Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Iron, brain ageing and neurodegenerative disorders

Key Points

  • Iron is an essential cofactor for many proteins that are involved in normal neuronal tissue function, but there is increasing evidence that iron accumulation in the brain can cause a vast array of CNS disorders.

  • Global iron homeostasis is regulated at the level of iron absorption from the gastrointestinal tract. This involves a series of molecular interactions between proteins that include the haemochromatosis gene product HFE, transferrin, the transferrin receptor and iron regulatory proteins in the crypts of Lieberkühn.

  • The brain has several characteristics that make it unique with regard to iron metabolism. It resides behind a vascular barrier — the blood–brain barrier — which limits its access to plasma iron. Also, the concentration of iron varies considerably between different brain regions: regions that are associated with motor functions tend to have more iron than non-motor-related regions.

  • Iron seems to accumulate in the brain as a function of age. This process is quite specific, and it involves the accumulation of iron-containing molecules in certain cell types, particularly in brain regions that are preferentially targeted in neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD).

  • PD is associated with increased iron accumulation in the substantia nigra. Proposed mechanisms for iron-induced cell damage in PD include enhanced generation of reactive oxygen species and an increase in oxidative stress and protein aggregation. This includes the aggregation of α-synuclein, which is one of the main components of Lewy bodies — one of the pathological hallmarks of PD.

  • In AD, iron accumulation in the brain occurs without the normal age-related increase in ferritin, and this increases the risk of oxidative stress. Iron might also have a direct impact on plaque formation through its effects on amyloid precursor protein processing.

  • Iron accumulation has also been implicated in several other neurological diseases, including congenital aceruloplasminaemia, Friedreich's ataxia, neuroferritinopathy, neurodegeneration with brain iron accumulation and restless legs syndrome.

  • Metal chelators are being developed as a new therapeutic strategy for the treatment of PD, AD and other neurodegenerative disorders that involve iron misregulation.

  • If we can understand the timing of iron mismanagement in relation to the progression of neuronal loss in neurodegenerative diseases and during ageing, this might raise the possibility of monitoring iron changes as a marker of disease progression, and perhaps even pre-clinical diagnosis in conditions where iron mismanagement is an early event.

Abstract

There is increasing evidence that iron is involved in the mechanisms that underlie many neurodegenerative diseases. Conditions such as neuroferritinopathy and Friedreich ataxia are associated with mutations in genes that encode proteins that are involved in iron metabolism, and as the brain ages, iron accumulates in regions that are affected by Alzheimer's disease and Parkinson's disease. High concentrations of reactive iron can increase oxidative-stress induced neuronal vulnerability, and iron accumulation might increase the toxicity of environmental or endogenous toxins. By studying the accumulation and cellular distribution of iron during ageing, we should be able to increase our understanding of these neurodegenerative disorders and develop new therapeutic strategies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Tf cycle.
Figure 2: Translational regulation of the transferrin receptor and ferritin production.
Figure 3: Iron deposits in the ageing brain.
Figure 4: Iron and oxidative stress hypothesis of Parkinson's disease.
Figure 5: Haemochromatosis protein staining of reactive astrocytes in brains of patients with Alzheimer's disease.
Figure 6: Iron-induced neurodegeneration in Parkinson's disease and its prevention.

Similar content being viewed by others

References

  1. Crichton, R. R. Inorganic Biochemistry of Iron Metabolism: From Molecular Mechanisms to Clinical Consequences (John Wiley & Sons, Chichester, 2001) A comprehensive overview of iron biochemistry, from molecules to medicine.

    Book  Google Scholar 

  2. Pigeon, C. et al. A new mouse liver-specific gene, encoding a protein homologous to human antimicrobial peptide hepcidin, is overexpressed during iron overload. J. Biol. Chem. 276, 7811–7819 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Nicolas, G. et al. Lack of hepcidin gene expression and severe tissue iron overload in upstream stimulatory factor 2 (USF2) knockout mice. Proc. Natl Acad. Sci. USA 98, 8780–8785 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Papanikolaou, G. et al. Mutations in HFE2 cause iron overload in chromosome 1q-linked juvenile hemochromatosis. Nature Genet. 36, 77–82 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Andrews, N. C. Iron homeostasis: insights from genetics and animal models. Nature Rev. Genet. 1, 208–217 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Andrews, N. C. The iron transporter DMT1. Int. J. Biochem. Cell. Biol. 31, 991–994 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Kawabata, H. et al. Molecular cloning of transferrin receptor 2. A new member of the transferrin receptor-like family. J. Biol. Chem. 274, 20826–20832 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Eisenstein, R. S. Iron regulatory proteins and the molecular control of mammalian iron metabolism. Annu. Rev. Nutr. 20, 627–662 (2000). A recent review of the translational control of iron homeostasis.

    Article  CAS  PubMed  Google Scholar 

  9. Aisen, P., Enns, C. & Wessling-Resnick, M. Chemistry and biology of eukaryotic iron metabolism. Int. J. Biochem. Cell. Biol. 33, 940–959 (2001). A recent review of eukaryotic iron metabolism.

    Article  CAS  PubMed  Google Scholar 

  10. Burdo, J. R. & Connor, J. R. Brain iron uptake and homeostatic mechanisms: an overview. BioMetals 16, 63–75 (2003). This review provides an up-to-date assessment of the knowledge of iron transport into the brain. The article identifies the flaws in the current thinking about mechanisms of transport and reveals that little is known about the regulation of these mechanisms. Moreover, the article introduces new research directions and concepts.

    Article  CAS  PubMed  Google Scholar 

  11. Koeppen, A. H. The history of iron in the brain. J. Neurol. Sci. 134 (Suppl.), 1–9 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Connor, J. R. & Menzies, S. L. Cellular management of iron in the brain. J. Neurol. Sci. 134 (Suppl.), 33–44 (1999). This article establishes that there are differences in cellular iron usage and regulation among the specific cell types in the brain by demonstrating the differences in cell-specific ratios between H- and L-ferritin subunits.

    Google Scholar 

  13. Connor, J. R., Boeshore, K. L. & Benkovic, S. A. Isoforms of ferritin have a specific cellular distribution in the brain. J. Neurosci. Res. 37, 461–465 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. Moos, T. & Morgan, E. H. The metabolism of neuronal iron and its pathogenic role in neurological disease: review. Ann. NY Acad. Sci. 1012, 14–26 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Zecca, L. et al. The role of iron and copper molecules in the neuronal vulnerability of locus coeruleus and substantia nigra during aging. Proc. Natl Acad. Sci. USA 101, 9843–9848 (2004). This is the first study on iron, neuromelanin and ferritin in the locus coeruleus that provides an accurate comparison with iron in the substantia nigra. The age trend and cellular distribution in the locus coeruelus and substantia nigra is reported.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zecca, L. et al. Interaction of neuromelanin and iron in substantia nigra and other areas of human brain. Neuroscience 73, 407–415 (1996). This study shows that neuromelanin chelates iron-forming stable complexes in the substantia nigra and other brain regions.

    Article  CAS  PubMed  Google Scholar 

  17. Sulzer, D. et al. Neuromelanin biosynthesis is driven by excess cytosolic catecholamines not accumulated by synaptic vesicles. Proc. Natl Acad. Sci. USA 97, 11869–11874 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zecca, L., Zucca, F. A., Wilms, H. & Sulzer, D. Neuromelanin of the substantia nigra: a neuronal black hole with protective and toxic characteristics. Trends Neurosci. 26, 578–580 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Wakamatsu, K., Fujikawa, K., Zucca, F. A., Zecca, L. & Ito, S. The structure of neuromelanin as studied by chemical degradative methods. J. Neurochem. 86, 1015–1023 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Bartlett, W. P., Li, X. S. & Connor, J. R. Expression of the transferrin mRNA in jimpy mice. J. Neurochem. 57, 318–322 (1991).

    Article  CAS  PubMed  Google Scholar 

  21. Connor, J. R. et al. Decreased transferrin receptor expression by neuromelanin cells in restless legs syndrome. Neurology 62, 1563–1567 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. de Arriba Zerpa, G. A. et al. Alternative splicing prevents transferrin differentiation of a human oligodendrocyte cell line. J. Neurosci. Res. 61, 388–395 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Hulet, S. W., Powers, S. & Connor, J. R. Distribution of transferrin and ferritin binding in normal and multiple sclerotic human brains. J. Neurol. Sci. 165, 48–55 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Hallgren, B. & Sourander, P. The effect of aging on the non-haemin iron in the human brain. J. Neurochem. 3, 41–51 (1958).

    Article  CAS  PubMed  Google Scholar 

  25. Connor, J. R., Snyder, B. S., Arosio, P., Loeffler, D. A. & LeWitt, P. A quantitative analysis of isoferritins in select regions of aged, parkinsonian and Alzheimer Disease brains. J. Neurochem. 65, 717–724 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Zecca, L. et al. Iron, neuromelanin and ferritin in substantia nigra of normal subjects at different ages. Consequences for iron storage and neurodegenerative disorders. J. Neurochem. 76, 1766–1773 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Hirose, W., Ikematsu, K. & Tsuda, R. Age-associated increase in heme oxygenase-1 and ferritin immunoreactivity in the autopsied brain. Leg. Med. 5 (Suppl. 1), S360–S366 (2003).

    Article  CAS  Google Scholar 

  28. Connor, J. R., Menzies, S. L., St. Martin, S. M. & Mufson, E. J. Cellular distribution of transferrin, ferritin and iron in normal and aged human brains. J. Neurosci. Res. 27, 595–611 (1990).

    Article  CAS  PubMed  Google Scholar 

  29. Bartzokis, G. et al. MR evaluation of brain iron in young adults and older normal males. Magn. Reson. Imaging 15, 29–35 (1997). References 29 and 74 establish the strength of MRI in examining brain iron distribution and changes in the brain with ageing. In particular, they establish a potential new tool in the evaluation of brain iron changes in normal and disease states, and expand on an important but underappreciated concept that cognitive decline with ageing could be initiated in the white matter.

    Article  CAS  PubMed  Google Scholar 

  30. Martin, W. R., Ye, F. Q. & Allen, P. S. Increasing striatal iron content associated with normal aging. Mov. Disord. 13, 281–286 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Ogg, R. J., Langston, J. W., Haacke, E. M., Steen, R. G. & Taylor, J. S. The correlation between phase shifts in gradient-echo MR images and regional brain iron concentration. Magn. Reson. Imaging 17, 1141–1148 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Brun, A. & Englund, E. A white matter disorder in dementia of the Alzheimer type: a pathoanatomical study. Ann. Neurol. 19, 253–262 (1986).

    Article  CAS  PubMed  Google Scholar 

  33. Snowdon, D. A. Nun Study. Healthy aging and dementia: findings from the Nun Study. Ann. Intern. Med. 139, 450–454 (2003).

    Article  PubMed  Google Scholar 

  34. Faucheux, B. A., Bonnet, A. M., Agid, Y. & Hirsch, E. C. Blood vessels change in the mesencephalon of patients with Parkinson's disease. Lancet 353, 981–982 (1999). This paper reports that increased iron concentration in the mesencephalon of patients with PD could be related to altered vascularization.

    Article  CAS  PubMed  Google Scholar 

  35. Iadecola, C. Neurovascular regulation in the normal brain and in Alzheimer's disease. Nature Rev. Neurosci. 5, 347–360 (2004).

    Article  CAS  Google Scholar 

  36. Jellinger, K., Paulus, W., Grundke-Iqbal, I., Riederer, P. & Youdim, M. B. Brain iron and ferritin in Parkinson's and Alzheimer's disease. J. Neural. Transm. Park. Dis. Dement. Sect. 2, 327–340 (1990).

    Article  CAS  PubMed  Google Scholar 

  37. Riederer, P. et al. Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brains. J. Neurochem. 52, 515–520 (1989). This paper describes the first systematic determination of iron concentrations, GSH, vitamin C and ferritin in the substantia nigra in individuals with PD.

    Article  CAS  PubMed  Google Scholar 

  38. Dexter, D. T. et al. Increased nigral iron content in post-mortem parkinsonian brain. Lancet 341, 1219–1220 (1987).

    Article  Google Scholar 

  39. Hirsch, E. C., Brandel, J. -P., Galle, P., Javoy-Agid, F. & Agid, Y. Iron and aluminum increase in the substantia nigra of patients with Parkinson's disease: an X-ray microanalysis. J. Neurochem. 56, 446–451 (1991).

    Article  CAS  PubMed  Google Scholar 

  40. Götz, M. E., Double, K., Gerlach, M., Youdim, M. B. & Riederer, P. The relevance of iron in the pathogenesis of Parkinson's disease. Ann. NY Acad. Sci. 1012, 193–208 (2004).

    Article  PubMed  CAS  Google Scholar 

  41. Uitti, R. J. et al. Regional metal concentrations in Parkinson's disease, other chronic neurological diseases, and control brains. Can. J. Neurol. Sci. 16, 310–314 (1989).

    Article  CAS  PubMed  Google Scholar 

  42. Galazka-Friedman, J. et al. Iron in parkinsonian and control substantia nigra: a Mossbauer spectroscopy study. Mov. Disord. 11, 8–16 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Griffiths, P. D., Dobson, B. R., Jones, G. R. & Clarke, D. T. Iron in the basal ganglia in Parkinson's disease: an in vitro study using extended X-ray absorption fine strucutre and cryo-electron microscopy. Brain 122, 667–673 (1999).

    Article  PubMed  Google Scholar 

  44. Dexter, D. T. et al. Alterations in the levels of iron, ferritin and other trace metals in Parkinson's disease and other neurodegenerative diseases affecting the basal ganglia. Brain 114, 1953–1975 (1991).

    Article  PubMed  Google Scholar 

  45. Gerlach, M., Ben-Shachar, D., Riederer, P. & Youdim, M. B. Altered brain metabolism of iron as a cause of neurodegenerative diseases? J. Neurochem. 63, 793–807 (1994).

    Article  CAS  PubMed  Google Scholar 

  46. Owen, A. D., Schapira, A. H. V., Jenner, P. & Marsden, C. D. Indices of oxidative stress in Parkinson's disease, Alzheimer's disease, and dementia with Lewy bodies. J. Neural. Transm. 51 (Suppl.), 167–173 (1997).

    CAS  Google Scholar 

  47. Jellinger, K. et al. Iron-melanin complex in substantia nigra of parkinsonian brains: an x–ray microanalysis. J. Neurochem. 59, 1168–1171 (1992).

    Article  CAS  PubMed  Google Scholar 

  48. Ben-Shachar, D., Eshel, G., Finberg, J. P. & Youdim, M. B. The iron chelator desferrioxamine (Desferal) retards 6-hydroxydopamine-induced degeneration of nigrostriatal dopamine neurons. J. Neurochem. 56, 1441–1444 (1991). This paper describes the first use of an iron chelator, desferal, as a neuroprotective drug in a model of PD.

    Article  CAS  PubMed  Google Scholar 

  49. Double, K. L. et al. Iron-binding characteristics of neuromelanin of the human substantia nigra. Biochem. Pharmacol. 66, 489–494 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Good, P., Olanow, C. W. & Perl, D. P. Neuromelanin-containing neurons of the substantia nigra accumulate iron and aluminium in Parkinson's disease: a LAMMA study. Brain Res. 593, 343–346 (1992).

    Article  CAS  PubMed  Google Scholar 

  51. Wilms, H. et al. Activation of microglia by human neuromelanin is NF-κB dependent and involves p38 mitogen-activated protein kinase: implications for Parkinson's disease. FASEB J. 17, 500–502 (2003). This study demonstrates that the neuromelanin–iron complexes that occur extraneuronally in PD can activate microglia, thereby aggravating neurodegeneration in this disease.

    Article  CAS  PubMed  Google Scholar 

  52. Langston, J. W. et al. Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure. Ann. Neurol. 46, 598–605 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Gorell, J. M. et al. Increased iron-related MRI contrast in the substantia nigra in Parkinson's disease. Neurology 45, 1138–1143 (1995). This study uses MRI to show iron accumulation in the substantia nigra of patients with PD.

    Article  CAS  PubMed  Google Scholar 

  54. Ryvlin, P. et al. Magnetic resonance imaging evidence of decreased putamenal iron content in idiopathic Parkinson's disease. Arch. Neurol. 52, 583–588 (1995).

    Article  CAS  PubMed  Google Scholar 

  55. Berg, D. et al. Echogenicity of the substantia nigra: association with increased iron content and marker for susceptibility to nigrostriatal injury. Arch. Neurol. 59, 999–1005 (2002).

    Article  PubMed  Google Scholar 

  56. Faucheux, B. A. et al. Neuromelanin associated redox-active iron is increased in the substantia nigra of patients with Parkinson's disease. J. Neurochem. 86, 1142–1148 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Schipper, H. M., Liberman, A. & Stopa, E. G. Neural heme oxygenase-1 expression in idiopathic Parkinson's disease. Exp. Neurol. 150, 60–68 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. Qian, Z. M. & Wang, Q. Expression of iron transport proteins and excessive iron accumulation in the brain in neurodegenerative disorders. Brain Res. Brain Res. Rev. 27, 257–267 (1998).

    Article  CAS  PubMed  Google Scholar 

  59. Faucheux, B. A., Hauw, J. J., Agid, Y. & Hirsch, E. C. The density of [125I]–transferrin binding sites on perikarya of melanized neurons of the substantia nigra is decreased in Parkinson's disease. Brain Res. 749, 170–174 (1997).

    Article  CAS  PubMed  Google Scholar 

  60. Faucheux, B. A. et al. Expression of lactoferrin receptors is increased in the mesencephalon of patients with Parkinson disease. Proc. Natl Acad. Sci. USA 92, 9603–9607 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Leveugle, B. et al. Cellular distribution of the iron-binding protein lactotransferrin in the mesencephalon of Parkinson's disease cases. Acta Neuropathol. (Berl.) 91, 566–572 (1996).

    Article  CAS  Google Scholar 

  62. Faucheux, B. A. et al. Lack of up-regulation of ferritin is associated with sustained iron regulatory protein-1 binding activity in the substantia nigra of patients with Parkinson's disease. J. Neurochem. 83, 320–330 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Borie, C. et al. French Parkinson's disease genetic study group. Association study between iron-related genes polymorphisms and Parkinson's disease. J. Neurol. 249, 801–804 (2002).

    Article  PubMed  Google Scholar 

  64. Leenders, K. L. et al. Verapamil uptake in mesecephalon of Parkinson disease. Ann. Neurol. (in the press).

  65. Vila, M. et al. α-synuclein up-regulation in substantia nigra dopaminergic neurons following administration of the parkinsonian toxin MPTP. J. Neurochem. 74, 721–729 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Mandel, S., Maor, G. & Youdim, M. B. H. Iron and α synuclein in the substantia nigra of MPTP treated mice; effect of neuroprotective drugs R-apomorphine and green tea polyphenol epipgallocatechin-3-gallate. J. Mol. Neurosci. (in the press).

  67. Ostrerova-Golts, N. et al. The A53T α-synuclein mutation increases iron-dependent aggregation and toxicity. J. Neurosci. 20, 6048–6054 (2000). This study indicates that α-synuclein can interact with iron to induce the formation of intracellular aggregates, and reports on the consequent effect on neuronal death in PD.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Uversky, V. N., Li, J. & Fink, A. L. Metal-triggered structural transformations, aggregation, and fibrillation of human α-synuclein. A possible molecular link between Parkinson's disease and heavy metal exposure. J. Biol. Chem. 276, 44284–44296 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Münch, G. et al. Crosslinking of α–synuclein by advanced glycation endproducts — an early pathophysiological step in Lewy body formation? J. Chem. Neuroanat. 20, 253–257 (2000).

    Article  PubMed  Google Scholar 

  70. Hashimoto, M., Takeda, A., Hsu, L. J., Takenouchi, T. & Masliah, E. Role of cytochrome c as a stimulator of α-synuclein aggregation in Lewy body disease. J. Biol. Chem. 274, 28849–28852 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. Levine, S., Connor, J. & Schipper, H. Redox-active metals in neurological disorders. Ann. NY Acad. Sci. 1012, (2004).

  72. Connor, J. R., Snyder, B. S., Beard, J. L., Fine, R. E. & Mufson, E. J. Regional distribution of iron and iron-regulatory proteins in the brain in aging and Alzheimer's disease. J. Neurosci. Res. 31, 327–335 (1992).

    Article  CAS  PubMed  Google Scholar 

  73. Thompson, K. et al. Mouse brains deficient in H-ferritin have normal iron concentration but a protein profile of iron deficiency and increased evidence of oxidative stress. J. Neurosci. Res. 71, 46–63 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Bartzokis, G. Age-related myelin breakdown: a developmental model of cognitive decline and Alzheimer's disease. Neurobiol. Aging 25, 5–18 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Rogers, J. T. et al. An iron-responsive element type II in the 5′-untranslated region of the Alzheimer's amyloid precursor protein transcript. J. Biol. Chem. 277, 45518–45528 (2002). This study raises the possibility that APP production and synthesis could be influenced by cellular iron status through an IRE on the APP mRNA. This mechanism has the potential to integrate a number of different aspects of iron changes, amyloid deposition and oxidative stress.

    Article  CAS  PubMed  Google Scholar 

  76. Bodovitz, S., Falduto, M. T., Frail, D. E. & Klein, W. L. Iron levels modulate α-secretase cleavage of amyloid precursor protein. J. Neurochem. 64, 307–315 (1995).

    Article  CAS  PubMed  Google Scholar 

  77. Huang, X. et al. Alzheimer's disease, β-amyloid protein and zinc. J. Nutr. 130, 1488S–1492S (2000).

    Article  CAS  PubMed  Google Scholar 

  78. Rottkamp, C. A. et al. Redox-active iron mediates amyloid-β toxicity. Free Radic. Biol. Med. 30, 447–450 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Mantyh, P. et al. Aluminum, iron and zinc ions promote aggregation of physiological concentrations of β-amyloid peptide. J. Neurochem. 61, 1171–1174 (1993).

    Article  CAS  PubMed  Google Scholar 

  80. Perry, G. et al. The role of iron and copper in the aetiology of neurodegenerative disorders: therapeutic implications. CNS Drugs 16, 339–352 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Bush, A. I. Metal complexing agents as therapies for Alzheimer's disease. Neurobiol. Aging 23, 1031–1038 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Ritchie, C. W. et al. Metal-protein attenuation with iodochlorhydroxyquin (clioquinol) targeting Aβ amyloid deposition and toxicity in Alzheimer disease: a pilot phase 2 clinical trial. Arch. Neurol. 60, 1685–1691 (2003).

    Article  PubMed  Google Scholar 

  83. Ben Shachar, D., Kahana, N., Kampel, V., Warshawsky, A. & Youdim, M. B. Neuroprotection by a novel brain permeable iron chelator, VK-28, against 6-hydroxydopamine lesion in rats. Neuropharmacology 46, 254–263 (2004).

    Article  CAS  Google Scholar 

  84. Youdim, M. B. H., Fridkin, M. & Zheng, H. Novel bifunctional drugs targeting monoamine oxidase inhibition and iron chelation as an approach to neuroprotection in Parkinson's disease and other neurodegenerative diseases. J. Neural. Transm. 1435–1463 (Online) (2004). This paper describes the development of the first brain-permeable bifunctional iron chelator–MAO inhibitor, which is derived from the prototype brain-permeable neuroprotective iron chelator VK-28.

  85. Connor, J. R. et al. Is hemochromatosis a risk factor for Alzheimer's disease? J. Alzheimers Dis. 3, 471–477 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Lee, S. & Connor, J. R. Regulation of Hfe by stress factors in BV-2 cells. Neurobiol. Aging (in the press).

  87. Feder, J. N. et al. A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nature Genet. 13, 399–408 (1996).

    Article  CAS  PubMed  Google Scholar 

  88. Moalem, S. et al. Are hereditary hemochromatosis mutations involved in Alzheimer disease? Am. J. Med. Genet. 93, 58–66 (2000).

    Article  CAS  PubMed  Google Scholar 

  89. Braak, H., Braak, E. & Bohl, J. Staging of Alzheimer-related cortical destruction. Eur. Neurol. 33, 403–408 (1993).

    Article  CAS  PubMed  Google Scholar 

  90. Pulliam, J. F. et al. Association of HFE mutations with neurodegeneration and oxidative stress in Alzheimer's disease and correlation with APOE. Am. J. Med. Genet. 119B, 48–53 (2003).

    Article  PubMed  Google Scholar 

  91. Namekata, K. et al. Association of transferrin C2 allele with late-onset Alzheimer's disease. Hum. Genet. 101, 126–129 (1997).

    Article  CAS  PubMed  Google Scholar 

  92. Van Landeghem, G., Sikstrom, C., Beckman, L., Adolfsson, R. & Beckman, R. Transferrin C2, metal binding and Alzheimer's Disease. Neuroreport 9, 177–179 (1998).

    Article  CAS  PubMed  Google Scholar 

  93. Zambenedetti, P., De Bellis, G., Biunno, I., Musicco, M. & Zatta, P. Transferrin C2 variant does confer a risk for Alzheimer's disease. J. Alzheimers Dis. 5, 423–427 (2003).

    Article  CAS  PubMed  Google Scholar 

  94. Hussain, R. I., Ballard, C. G., Edwardson, J. A. & Morris, C. M. Transferrin gene polymorphism in Alzheimer's disease and dementia with Lewy bodies in humans. Neurosci. Lett. 317, 13–16 (2002).

    Article  CAS  PubMed  Google Scholar 

  95. Robson, K. J. et al. Synergy between the C2 allele of transferrin and the C282Y allele of the haemochromatosis gene (Hfe) as risk factors for developing Alzheimer's Disease. J. Med. Genet. 41, 261–265 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ke, Y. & Ming Qian, Z. Iron misregulation in the brain: a primary cause of neurodegenerative disorders. Lancet Neurol. 2, 246–253 (2003). An overview of the role of misregulation of iron metabolism in neurodegeneration.

    Article  CAS  PubMed  Google Scholar 

  97. Nittis, T. & Gitlin, J. D. The copper–iron connection: hereditary aceruloplasminemia. Semin. Hematol. 39, 282–289 (2002).

    Article  CAS  PubMed  Google Scholar 

  98. Yoshida, K. et al. A mutation in the ceruloplasmin gene is associated with systemic hemosiderosis in humans. Nature Genet. 9, 267–272 (1995).

    Article  CAS  PubMed  Google Scholar 

  99. Harris, Z. L. et al. Aceruloplasminemia: molecular characterization of this disorder of iron metabolism. Proc. Natl Acad. Sci. USA 92, 2539–2543 (1995). The copper–iron relationship explained.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Miyajama, H. et al. The use of deferrioxamine in the treatment of aceruloplasminemia. Ann. Neurol. 41, 404–407 (1997).

    Article  Google Scholar 

  101. Harris, Z. L. et al. Targeted gene disruption reveals an essential role for ceruloplasmin in cellular iron efflux. Proc. Natl Acad. Sci. USA 96, 10812–10817 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Patel, P. I. & Isaya, G. Friedreich ataxia: from GAA triplet-repeat expansion to frataxin deficiency. Am. J. Hum. Genet. 69, 15–24 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Zoghbi, H. Y. & Orr, H. T. Glutamine repeats and neurodegeneration. Ann. Rev. Neurosci. 23, 217–247 (2000). This review discusses the consequences of too many glutamine repeats.

    Article  CAS  PubMed  Google Scholar 

  104. Gordon, N. Friedreich's ataxia and iron metabolism. Brain Dev. 22, 465–468 (2000).

    Article  CAS  PubMed  Google Scholar 

  105. Muhlenhoff, U., Richhardt, N., Ristow, M., Kispal, G. & Lill, R. The yeast frataxin homolog Yfh1p plays a specific role in the maturation of cellular Fe/S proteins. Hum. Mol. Genet. 11, 2025–2036 (2002).

    Article  PubMed  Google Scholar 

  106. Cooper, J. M. & Schapira, A. H. Friedreich's ataxia: disease mechanisms, antioxidant and Coenzyme Q10 therapy. Biofactors 18, 163–171 (2003). A timely review of Friedreich's ataxia and antioxidant therapy.

    Article  CAS  PubMed  Google Scholar 

  107. Curtis, A. R. et al. Mutation in the gene encoding ferritin light polypeptide causes dominant adult-onset basal ganglia disease. Nature Genet. 28, 350–354 (2001).

    Article  CAS  PubMed  Google Scholar 

  108. Crompton, D. E. et al. Neuroferritinopathy: a window on the role of iron in neurodegeneration. Blood Cells Mol. Dis. 29, 522–531 (2002).

    Article  CAS  PubMed  Google Scholar 

  109. Vidal, R. et al. Intracellular ferritin accumulation in neural and extraneural tissue characterizes a neurodegenerative disease associated with a mutation in the ferritin light polypeptide gene. J. Neuropathol. Exp. Neurol. 63, 363–380 (2004).

    Article  CAS  PubMed  Google Scholar 

  110. Zhou, B. et al. A novel pantothenate kinase gene (PANK2) is defective in Hallervorden–Spatz syndrome. Nature Genet. 4, 345–349 (2001).

    Article  CAS  Google Scholar 

  111. Hayflick, S. J. Unravelling the Hallervorden–Spatz syndrome: pantothenate kinase-associated neurodegeneration is the name. Curr. Opin. Pediatr. 15, 572–577 (2003).

    Article  PubMed  Google Scholar 

  112. Beard, J. L. & Connor, J. R. Iron Status and Neural Functioning. Annu. Rev. Nutr. 23, 41–58 (2003).

    Article  CAS  PubMed  Google Scholar 

  113. Earley, C. J. Clinical practice. Restless legs syndrome. N. Engl. J. Med. 348, 2103–2109 (2003).

    Article  PubMed  Google Scholar 

  114. Youdim, M. B., Ben-Shachar, D. & Riederer, P. The possible role of iron in the etiopathology of Parkinson's disease. Mov. Disord. 8, 1–12 (1993).

    Article  CAS  PubMed  Google Scholar 

  115. Ponka, P. Hereditary causes of disturbed iron homeostasis in the central nervous system. Ann. NY Acad. Sci. 1012, 267–281 (2004).

    Article  CAS  PubMed  Google Scholar 

  116. Youdim, M. B. H. & Riederer, P. in Encyclopedia of Neuroscience (Elsevier, Amsterdam, 2004). A review about brain iron in normal and pathological conditions.

    Google Scholar 

  117. Barnham, K. J., Masters, C. L. & Bush, A. I. Neurodegenerative diseases and oxidative stress. Nature Rev. Drug Discov. 3, 205–214 (2004).

    Article  CAS  Google Scholar 

  118. LaVaute, T. et al. Targeted deletion of the gene encoding iron regulatory protein-2 causes misregulation of iron metabolism and neurodegenerative disease in mice. Nature Genet. 27, 209–214 (2001).

    Article  CAS  PubMed  Google Scholar 

  119. Youdim, M. B. H., Stephenson, G. & Ben Shachar, D. Ironing iron out in Parkinson's disease and other neurodegenerative diseases with iron chelators: a lesson from 6-hydroxydopamine and iron chelators, desferal and VK-28. Ann. NY Acad. Sci. 1012, 306–325 (2004).

    Article  CAS  PubMed  Google Scholar 

  120. Wang, X. S., Ong, W. Y. & Connor, J. R. Quinacrine attenuates increases in divalent metal transporter-1 and iron levels in the rat hippocampus, after kainate-induced neuronal injury. Neuroscience 120, 21–29 (2003).

    Article  CAS  PubMed  Google Scholar 

  121. Cohen, G. Oxidative stress, mitochondrial respiration, and Parkinson's disease. Ann. NY Acad. Sci. 899, 112–120 (2000).

    Article  CAS  PubMed  Google Scholar 

  122. Jenner, P. & Olanow, C. W. Understanding cell death in Parkinson's disease. Ann. Neurol. 44 (3 Suppl. 1), S72–S84 (1998).

    Article  CAS  PubMed  Google Scholar 

  123. Mandel, S., Weinreb, O. & Youdim, M. B. Using cDNA microarray to assess Parkinson's disease models and the effects of neuroprotective drugs. Trends Pharmacol. Sci. 24, 184–191 (2003).

    Article  CAS  PubMed  Google Scholar 

  124. Temlett, J. A., Landsberg, J. P., Watt, F. & Grime, G. W. Increased iron in the substantia nigra compacta of the MPTP-lesioned hemiparkinsonian African green monkey: evidence from proton microprobe elemental microanalysis. J. Neurochem. 62, 134–146 (1994).

    Article  CAS  PubMed  Google Scholar 

  125. Oestreicher, E. et al. Degeneration of nigrostriatal dopaminergic neurons increases iron within the substantia nigra: a histochemical and neurochemical study. Brain Res. 660, 8–18 (1994).

    Article  CAS  PubMed  Google Scholar 

  126. Shoham, S. & Youdim, M. B. Nutritional iron deprivation attenuates kainate-induced neurotoxicity in rats: implications for involvement of iron in neurodegeneration. Ann. NY Acad. Sci. 1012, 94–114 (2004).

    Article  CAS  PubMed  Google Scholar 

  127. Bharath, S., Hsu, M., Kaur, D., Rajagopalan, S. & Andersen, J. K. Glutathione, iron and Parkinson's disease. Biochem. Pharmacol. 64, 1037–1048 (2002).

    Article  CAS  PubMed  Google Scholar 

  128. Kaur, D. et al. Genetic or pharmacological iron chelation prevents MPTP-induced neurotoxicity in vivo: a novel therapy for Parkinson's disease. Neuron 27, 899–909 (2003). This study shows that lowering the concentration of free iron in the mouse brain reduces the neurotoxic effect of MPTP.

    Article  Google Scholar 

  129. Moussaoui, S. et al. The antioxidant ebselen prevents neurotoxicity and clinical symptoms in a primate model of Parkinson's disease. Exp. Neurol. 166, 235–245 (2000).

    Article  CAS  PubMed  Google Scholar 

  130. Moosmann, B. & Behl, C. Antioxidants as treatment for neurodegenerative disorders. Expert Opin. Investig. Drugs. 11, 1407–1435 (2002).

    Article  CAS  PubMed  Google Scholar 

  131. Mandel, S., Weinreb, O., Amit, T. & Youdim, M. B. Cell signaling pathways in the neuroprotective actions of the green tea polyphenol (-)-epigallocatechin-3-gallate: implications for neurodegenerative diseases. J. Neurochem. 88, 1555–1569 (2004).

    Article  CAS  PubMed  Google Scholar 

  132. Rogers, J. T. & Lahiri, D. K. Metal and inflammatory targets for Alzheimer's disease. Curr. Drug Targets 5, 535–551 (2004).

    Article  CAS  PubMed  Google Scholar 

  133. Youdim, M. B. H. & Buccafesco, J. Multi-functional drugs for various CNS targets in the treatments of neurodegenerative diseases. Trends Pharmacol. Sci. (in the press).

  134. Youdim, M. B. H. Rasagiline: an anti-Parkinson drug with neuroprotective activity. Expert Rev. Neurotherapeutics 3, 737–749 (2003).

    Article  CAS  Google Scholar 

  135. Dexter, D. T, Ward, R. J., Florence, A., Jenner, P. & Crichton, R. R. Effects of desferrithiocin and its derivatives on peripheral iron and striatal dopamine and 5-hydroxytryptamine metabolism in the ferrocene-loaded rat. Biochem. Pharmacol. 58, 151–155 (1999).

    Article  CAS  PubMed  Google Scholar 

  136. Baum, L. & Ng, A. Curcumin interaction with copper and iron suggests one possible mechanism of action in Alzheimer's disease animal models. J. Alzheimers Dis. 6, 367–377 (2004).

    Article  CAS  PubMed  Google Scholar 

  137. Bruehlmeier, M. et al. Increased cerebral iron uptake in Wilson's disease: a 52Fe-citrate PET study. J. Nucl. Med. 41, 781–787 (2000).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank C. Bellei for skillful assistance. M.B.H.Y. was supported by the National Parkinson Foundation (Miami, Florida, USA). M.B.H.Y. and L.Z. acknowledge the support of the Michael J. Fox Foundation (New York, USA). L.Z. was also supported by the Italian Fund for Basic Science (FIRB-MIUR) and the Parkinson's Disease Foundation (New York, USA). J.R.C. acknowledges the support of the Alzheimer's Association, the National Institutes of Health, the Jane B. Barsumian Trust Fund and the G.M. Leader Family.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi Zecca.

Ethics declarations

Competing interests

M.B.H.Y. has financial interests in Varinel Inc. (Philadelphia, USA) — the company that is developing the iron chelators VK-28, HLA and M30 — and in Teva Pharmaceutical Industries Ltd (Israel), which is developing the Parkinson-therapeutic drug Rasagiline (and has received a letter of approval for this drug from the United States Food and Drug Administration). To date he has not received any financial reward from them. The other authors all have no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

DCT1

DCYTB

HFE

IREG1

PANK2

TF

TFR

FURTHER INFORMATION

Encyclopedia of Life Sciences

Parkinson disease

Alzheimer disease

Glossary

HAEMOCHROMATOSIS

An iron-overload disorder, in which an excessive amount of iron is absorbed from the diet. The iron accumulates in various organs, including the liver, pancreas and heart, which can lead to severe organ damage.

ENDOSOMAL COMPARTMENT

A system of organelles that carry materials that have been ingested by endocytosis, and pass them to lysosomes for degradation, or recycle them to the cell surface.

MICROGLIA

Phagocytic immune cells in the brain that engulf and remove cells that have undergone apoptosis.

SUBSTANTIA NIGRA

A part of the midbrain that contains dopamine-producing neurons, the axons of which innervate the striatum and thereby control body movements.

LOCUS COERULEUS

A nucleus of the brainstem that is the main supplier of noradrenaline to the brain.

CHOROID PLEXUS

A site of production of cerebrospinal fluid in the adult brain. It is formed by the invagination of ependymal cells into the ventricles, which become richly vascularized.

PUTAMEN/CAUDATE NUCLEUS

Two of the components of the striatum, a subpallidal structure that also includes the nucleus accumbens and the olfactory tubercle.

GLOBUS PALLIDUS

The medial part of the lentiform nucleus, which is one of the components of the basal ganglia.

LEWY BODIES

Intraneuronal inclusion bodies that form one of the pathological hallmarks of Parkinson's disease. They consist of a dense granular core that is surrounded by a halo of radiating filaments. Their main protein components include α-synuclein and ubiquitin.

UBIQUITIN

A molecule that is attached to lysine residues of other proteins, often as a tag for their rapid cellular degradation by the proteasome.

REACTIVE OXYGEN SPECIES

(ROS) Oxygen radicals that are produced by the mitochondrial respiratory chain. In excess, they can cause intracellular and mitochondrial damage, which promotes cell death.

TAU

A neuronal protein that binds to microtubules, promoting their assembly and stability. It is also a component of neurofibrillary tangles, which are one of the pathological hallmarks of Alzheimer's disease.

DYSTONIA

A movement disorder that is characterized by abnormal muscle tone.

WILSON'S DISEASE

A genetic disorder that causes excessive copper accumulation in the liver and brain, resulting in hepatitis and psychiatric and neurological symptoms.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zecca, L., Youdim, M., Riederer, P. et al. Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci 5, 863–873 (2004). https://doi.org/10.1038/nrn1537

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1537

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing