Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Improving language and literacy is a matter of time

Abstract

Developmental deficits that affect speech perception increase the risk of language and literacy problems, which can lead to lowered academic and occupational accomplishment. Normal development and disorders of speech perception have both been linked to temporospectral auditory processing speed. Understanding the role of dynamic auditory processing in speech perception and language comprehension has led to the development of neuroplasticity-based intervention strategies aimed at ameliorating language and literacy problems and their sequelae.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: History of low reading scores despite increased funding.
Figure 2: Acoustic energy produced by speech.
Figure 3: Obtaining a rapid auditory processing threshold using a two-alternative forced choice paradigm.
Figure 4: Improvements in language and reading scores after neuroplasticity-based training.
Figure 5: Normalization of brain activity after neuroplasticity-based training.

Similar content being viewed by others

References

  1. Campbell, J. R., Hombo, C. M. & Mazzeo, J. NAEP 1999 Trends in Academic Progress: Three Decades of Student Performance (US Department of Education, Office of Educational Research and Improvement, National Center for Education Statistics, Washington DC, 2000).

    Google Scholar 

  2. Riley, R. W. Speech presented at the National Summit on Learning Disabilities, Washington DC [Online archive of talking points] <http://www.ed.gov/Speeches/09-1994/learnsum.html> (September, 1994).

  3. Whitehouse Office of Management and Budget. Historical tables, budget of the United States government, Fiscal Year 2005 (US Government Printing Office, Washington D. C. [Online] <http://www.whitehouse.gov/omb/budget/fy2005/> 2004).

  4. Lyon, G. R. Towards a definition of dyslexia. Ann. Dyslexia 45, 3–27 (1995).

    Article  Google Scholar 

  5. Bishop, D. V. & Snowling, M. J. Developmental dyslexia and specific language impairment: same or different? Psychol. Bull. (in the press).

  6. Catts, H. W., Fey, M. E., Tomblin, J. B. & Zhang, X. A longitudinal investigation of reading outcomes in children with language impairments. J. Speech Lang. Hear. Res. 45, 1142–1157 (2002).

    Article  PubMed  Google Scholar 

  7. Stark, R. E. et al. Four-year follow-up study of language impaired children. Ann. Dyslexia 34, 49–68 (1984).

    Article  CAS  PubMed  Google Scholar 

  8. Tallal, P., Allard, L., Miller, S. & Curtiss, S. in Dyslexia: Biology, Cognition and Intervention (eds Hulme, C. & Snowling, M.) 167–181 (Whurr, London, 1997).

    Google Scholar 

  9. Byrne, B. Deficient syntactic control in poor readers: is a weak phonetic memory code responsible? Appl. Psycholinguistics 2, 201–212 (1981).

    Article  Google Scholar 

  10. Carroll, J. M. & Snowling, M. J. Language and phonological skills in children at high-risk of reading difficulties. J. Child Psychol. Psychiatry 45, 631–640 (2004).

    Article  PubMed  Google Scholar 

  11. Joanisse, M. F., Manis, F. R., Keating, P. & Seidenberg, M. S. Language deficits in dyslexic children: speech perception, phonology, and morphology. J. Exp. Child Psychol. 77, 30–60 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Scarborough, H. S. Very early language deficits in dyslexic children. Child Dev. 61, 1728–1743 (1990).

    Article  CAS  PubMed  Google Scholar 

  13. Bishop, D. V. & McArthur, M. Immature cortical responses to auditory stimuli in specific language impairment: evidence from ERPs to rapid tone sequences. Dev. Sci. 7, 11–18 (2004).

    Article  Google Scholar 

  14. Flax, J. F. et al. Specific language impairment in families: evidence for co-occurrence with reading impairments. J. Speech Lang. Hear. Res. 46, 530–543 (2003).

    Article  PubMed  Google Scholar 

  15. McArthur, G. M., Hogben, J. H., Edwards, V. T., Heath, S. M. & Mengler, E. D. On the 'specifics' of specific reading disability and specific language impairment. J. Child Psychol. Psychiatry 41, 869–874 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Gathercole, S. E. & Baddeley, A. D. Phonological memory deficits in language disordered children: is there a causal connection? J. Mem. Lang. 29, 336–360 (1990).

    Article  Google Scholar 

  17. Leitão, S., Hogben, J. & Fletcher, J. Phonological processing skills in speech and language impaired children. Eur. J. Disord. Commun. 32, 73–93 (1997).

    Google Scholar 

  18. Castles, A. & Coltheart, M. Is there a causal link from phonological awareness to success in learning to read? Cognition 91, 77–111 (2004).

    Article  PubMed  Google Scholar 

  19. Elbro, C., Borstrom, I. & Petersen, D. K. Predicting dyslexia from kindergarten: the importance of distinctness of phonological representations of lexical items. Reading Res. Q. 33, 36–60 (1998).

    Article  Google Scholar 

  20. Lundberg, I., Olofsson, A. & Wall, S. Reading and spelling skills in the first school years predicted from phonemic awareness skills in kindergarten. Scand. J. Psychol. 121, 159–173 (1980).

    Article  Google Scholar 

  21. Bishop, D. V. Uncommon Understanding (Psychology Press, Hove, 1997).

    Google Scholar 

  22. Leonard, L. B. Children with Specific Language Impairment (MIT Press, Cambridge, 1998).

    Google Scholar 

  23. Brady, S. A., Shankweiler, D. & Mann, V. A. Speech perception and memory coding in relation to reading ability. J. Exp. Child Psychol. 35, 345–367 (1983).

    Article  CAS  PubMed  Google Scholar 

  24. Wolf, M. Rapid alternating stimulus naming in developmental dyslexias. Brain Lang. 27, 360–379 (1986).

    Article  CAS  PubMed  Google Scholar 

  25. Farmer, M. E. & Klein, R. M. The evidence for a temporal processing deficit linked to dyslexia: a review. Psychonomic Bull. Rev. 2, 460–493 (1995).

    Article  CAS  Google Scholar 

  26. Habib, M. The neurological basis of developmental dyslexia: an overview and working hypothesis. Brain 123, 2373–2399 (2000).

    Article  PubMed  Google Scholar 

  27. Tallal, P., Galaburda, A., Von Euler, C. & Llinas, R. (eds) Temporal Information Processing in the Nervous System (New York Academy of Science, New York, 1993).

    Google Scholar 

  28. Fitch, R. H. & Tallal, P. Neural mechanisms of language-based learning impairments: insights from human populations and animal models. Behav. Cogn. Neurosci. Rev. 2, 155–178 (2003).

    Article  PubMed  Google Scholar 

  29. Hari, R. & Kiesla, P. Deficit of temporal auditory processing in dyslexic adults. Neurosci. Lett. 205, 138–140 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Talcott, J. B. et al. Dynamic sensory sensitivity and children's word decoding skills. Proc. Natl Acad. Sci. USA 97, 2952–2957 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Witton, C. et al. Sensitivity to dynamic auditory and visual stimuli predicts nonword reading ability in both dyslexic and normal readers. Curr. Biol. 8, 791–797 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Kraus, N. et al. Auditory neurophysiologic responses and discrimination deficits in children with learning problems. Science 273, 971–973 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Wright, B. A., Bowen, R. W. & Zecker, S. G. Nonlinguistic perceptual deficits associated with reading and language disorders. Curr. Opin. Neurobiol. 10, 482–486 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Stein, J. & Talcott, J. Impaired neuronal timing in developmental dyslexia: the magnocellular hypothesis. Dyslexia 5, 59–77 (1999).

    Article  Google Scholar 

  35. Nicolson, R. I., Fawcett, A. J. & Dean, P. Developmental dyslexia: the cerebellar deficit hypothesis. Trends Neurosci. 24, 508–511 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Wolf, M. & Obregon, M. Early naming deficits, developmental dyslexia, and a specific deficit hypothesis. Brain Lang. 42, 219–247 (1992).

    Article  CAS  PubMed  Google Scholar 

  37. Hari, R., Vlata, M. & Uutela, K. Prolonged attentional dwell time in dyslexic adults. Neurosci. Lett. 271, 202–204 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Bishop, D. V., Carlyon, R. P., Deeks, J. M. & Bishop, S. J. Auditory temporal processing impairment: neither necessary nor sufficient for causing language impairment in children. J. Speech Hear. Res. 42, 1295–1310 (1999).

    Article  CAS  Google Scholar 

  39. Mody, M., Studdert-Kennedy, M. & Brady, S. Speech perception deficits in poor readers: auditory processing or phonological coding? J. Exp. Child Psychol. 64, 199–231 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Ramus, F. Developmental dyslexia: specific phonological deficit or general sensorimotor dysfunction? Curr. Opin. Neurobiol. 13, 212–218 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Rosen, S. & Manganari, E. Is there a relationship between speech and nonspeech auditory prcessing in children with dyslexia? J. Speech Lang. Hear. Res. 44, 720–736 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Thomas, M. & Karmiloff-Smith, A. Are developmental disorders like cases of adult brain damage? Implications from connectionist modelling. Behav. Brain Sci. 25, 727–750 (2002).

    PubMed  Google Scholar 

  43. Merzenich, M. M. & Schreiner, C. E. in The Evolutionary Biology of Hearing (eds Webster, D. B., Fay, R. F. & Popper, A. N.) 673–689 (Springer, New York, 1992).

    Book  Google Scholar 

  44. Chang, E. F. & Merzenich, M. M. Environmental noise retards auditory cortical development. Science 300, 498–502 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Zhang, L. I., Bao, S. & Merzenich, M. M. Disruption of primary auditory cortex by synchronous auditory inputs during a critical period. Proc. Natl Acad. Sci. USA 99, 2309–2314 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Recanzone, G. H., Schreiner, C. E. & Merzenich, M. M. Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys. J. Neurosci. 13, 87–104 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Schreiner, C. E. Functional topographies in the primary auditory cortex of the cat. Acta Otolaryngol. 491 (Suppl.), 7–15 (1991).

    Article  CAS  Google Scholar 

  48. Phillips, D. P., Mendelson, J. R., Cynader, M. S. & Douglas, R. M. Responses of single neurones in cat auditory cortex to time-varying stimuli: frequency-modulated tones of narrow excursion. Exp. Brain Res. 58, 443–454 (1985).

    Article  CAS  PubMed  Google Scholar 

  49. Langner, G. & Schreiner, C. E. Periodicity coding in the inferior colliculus of the cat. I. Neuronal mechanisms. J. Neurophysiol. 60, 1799–1822 (1988).

    Article  CAS  PubMed  Google Scholar 

  50. Blake, D. T., Strata, F., Churchland, A. & Merzenich, M. M. Neural correlates of instrumental learning in primary auditory cortex. Proc. Natl Acad. Sci. USA 99, 10114–10119 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Eggermont, J. J. Spectrotemporal characterization of auditory neurons: redundant or necessary? Hear. Res. 5, 109–121 (1981).

    Article  CAS  PubMed  Google Scholar 

  52. Linden, J. F., Liu, R. F., Sahani, M., Schreiner, C. E. & Merzenich, M. M. Spectrotemporal structure of receptive fields in areas A1 and AAF of the mouse auditory cortex. J. Neurophysiol. 90, 2660–2675 (2003).

    Article  PubMed  Google Scholar 

  53. Orduna, I., Mercado, E., Guck, M. A. & Merzenich, M. M. Spectrotemporal sensitivities in rat auditory cortical neurons. Hear. Res. 160, 47–57 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Jusczyk, P. W. How infants adapt speech processing capacities to native-language structure. Curr. Dir. Psychol. Sci. 11, 15–18 (2002).

    Article  Google Scholar 

  55. Kuhl, P. A new view of language acquisition. Proc. Natl Acad. Sci. USA 97, 11850–11857 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Liu, H. M., Kuhl, P. K. & Tsao, F. M. An association between mothers' speech clarity and infants' speech discrimination skills. Dev. Sci. 6, 1–10 (2003).

    Article  Google Scholar 

  57. Hebb, D. O. The Organization of Behavior: A Neuropsychological Theory (Wiley, New York, 1949).

    Google Scholar 

  58. Benasich, A. A. & Tallal, P. Infant discrimination of rapid auditory cues predicts later language impairment. Behav. Brain Res. 136, 31–49 (2002).

    Article  PubMed  Google Scholar 

  59. Stark, R. E. & Tallal, P. Language, Speech, and Reading Disorders in Children: Neuropsychological Studies (Little, Brown and Co. Inc., Boston, Massachusettes, 1988).

    Google Scholar 

  60. Tallal, P. & Piercy, M. Developmental aphasia: rate of auditory processing and selective impairment of consonant perception. Neuropsychologia 12, 83–93 (1974).

    Article  CAS  PubMed  Google Scholar 

  61. Tallal, P. & Stark, R. Speech acoustic cue discrimination abilities of normally developing and language impaired children. J. Acoust. Soc. Am. 69, 568–574 (1981).

    Article  CAS  PubMed  Google Scholar 

  62. Stark, R. & Tallal, P. Analysis of stop consonant production errors in developmentally dysphasic children. J. Acoust. Soc. Am. 66, 1703–1712 (1979).

    Article  CAS  PubMed  Google Scholar 

  63. Tallal, P. & Piercy, M. Developmental aphasia: the perception of brief vowels and extended stop consonants. Neuropsychologia 13, 69–74 (1975).

    Article  CAS  PubMed  Google Scholar 

  64. Nagarajan, S. S. et al. Speech modifications algorithms used for training language learning-impaired children. IEEE Trans. Rehabil. Eng. 6, 257–268 (1998).

    Article  CAS  PubMed  Google Scholar 

  65. Benasich, A. A. & Tallal, P. Auditory temporal processing thresholds, habituation and recognition memory over the first year. Infant Behav. Dev. 19, 339–357 (1996).

    Article  Google Scholar 

  66. Trehub, S. E. & Henderson, J. L. Temporal resolution in infancy and subsequent language development. J. Speech Hear. Res. 39, 1315–1320 (1996).

    Article  CAS  PubMed  Google Scholar 

  67. Galaburda, A. M. Developmental dyslexia and animal studies: at the interface between cognition and neurology. Cognition 50, 133–149 (1994).

    Article  CAS  PubMed  Google Scholar 

  68. Rosen, G. D., Press, D. M., Sherman, G. F. & Galaburda, A. M. The development of induced cerebrocortical microgyria in the rat. J. Neuropathol. Exp. Neurol. 51, 601–611 (1992).

    Article  CAS  PubMed  Google Scholar 

  69. Rosen, G. D., Sherman, G. F., Richman, J. M., Stone, L. V. & Galaburda, A. M. Induction of molecular layer ectopias by puncture wounds in newborn rats and mice. Dev. Brain Res. 67, 285–291 (1992).

    Article  CAS  Google Scholar 

  70. Galaburda, A. M., Menard, M. T., Rosen, G. D. & Livingstone, M. S. Evidence for aberrant auditory anatomy in developmental dyslexia. Proc. Natl Acad. Sci. USA 91, 8010–8013 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Livingstone, M. S., Rosen, G. D., Drislane, F. W. & Galaburda, A. M. Physiological and anatomical evidence for a magnocellular defect in developmental dyslexia. Proc. Natl Acad. Sci. USA 88, 7943–7947 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Barlow, H. B. Cerebral predictions. Perception 27, 885–888 (1998).

    Article  CAS  PubMed  Google Scholar 

  73. MacKay, D. M. in Automata Studies (eds Shannon, C. E., McCarthy, J & Ashlby, W. R.) 235–251 (Princeton Univ. Press, Princeton, New Jersey, 1956).

    Google Scholar 

  74. Feldman, D. Timing-based LTP and LTD at vertical inputs to layer II/III pyramidal cells in rat barrel cortex. Neuron 27, 45–56 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Rao, R. P. & Sejnowski, T. Self-organizing neural systems based on predictive learning. Phil. Trans. R. Soc. Lond. A 361, 1149–1175 (2003).

    Article  Google Scholar 

  76. Sejnowski, T. The book of Hebb. Neuron 24, 773–776 (1999).

    Article  CAS  PubMed  Google Scholar 

  77. Kuhl, P. K., Williams, K. A., Lacerda, F., Stevens, K. N. & Lindblom, B. Linguistic experience alters phonetic perception in infants by 6 months of age. Science 255, 606–608 (1992).

    Article  CAS  PubMed  Google Scholar 

  78. Dorman, M. F., Cutting, J. E. & Raphael, L. J. Perception of temporal order in vowel sequences with and without formant transitions. J. Exp. Psychol. Hum. Percept. Perform. 104, 121–129 (1975).

    Article  Google Scholar 

  79. Montague, P. R. & Sejnowski, T. J. The predictive brain: temporal coincidence and temporal order in synaptic learning mechanisms. Learn. Mem. 1, 1–33 (1994).

    CAS  PubMed  Google Scholar 

  80. Markram, H., Lubke, J., Frotscher, M. & Sakmann, B. Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275, 213–215 (1997).

    Article  CAS  PubMed  Google Scholar 

  81. Bi, G. Q. & Poo, M. M. Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 18, 10464–10472 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Levy, W. B. & Steward, O. Temporal contiguity requirements for long-term associative potentiation/depression in the hippocampus. Neuroscience 4, 791–797 (1983).

    Article  Google Scholar 

  83. Hari, R. & Renvall, H. Impaired processing of rapid stimulus sequences in dyslexia. Trends Cogn. Sci. 5, 525–532 (2001).

    Article  PubMed  Google Scholar 

  84. Tallal, P. & Piercy, M. Defects of non-verbal auditory perception in children with developmental aphasia. Nature 241, 468–469 (1973).

    Article  CAS  PubMed  Google Scholar 

  85. Johnston, R. B., Stark, R., Mellits, D. & Tallal, P. Neurological status of language-impaired and normal children. Ann. Neurol. 10, 159–163 (1981).

    Article  CAS  PubMed  Google Scholar 

  86. Tallal, P., Stark, R. & Mellits, D. The relationship between auditory temporal analysis and receptive language development: evidence from studies of developmental language disorder. Neuropsychologia 23, 527–534 (1985).

    Article  CAS  PubMed  Google Scholar 

  87. Curtiss, S., Katz, B. & Tallal, P. Delay vs deviance in the language acquisition of language impaired children. J. Speech Hear. 35, 373–383 (1992).

    Article  CAS  Google Scholar 

  88. Hagman, J. et al. Cerebral brain metabolism in adult dyslexic subjects assessed with positron emission tomography during performance of an auditory task. Arch. Neurol. 49, 734–739 (1992).

    Article  CAS  PubMed  Google Scholar 

  89. Jernigan, T., Hesselink, J., Sowell, E. & Tallal, P. Cerebral structure on magnetic resonance imaging in language-impaired children. Arch. Neurol. 48, 539–545 (1991).

    Article  CAS  PubMed  Google Scholar 

  90. Buzsaki, G. & Draguhn, A. Neuronal oscillations in cortical networks. Science 304, 1926–1929 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Llinas, R. R. et al. Thalamocortical dysrhythmia: a neurological and neuropsychiatric syndrome characterized by magnetoencephalography. Proc. Natl Acad. Sci. USA 96, 15222–15227 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Munk, M. H., Roelfsema, P. R., Konig, P., Engel, A. K. & Singer, W. Role of reticular activation in the modulation of intracortical synchronization. Science 272, 271–274 (1996).

    Article  CAS  PubMed  Google Scholar 

  93. Kilgard, M. P. & Merzenich, M. M. Plasticity of temporal information processing in the primary auditory cortex. Nature Neurosci. 1, 727–731 (1998).

    Article  CAS  PubMed  Google Scholar 

  94. Tallal, P. et al. Language comprehension in language-learning impaired children improved with acoustically modified speech. Science 271, 81–84 (1996).

    Article  CAS  PubMed  Google Scholar 

  95. Merzenich, M. et al. Temporal processing deficits of language learning impaired children ameliorated by training. Science 271, 77–81 (1996).

    Article  CAS  PubMed  Google Scholar 

  96. Wilson, S. M., Saygin, A. P., Sereno, M. I. & Iacoboni, M. Listening to speech activates motor areas involved in speech production. Nature Neurosci. 7, 701–702 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Gillam, R. B. & Van Kleek, A. Phonological awareness training and short-term working memory: clinical implications. Topics Lang. Disord. 17, 72–81 (1996).

    Article  Google Scholar 

  98. Ehri, L. C. et al. Phonemic awareness instruction helps children learn to read: evidence from the National Reading Panel's meta-analysis. Reading Res. Q. 36, 250–287 (2001).

    Article  Google Scholar 

  99. Hatcher, P. J., Hulme, C. & Snowling, M. J. Explicit phonological training combined with reading instruction helps young children at risk of reading failure. J. Child Psychol. Psychiatry 45, 338–358 (2004).

    Article  PubMed  Google Scholar 

  100. Torgesen, J. K. Individual differences in response to early interventions in reading: the lingering problem of treatment registers. Learn. Disabil. Res. Pract. 15, 55–64 (2000).

    Article  Google Scholar 

  101. Wise, B. W., Ring, J. & Olson, R. K. Training phonological awareness with and without explicit attention to articulation. J. Exp. Child Psychol. 72, 271–304 (1999).

    Article  CAS  PubMed  Google Scholar 

  102. Habib, M. et al. Phonological training in children with dyslexia using temporally modified speech: a three-step pilot investigation. Int. J. Lang. Commun. Disord. 37, 289–308 (2002).

    Article  PubMed  Google Scholar 

  103. Poldrack, R. A. et al. Relations between the neural basis of dynamic auditory processing and phonological processing: evidence from fMRI. J. Cogn. Neurosci. 13, 687–697 (2001).

    Article  CAS  PubMed  Google Scholar 

  104. Temple, E. et al. Neural deficits in children with dyslexia ameliorated by behavioral remediation: evidence from functional MRI. Proc. Natl Acad. Sci. USA 100, 2860–2865 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Temple, E. et al. Disruption of the neural response to rapid acoustic stimuli in dyslexia: evidence from fMRI. Proc. Natl Acad. Sci. USA 97, 13907–13912 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Shaywitz, B. A. et al. Development of left occipitotemporal systems for skilled reading in children after a phonologically-based intervention. Biol. Psychiatry 55, 926–933 (2004).

    Article  PubMed  Google Scholar 

  107. Tremblay, K. L. & Kraus, N. Auditory training induces asymmetrical changes in cortical neural activity. J. Speech Lang. Hear. Res. 45, 564–572 (2002).

    Article  PubMed  Google Scholar 

  108. Schopmeyer, B., Mellon, N., Dobaj, H., Grant, G. & Niparko, J. K. Use of Fast ForWord to enhance language development in children with cochlear implants. Ann. Otol. Rhinol. Laryngol. 109, 95–98 (2000).

    Article  Google Scholar 

  109. Battin, R. R. & Young, M. Use of Fast ForWord in remediation of central auditory processing disorders. Audiol. Today 12, 2 (2000).

    Google Scholar 

  110. Dronkers, N. F. et al. Lesion site as a predictor of improvement after Fast ForWord treatment in adult aphasic patients. Brain Lang. 69, 450–452 (1999).

    Google Scholar 

  111. Frisina, D. R. et al. in Functional Neurobiology of Aging (eds Hoff, P. R. & Mobbs, C. V.) 565–579 (Academic, San Diego, California, 2001).

    Book  Google Scholar 

  112. Pichora-Fuller, M. K. Cognitive aging and auditory information processing. Int. J. Audiol. 43 (Suppl. 2), 2S26–2S32 (2003).

    Google Scholar 

  113. Salthouse, T. A. Aging and measures of processing speed. Biol. Psychol. 54, 35–54 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank M. Merzenich, A. Benasich, J. Gabrieli and T. Sejnowski for insightful discussions and B. Jenkins, S. Miller, N. Choudhury, K. Laksminarayanan and J. Ferguson for technical help. I thank the National Institute of Deafness and Communication Disorders, National Institute of Neurological Disorders and Stroke, National Institute of Child Health & Human Development, March of Dimes and Santa Fe Institute Consortium for funding.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

P. Tallal is co-founder of Scientific Learning Corporation, the company that developed Fast ForWord®.

Supplementary information

Related links

Related links

FURTHER INFORMATION

Fast ForWord® results

Fast ForWord® Language exercises

Neuroscience web site for educators

Tallal's homepage

Encyclopedia of Life Sciences

Dyslexia

Language

MRI

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tallal, P. Improving language and literacy is a matter of time. Nat Rev Neurosci 5, 721–728 (2004). https://doi.org/10.1038/nrn1499

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1499

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing