of the ansa lenticularis in birds as the homologue of the mammalian subthalamic nucleus. J. Neurosci. 20, 6998–7010 (2000).

  26. 26

    Graybiel, A. M. The basal ganglia and cognitive pattern generators. Schizophr. Bull. 23, 459–469 (1997).

  27. 27

    Perkel, D. & Farries, M. Complementary 'bottom-up' and 'top-down' approaches to basal ganglia function. Curr. Opin. Neurobiol. 10, 725–731 (2000).

  28. 28

    Puelles, L. et al. Pallial and subpallial derivatives in the embryonic chick and mouse telencephalon, traced by the expression of the genes Dlx-2, Emx-1, Nkx-2.1, Pax-6, and Tbr-1. J. Comp. Neurol. 424, 409–438 (2000).

  29. 29

    Cobos, I., Shimamura, K., Rubenstein, J. L., Martinez, S. & Puelles, L. Fate map of the avian anterior forebrain at the four-somite stage, based on the analysis of quail-chick chimeras. Dev. Biol. 239, 46–67 (2001).

  30. 30

    Redies, C., Medina, L. & Puelles, L. Cadherin expression by embryonic divisions and derived gray matter structures in the telencephalon of the chicken. J. Comp. Neurol. 438, 253–285 (2001).

  31. 31

    Marín, O. & Rubenstein, J. L. A long, remarkable journey: tangential migration in the telencephalon. Nature Rev. Neurosci. 2, 780–790 (2001).

  32. 32

    Veenman, C. L. Pigeon basal ganglia: insights into the neuroanatomy underlying telencephalic sensorimotor processes in birds. Eur. J. Morphol. 35, 220–233 (1997).

  33. 33

    Sun, Z. & Reiner, A. Localization of dopamine D1A and D1B receptor mRNAs in the forebrain and midbrain of the domestic chick. J. Chem. Neuroanat. 19, 211–224 (2000).

  34. 34

    Li, X. -C. & Jarvis, E. Sensory- and motor-driven BDNF expression in a vocal communication system. Soc. Neurosci. Abstr. 538.8 (2001).

  35. 35

    Reiner, A., Meade, C. A., Cuthberston, S. L., Laverghetta, A. & Bottjer, S. W. An immunohistochemical and pathway tracing study of the striatopallidal organization of Area X in the zebra finch. J. Comp. Neurol. 469, 239–261 (2004).

  36. 36

    Wada, K., Sakaguchi, H., Jarvis, E. D. & Hagiwara, M. Differential expression of glutamate receptors in avian neural pathways for learned vocalization. J. Comp. Neurol. 476, 44–64 (2004).

  37. 37

    Brauth, S. E. & Kitt, C. A. The paleostriatal system of Caiman crocodilus. J. Comp. Neurol. 189, 437–465 (1980).

  38. 38

    Brauth, S. E., Reiner, A., Kitt, C. A. & Karten, H. J. The substance P-containing striatotegmental path in reptiles: an immunohistochemical study. J. Comp. Neurol. 219, 305–327 (1983).

  39. 39

    Reiner, A., Brauth, S. E. & Karten, H. J. Evolution of the amniote basal ganglia. Trends Neurosci. 7, 320–325 (1984).

  40. 40

    Smeets, W. J. A. J. in Phylogeny and Development of Catecholamine Systems in the CNS of Vertebrates (ed. Smeets, W. J. A. J.) 103–133 (Cambridge Univ. Press, Cambridge, England, 1994).

  41. 41

    Swanson, L. What is the brain? Trends Neurosci. 23, 519–527 (2000).

  42. 42

    Reblet, C. et al. Neuroepithelial origin of the insular and endopiriform parts of the claustrum. Brain Res. Bull. 57, 495–497 (2002).

  43. 43

    Zeier, H. & Karten, H. J. The archistriatum of the pigeon: organization of afferent and efferent connections. Brain Res. 31, 313–326 (1971).

  44. 44

    Karten, H. J. & Shimizu, T. The origins of neocortex: connections and lamination as distinct events in evolution. J. Cogn. Neurosci. 1, 291–301 (1989).

  45. 45

    Vates, G. E., Broome, B. M., Mello, C. V. & Nottebohm, F. Auditory pathways of caudal telencephalon and their relation to the song system of adult male zebra finches. J. Comp. Neurol. 366, 613–642 (1996).

  46. 46

    Wild, J. M. The avian somatosensory system: the pathway from wing to Wulst in a passerine (Chloris chloris). Brain Res. 759, 122–134 (1997).

  47. 47

    Shimizu, T. & Hodos, W. Reversal learning in pigeons: effects of selective lesions of the Wulst. Behav. Neurosci. 103, 262–272 (1989).

  48. 48

    Mello, C. V. & Clayton, D. F. Song-induced ZENK gene expression in auditory pathways of songbird brain and its relation to the song control system. J. Neurosci. 14, 6652–6666 (1994).

  49. 49

    Jarvis, E. D., Mello, C. V. & Nottebohm, F. Associative learning and stimulus novelty influence the song-induced expression of an immediate early gene in the canary forebrain. Learn. Mem. 2, 62–80 (1995).

  50. 50

    Wild, J. M., Reinke, H. & Farabaugh, S. M. A non-thalamic pathway contributes to a whole body map in the brain of the budgerigar. Brain Res. 755, 137–141 (1997).

  51. 51

    Laverghetta, A. V. & Shimizu, T. Visual discrimination in the pigeon (Columba livia): effects of selective lesions of the nucleus rotundus. Neuroreport 10, 981–985 (1999).

  52. 52

    Vicario, D. S. Organization of the zebra finch song control system: II. Functional organization of outputs from nucleus robustus archistriatalis. J. Comp. Neurol. 309, 486–494 (1991).

  53. 53

    Wild, J. M. Descending projections of the songbird nucleus robustus archistriatalis. J. Comp. Neurol. 338, 225–241 (1993).

  54. 54

    Wild, J. M. & Williams, M. N. Rostral Wulst in passerine birds. I. Origin, course, and terminations of an avian pyramidal tract. J. Comp. Neurol. 416, 429–450 (2000).

  55. 55

    Nottebohm, F., Stokes, T. M. & Leonard, C. M. Central control of song in the canary, Serinus canarius. J. Comp. Neurol. 165, 457–486 (1976).

  56. 56

    Bottjer, S. W., Miesner, E. A. & Arnold, A. P. Forebrain lesions disrupt development but not maintenance of song in passerine birds. Science 224, 901–903 (1984).

  57. 57

    Shimizu, T. & Karten, H. J. in The Neocortex (ed. Finlay, B. L.) 75–86 (Plenum, New York, 1990).

  58. 58

    Scharff, C. & Nottebohm, F. A comparative study of the behavioral deficits following lesions of various parts of the zebra finch song system: implications for vocal learning. J. Neurosci. 11, 2896–2913 (1991).

  59. 59

    Güntürkün, O. in Neural and Behavioral Plasticity (ed. Andrew, R. J.) 92–105 (Oxford Univ. Press, Oxford, 1991).

  60. 60

    Wild, J. M., Karten, H. J. & Frost, B. J. Connections of the auditory forebrain in the pigeon (Columba livia). J. Comp. Neurol. 337, 32–62 (1993).

  61. 61

    Butler, A. B. The evolution of the dorsal pallium in the telencephalon of amniotes: cladistic analysis and a new hypothesis. Brain Res. Brain Res. Rev. 19, 66–101 (1994).

  62. 62

    Shimizu, T., Cox, K. & Karten, H. J. Intratelencephalic projections of the visual Wulst in pigeons (Columba livia). J. Comp. Neurol. 359, 551–572 (1995).

  63. 63

    Kröner, S. & Güntürkün, O. Afferent and efferent connections of the caudolateral neostriatum in the pigeon (Columba livia): A retro- and anterograde pathway tracing study. J. Comp. Neurol. 407, 228–260 (1999).

  64. 64

    Shimizu, T. & Bowers, A. N. Visual circuits of the avian telencephalon: evolutionary implications. Behav. Brain Res. 98, 183–191 (1999).

  65. 65

    Brainard, M. & Doupe, A. Interruption of a basal ganglia-forebrain circuit prevents plasticity of learned vocalizations. Nature 404, 762–766 (2000).

  66. 66

    Knudsen, E. I. Instructed learning in the auditory localization pathway of the barn owl. Nature 417, 322–328 (2002).

  67. 67

    Mello, C. V. Mapping vocal communication pathways in birds with inducible gene expression. J. Comp. Physiol. A 188, 943–959 (2002).

  68. 68

    Smith-Fernandez, A. S., Pieau, C., Repérant, J., Boncinelli, E. & Wassef, M. Expression of the Emx-1 and Dlx-1 homeobox genes define three molecularly distinct domains in the telencephalon of mouse, chick, turtle and frog embryos: implications for the evolution of telencephalic subdivisions in amniotes. Development 125, 2099–2111 (1998).

  69. 69

    Medina, L. & Reiner, A. Do birds possess homologues of mammalian primary visual, somatosensory and motor cortices? Trends Neurosci. 23, 1–12 (2000).

  70. 70

    Kuenzel, W. J. & Masson, M. A Stereotaxic Atlas of the Brain of the Chick (Gallus domesticus) (The Johns Hopkins Univ. Press, Baltimore, 1988).

  71. 71

    Karten, H. J. Homology and evolutionary origins of the 'neocortex'. Brain Behav. Evol. 38, 264–272 (1991).

  72. 72

    Mello, C. V. & Clayton, D. F. Differential induction of the ZENK gene in the avian forebrain and song control circuit after metrazole-induced depolarization. J. Neurobiol. 26, 145–161 (1995).

  73. 73

    Dugas-Ford, J. & Ragsdale, C. 23rd Annual J. B. Johnston Club Meeting and 15th Annual Karger Workshop 2003. Brain Behav. Evol. 62, 168–174 (2003).

  74. 74

    Bruce, L. L. & Neary, T. J. The limbic system of tetrapods: a comparative analysis of cortical and amygdalar populations. Brain Behav. Evol. 46, 224–234 (1995).

  75. 75

    Striedter, G. F. The telencephalon of tetrapods in evolution. Brain Behav. Evol. 49, 179–213 (1997).

  76. 76

    Bruce, L. L., Kornblum, H. I. & Seroogy, K. B. Comparison of thalamic populations in mammals and birds: expression of ErbB4 mRNA. Brain Res. Bull. 57, 455–461 (2002).

  77. 77

    Martínez-García, F., Martínez-Marcos, A. & Lanuza, E. The pallial amygdala of amniote vertebrates: evolution of the concept, evolution of the structure. Brain Res. Bull. 57, 463–469 (2002).

  78. 78

    Haesler, S. et al. FoxP2 expression in avian vocal learners and non-learners. J. Neurosci. 24, 3164–3175 (2004).

  79. 79

    Gorski, J. A. et al. Cortical excitatory neurons and glia, but not GABAergic neurons, are produced in the Emx1-expressing lineage. J. Neurosci. 22, 6309–6314 (2002).

  80. 80

    Butler, A. B., Molnár, Z. & Manger, P. R. Apparent absence of claustrum in monotremes: implications for forebrain evolution in amniotes. Brain Behav. Evol. 60, 230–240 (2002).

  81. 81

    Ashwell, K. W., Hardman, C. & Paxinos, G. The claustrum is not missing from all monotreme brains. Brain Behav. Evol. 64, 223–241 (2004).

  82. 82

    Reiner, A. et al. Revised nomenclature for avian telencephalon and some related brainstem nuclei. J. Comp. Neurol. 473, 377–414 (2004).

  83. 83

    Reiner, A. et al. The Avian Brain Nomenclature Forum: a new century in comparative neuroanatomy. J. Comp. Neurol. 473, E1–E6 (2004).

  84. 84

    Reiner, A. J. A hypothesis as to the organization of cerebral cortex in the common amniote ancestor of modern reptiles and mammals. Novartis Found. Symp. 228, 83–102; discussion 102–113 (2000).

  85. 85

    Carroll, R. L. in Vertebrate Paleontology and Evolution 1–13 (W. H. Freeman, New York, 1988).

  86. 86

    Evans, S. E. in Evolutionary Developmental Biology of the Cerebral Cortex (eds Bock, G. R. & Cardew, G.) 109–113 (John Wiley & Sons, Chichester, 2000).

  87. 87

    Northcutt, R. G. & Kaas, J. H. The emergence and evolution of mammalian neocortex. Trends Neurosci. 18, 373–379 (1995).

  88. 88

    Northcutt, R. G. Visual pathways in elasmobranchs: organization and phylogenetic implications. J. Exp. Zool. Suppl. 5, 97–107 (1990).

  89. 89

    Suzuki, W. A. & Clayton, N. S. The hippocampus and memory: a comparative and ethological perspective. Curr. Opin. Neurobiol. 10, 768–773 (2000).

  90. 90

    Rodríguez, F. et al. Spatial memory and hippocampal pallium through vertebrate evolution: insights from reptiles and teleost fish. Brain Res. Bull. 57, 499–503 (2002).

  91. 91

    Marler, P. Characteristics of some animals calls. Nature 176, 6–8 (1955).

  92. 92

    Thorpe, W. H. The learning of song patterns by birds, with special reference to the song of the chaffinch, Fringilla coelebs. Ibis 100, 535–570 (1958).

  93. 93

    von Fersen, L. & Delius, J. D. Long-term retention of many visual patterns by pigeons. Ethology 82, 141–155 (1989).

  94. 94

    Lubow, R. E. High-order concept formation in the pigeon. J. Exp. Anal. Behav. 21, 475–483 (1974).

  95. 95

    Watanabe, S., Sakamoto, J. & Wakita, M. Pigeons' discrimination of paintings by Monet and Picasso. J. Exp. Anal. Behav. 63, 165–174 (1995).

  96. 96

    Lubinski, D. & MacCorquodale, K. 'Symbolic communication' between two pigeons (Columba livia) without unconditioned reinforcement. J. Comp. Psychol. 98, 372–380 (1984).

  97. 97

    von Fersen, L., Wynne, C. D. L., Delius, J. D. & Staddon, J. E. R. Transitive inference formation in pigeons. J. Exp. Psychol. Anim. Behav. Process. 17, 334–341 (1992).

  98. 98

    Lanza, R. P., Starr, J. & Skinner, B. F. 'Lying' in the pigeon. J. Exp. Anal. Behav. 38, 201–203 (1982).

  99. 99

    Munn, C. Birds that cry 'wolf'. Nature 319, 143–145 (1986).

  100. 100

    Weir, A. A., Chappell, J. & Kacelnik, A. Shaping of hooks in New Caledonian crows. Science 297, 981 (2002).

  101. 101

    Hunt, G. R. & Gray, R. D. Diversification and cumulative evolution in New Caledonian crow tool manufacture. Proc. R. Soc. Lond. B 270, 867–874 (2003).

  102. 102

    Pollok, B., Prior, H. & Güntürkün, O. Development of object-permanence in the food-storing magpie (Pica pica). J. Comp. Psychol. 114, 148–157 (2000).

  103. 103

    Clayton, N. S. & Dickinson, A. Episodic-like memory during cache recovery by scrub jays. Nature 395, 272–274 (1998).

  104. 104

    Emery, N. J. & Clayton, N. S. Effects of experience and social context on prospective caching strategies by scrub jays. Nature 414, 443–446 (2001).

  105. 105

    Jarvis, E. D. et al. Behaviourally driven gene expression reveals song nuclei in hummingbird brain. Nature 406, 628–632 (2000).

  106. 106

    Jarvis, E. D. Learned birdsong and the neurobiology of human language. Ann. NY Acad. Sci. 1016, 749–777 (2004).

  107. 107

    Pepperberg, I. in The Alex Studies: Cognitive and Communicative Abilities of Grey Parrots 96–167 (Harvard Univ. Press, Cambridge, Massachusetts, 1999).

  108. 108

    Pepperberg, I. M. & Shive, H. R. Simultaneous development of vocal and physical object combinations by a Grey Parrot (Psittacus erithacus): bottle caps, lids, and labels. J. Comp. Pyschol. 115, 376–384 (2001).

  109. 109

    Gazzaniga, M. S. (ed.) The New Cognitive Neurosciences (MIT Press, Cambridge, Massachusetts, 1999).

  110. 110

    Delius, J. D. & Hollard, V. D. Orientation invariance of shape recognition in forebrain-lesioned pigeons. Behav. Brain Res. 23, 251–259 (1987).

  111. 111

    Lavenex, P. B. Lesions in the budgerigar vocal control nucleus NLc affect production, but not memory, of English words and natural vocalizations. J. Comp. Neurol. 421, 437–460 (2000).

  112. 112

    Van Essen, D. A tension-based theory of morphophogenesis and compact wiring in the central nervous system. Nature 385, 313–318 (1997).

  113. 113

    Striedter, G. F. in Principles of Brain Evolution 345–361 (Sinuaer Associates, Massachusetts, 2004).

  114. 114

    Bottjer, S. W. & Johnson, F. Circuits, hormones, and learning: vocal behavior in songbirds. J. Neurobiol. 33, 602–618 (1997).

Download references

Acknowledgements

This effort was supported by grants from the National Institutes of Health and National Science Foundation, and by the National Science Foundation Waterman Award to E.D.J.

Author information

Competing interests

The authors declare no competing financial interests.

Correspondence to Erich D. Jarvis.

Supplementary information

  1. Supplementary information S1 (PDF 30 kb)

Related links

Rights and permissions

To obtain permission to re-use content from this article visit RightsLink.

About this article

Publication history

  • Issue Date

DOI

https://doi.org/10.1038/nrn1606

Further reading

Figure 1: Avian and mammalian brain relationships.
Figure 2: Simplified modern view of vertebrate evolution.
Figure 3: Auditory and vocal pathways of the songbird brain within the context of the new consensus view of avian brain organization.