Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Pathways to motor incoordination: the inherited ataxias

Key Points

  • Humans are afflicted by two forms of hereditary ataxia, autosomal recessive and autosomal dominant. Neurological dysfunction associated with these disorders impairs motor coordination.

  • Mutated proteins associated with autosomal recessive ataxias compromise the regulation of energy output, oxidative stress, DNA maintenance and the cell cycle. Diseases of this type include Friedreich ataxia, Cayman ataxia, ataxia telangiectasia and abetalipoproteinaemia.

  • Friedreich ataxia is the most common hereditary ataxia. Mutation of the mitochondrial protein frataxin causes this disorder, probably by perturbing mitochondrial iron metabolism and the cellular response to oxidative stress.

  • The second most prevalent form of ataxia is the genomic instability syndrome ataxia telangiectasia. The gene that is mutated in this disorder, ATM, encodes a protein that coordinates cellular responses to DNA damage.

  • Autosomal dominant spinocerebellar ataxias are caused by expanded CAG-triplet repeats in the respective disease genes. The encoded mutant ataxin proteins have abnormally long polyglutamine stretches, leading to toxic gain-of-function.

  • Protein aggregates are hallmarks of neurodegeneration in the brains of patients with spinocerebellar ataxia, but a direct link between these aggregates and neuronal death has yet to be confirmed. There is evidence that perturbed gene transcription might also contribute to neurodegeneration.

Abstract

Two groups of hereditary ataxias are most relevant to humans — the autosomal recessive ataxias and the autosomal dominant spinocerebellar ataxias. Recessive ataxias are multisystem disorders that are characterized by inactivating mutations that result in loss of protein function. By contrast, cell death associated with dominant spinocerebellar ataxias is mostly restricted to the CNS, and cellular control of protein folding and processing is affected. The purpose of this review is to provide an integrated view of the field, encompassing the similarities — which are few — and the differences — which are many — between pathological processes that cause ataxia. In reviewing the current knowledge of ataxias, we discuss recent insights into the pathogenic mechanisms that lead to specific neuronal dysfunction and neurodegeneration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pathological features of recessive ataxias.
Figure 2: Schematic model for the pathogenic mechanisms of Friedreich ataxia (FRDA).
Figure 3: DNA repair and maintenance in autosomal recessive ataxias.
Figure 4: Pathological features of dominant ataxias.
Figure 5: Proposed pathogenic mechanisms of polyglutamine-associated dominant ataxias.

Similar content being viewed by others

References

  1. Orr, H. T. et al. Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nature Genet. 4, 221–226 (1993). Cloning of a highly polymorphic CAG repeat in the SCA1 gene on chromosome 6 and demonstration that the trinucleotide repeat is transcribed and shows prominent expansion in heterozygosity that segregates in affected individuals.

    Article  CAS  PubMed  Google Scholar 

  2. Stevanin, G. et al. Spinocerebellar ataxia with sensory neuropathy (SCA25) maps to chromosome 2p. Ann. Neurol. 55, 97–104 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. DiDonato, S., Gellera, C. & Mariotti, C. The complex clinical and genetic classification of inherited ataxias. II. Autosomal recessive ataxias. Neurol. Sci. 22, 219–228 (2001).

    Article  CAS  Google Scholar 

  4. Zoghbi, H. Y. & Orr, H. T. Glutamine repeats and neurodegeneration. Annu. Rev. Neurosci. 23, 217–247 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Ross, C. A. Polyglutamine pathogenesis: emergence of unifying mechanisms for Huntington's disease and related disorders. Neuron 35, 819–822 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Zoghbi, H. Y. & Botas, J. Mouse and fly models of neurodegeneration. Trends Genet. 18, 463–471 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. DiDonato, S. Disorders related to mitochondrial membranes: pathology of the respiratory chain and neurodegeneration. J. Inher. Metab. Dis. 23, 247–263 (2000).

    Article  CAS  Google Scholar 

  8. Lopez-Arlandis, J. M., Vilchez, J. J., Palau, F. & Sevilla, T. Friedreich's ataxia: an epidemiological study in Valencia, Spain, based on consanguinity analysis. Neuroepidemiology 14, 14–19 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Cossee, M. et al. Evolution of the Friedreich's ataxia trinucleotide repeat expansion: founder effect and premutations. Proc. Natl Acad. Sci. USA 94, 7452–7457 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lamarche, J. B., Lemieux, B. & Lieu, H. B. The neuropathology of 'typical' Friedreich's ataxia in Quebec. Can. J. Neurol. Sci. 11, 592–600 (1984).

    Article  CAS  PubMed  Google Scholar 

  11. Koeppen, A. H. The hereditary ataxias. J. Neuropathol. Exp. Neurol. 57, 531–543 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Campuzano, V. et al. Friedreich's ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271, 1423–1427 (1996). Cloning of the Friedreich ataxia gene and identification of a novel genetic mechanism of disease consisting of the expansion of a GAA triplet in an intron of a recessive gene.

    Article  CAS  PubMed  Google Scholar 

  13. Dürr, A. et al. Clinical and genetic abnormalities in patients with Friedreich's ataxia. N. Engl. J. Med. 335, 1169–1175 (1996).

    Article  PubMed  Google Scholar 

  14. Montermini, L. et al. The Friedreich ataxia GAA triplet repeat: premutation and normal alleles. Hum. Mol. Genet. 6, 1261–1266 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Cossee, M. et al. Friedreich's ataxia: point mutations and clinical presentation of compound heterozygotes. Ann. Neurol. 45, 200–206 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Filla, A. et al. The relationship between trinucleotide (GAA) repeat length and clinical features in Friedreich ataxia. Am. J. Hum. Genet. 59, 554–560 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Montermini, L. et al. Phenotypic variability in Friedreich ataxia: role of the associated GAA triplet repeat expansion. Ann. Neurol. 41, 675–682 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Ohshima, K., Montermini, L., Wells, R. D. & Pandolfo, M. Inhibitory effects of expanded GAA.TTC triplet repeats from intron I of the Friedreich ataxia gene on transcription and replication in vivo. J. Biol. Chem. 273, 14588–14595 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Sakamoto, N., Ohshima, K., Montermini, L., Pandolfo, M. & Wells, R. D. Sticky DNA, a self-associated complex formed at long GAA*TTC repeats in intron 1 of the frataxin gene, inhibits transcription. J. Biol. Chem. 276, 27171–27177 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Cavadini, P., Gellera, C., Patel, P. I. & Isaya, G. Human frataxin maintains mitochondrial iron homeostasis in Saccharomyces cerevisiae. Hum. Mol. Genet. 9, 2523–2530 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Campuzano, V. et al. Frataxin is reduced in Friedreich ataxia patients and is associated with mitochondrial membranes. Hum. Mol. Genet. 6, 1771–1780 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Wong, A. et al. The Friedreich's ataxia mutation confers cellular sensitivity to oxidant stress which is rescued by chelators of iron and calcium and inhibitors of apoptosis. Hum. Mol. Genet. 8, 425–430 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Branda, S. S. et al. Yeast and human frataxin are processed to mature form in two sequential steps by the mitochondrial processing peptidase. J. Biol. Chem. 274, 22763–22769 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Babcock, M. et al. Regulation of mitochondrial iron accumulation by Yfh1p, a putative homolog of frataxin. Science 276, 1709–1712 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Adamec, J. et al. Iron-dependent self-assembly of recombinant yeast frataxin: implications for Friedreich ataxia. Am. J. Hum. Genet. 67, 549–562 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gakh, O. et al. Physical evidence that yeast frataxin is an iron storage protein. Biochemistry 41, 6798–6804 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Chantrel-Groussard, K. et al. Disabled early recruitment of antioxidant defenses in Friedreich's ataxia. Hum. Mol. Genet. 10, 2061–2067 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Shoichet, S. A. et al. Frataxin promotes antioxidant defense in a thiol-dependent manner resulting in diminished malignant transformation in vitro. Hum. Mol. Genet. 11, 815–821 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Ristow, M. et al. Frataxin activates mitochondrial energy conversion and oxidative phosphorylation. Proc. Natl Acad. Sci. USA 97, 12239–12243 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rötig, A. et al. Aconitase and mitochondrial iron–sulphur protein deficiency in Friedreich ataxia. Nature Genet. 17, 215–217 (1997).

    Article  PubMed  Google Scholar 

  31. Huynen, M. A., Snel, B., Bork, P. & Gibson, T. J. The phylogenetic distribution of frataxin indicates a role in iron-sulfur cluster protein assembly. Hum. Mol. Genet. 10, 2463–2468 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Tan, G., Napoli, E., Taroni, F. & Cortopassi, G. Decreased expression of genes involved in sulfur amino acid metabolism in frataxin-deficient cells. Hum. Mol. Genet. 12, 1699–1711 (2003). Gene expression analysis of frataxin-deficient cells showing a specific decrease in transcripts of genes involved in sulphur amino-acid metabolism and Fe–S cluster biosynthesis.

    Article  CAS  PubMed  Google Scholar 

  33. Foury, F. & Cazzalini, O. Deletion of the yeast homologue of the human gene associated with Friedreich's ataxia elicits iron accumulation in mitochondria. FEBS Lett. 411, 373–377 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Cavadini, P., O'Neill, H. A., Benada, O. & Isaya, G. Assembly and iron-binding properties of human frataxin, the protein deficient in Friedreich ataxia. Hum. Mol. Genet. 11, 217–227 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Adinolfi, S., Trifuoggi, M., Politou, A. S., Martin, S. & Pastore, A. A structural approach to understanding the iron-binding properties of phylogenetically different frataxins. Hum. Mol. Genet. 11, 1865–1877 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Levi, S. et al. A human mitochondrial ferritin encoded by an intronless gene. J. Biol. Chem. 276, 24437–24440 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Lodi, R. et al. Deficit of in vivo mitochondrial ATP production in patients with Friedreich ataxia. Proc. Natl Acad. Sci. USA 96, 11492–11495 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cossée, M. et al. Inactivation of the Friedreich ataxia mouse gene leads to early embryonic lethality without iron accumulation. Hum. Mol. Genet. 9, 1219–1226 (2000).

    Article  PubMed  Google Scholar 

  39. Puccio, H. et al. Mouse models for Friedreich ataxia exhibit cardiomyopathy, sensory nerve defect and Fe-S enzyme deficiency followed by intramitochondrial iron deposits. Nature Genet. 27, 181–186 (2001). Conditional mouse models for Friedreich ataxia that recapitulate pathology and biochemical abnormalities present in the human disease.

    Article  CAS  PubMed  Google Scholar 

  40. Simon, D. et al. Friedreich ataxia mouse models with progressive cerebellar and sensory ataxia reveal autophagic neurodegeneration in dorsal root ganglia. J. Neurosci. 24, 1987–1995 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mühlenhoff, U. & Lill, R. Biogenesis of iron-sulfur proteins in eukaryotes: a novel task of mitochondria that is inherited from bacteria. Biochim. Biophys. Acta 1459, 370–382 (2000).

    Article  PubMed  Google Scholar 

  42. Schilke, B., Voisine, C., Beinert, H. & Craig, E. Evidence for a conserved system for iron metabolism in the mitochondria of Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 96, 10206–10211 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chen, O. S., Hemenway, S. & Kaplan, J. Inhibition of Fe-S cluster biosynthesis decreases mitochondrial iron export: evidence that Yfh1p affects Fe-S cluster synthesis. Proc. Natl Acad. Sci. USA 99, 12321–12326 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kispal, G., Csere, P., Prohl, C. & Lill, R. The mitochondrial proteins Atm1p and Nfs1p are essential for biogenesis of cytosolic Fe/S proteins. EMBO J. 18, 3981–3989 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Allikmets, R. et al. Mutation of a putative mitochondrial iron transporter gene (ABC7) in X-linked sideroblastic anemia and ataxia (XLSA/A). Hum. Mol. Genet. 8, 743–749 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Mühlenhoff, U., Richhardt, N., Ristow, M., Kispal, G. & Lill, R. The yeast frataxin homolog Yfh1p plays a specific role in the maturation of cellular Fe/S proteins. Hum. Mol. Genet. 11, 2025–2036 (2002).

    Article  PubMed  Google Scholar 

  47. Gerber, J., Muhlenhoff, U. & Lill, R. An interaction between frataxin and Isu1/Nfs1 that is crucial for Fe/S cluster synthesis on Isu1. EMBO Rep. 4, 906–911 (2003). One of the most convincing demonstrations that frataxin is involved in the biogenesis of Fe–S clusters by showing its specific interaction with a protein that is crucial in the early steps of Fe–S centre biosynthesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mühlenhoff, U., Gerber, J., Richhardt, N. & Lill, R. Components involved in assembly and dislocation of iron-sulfur clusters on the scaffold protein Isu1p. EMBO J. 22, 4815–4825 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ramazzotti, A., Vanmansart, V. & Foury, F. Mitochondrial functional interactions between frataxin and Isu1p, the iron–sulfur cluster scaffold protein, in Saccharomyces cerevisiae. FEBS Lett. 557, 215–220 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Puccio, H. & Koenig, M. Friedreich ataxia: a paradigm for mitochondrial diseases. Curr. Opin. Genet. Dev. 12, 272–277 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Cavalier, L. et al. Ataxia with isolated vitamin E deficiency: heterogeneity of mutations and phenotypic variability in a large number of families. Am. J. Hum. Genet. 62, 301–310 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. DiDonato, S. Can we avoid AVED? Nature Genet. 9, 106–107 (1995).

    Article  CAS  PubMed  Google Scholar 

  53. Ouahchi, K. et al. Ataxia with isolated vitamin E deficiency is caused by mutations in the α-tocopherol transfer protein. Nature Genet. 9, 141–145 (1995).

    Article  CAS  PubMed  Google Scholar 

  54. Kayden, H. J. The neurologic syndrome of vitamin E deficiency: a significant cause of ataxia. Neurology 43, 2167–2169 (1993).

    Article  CAS  PubMed  Google Scholar 

  55. Yokota T et al. Delayed-onset ataxia in mice lacking α-tocopherol transfer protein: model for neuronal degeneration caused by chronic oxidative stress. Proc. Natl Acad. Sci. USA 98, 15185–15190 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Conner, K. & Rosenberg, R. in The Molecular and Genetic Basis of Neurological Disease (eds Rosenberg, R., Prusiner, S., DiMauro, S. & Barchi, R.) 504–506 (Butterworth–Heinemann, Boston, 1997).

    Google Scholar 

  57. Sharp, D. et al. Cloning and gene defects in microsomal triglyceride transfer protein associated with abetalipoproteinemia. Nature 365, 65–69 (1993).

    Article  CAS  PubMed  Google Scholar 

  58. Nystuen, A., Benke, P. J., Merren, J., Stone, E. M. & Sheffield, V. C. A cerebellar ataxia locus identified by DNA pooling to search for linkage disequilibrium in an isolated population from the Cayman Islands. Hum. Mol. Genet. 5, 525–531 (1996).

    Article  CAS  PubMed  Google Scholar 

  59. Bomar, J. M. et al. Mutations in a novel gene encoding a CRAL-TRIO domain cause human Cayman ataxia and ataxia/dystonia in the jittery mouse. Nature Genet. 35, 264–269 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Rolig, R. L. & McKinnon, P. J. Linking DNA damage and neurodegeneration. Trends Neurosci. 23, 417–424 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. van Gent, D. C., Hoeijmakers, J. H. & Kanaar, R. Chromosomal stability and the DNA double-stranded break connection. Nature Rev. Genet. 2, 196–206 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Shiloh, Y. ATM and related protein kinases: safeguarding genome integrity. Nature Rev. Cancer 3, 155–168 (2003). One of the most recent and accurate reviews of the complex and still not completely unravelled cellular function of the AT protein.

    Article  CAS  Google Scholar 

  63. Caldecott, K. W. DNA single-strand break repair and spinocerebellar ataxia. Cell 112, 7–10 (2003). The first seminal review on the relationships between the SSBR machinery and hereditary neurodegenerative disorders that are primarily characterized by SCA.

    Article  CAS  PubMed  Google Scholar 

  64. Swift, M. et al. The incidence and gene frequency of ataxia-telangiectasia in the United States. Am. J. Hum. Genet. 39, 573–583 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Meyn, M. S. Ataxia-telangiectasia, cancer and the pathobiology of the ATM gene. Clin. Genet. 55, 289–304 (1999).

    Article  CAS  PubMed  Google Scholar 

  66. Conner, K. & Rosenberg, R. in The Molecular and Genetic Basis of Neurological Disease (eds Rosenberg, R., Prusiner, S., DiMauro, S. & Barchi, R.) 523–525 (Butterworth–Heinemann, Boston, 1997).

    Google Scholar 

  67. Rotman, G. & Shiloh, Y. ATM: from gene to function. Hum. Mol. Genet. 7, 1555–1563 (1998).

    Article  CAS  PubMed  Google Scholar 

  68. Laposa, R. R., Henderson, J. T., Xu, E. & Wells, P. G. Atm-null mice exhibit enhanced radiation-induced birth defects and a hybrid form of embryonic cell death indicating a teratological suppressor function for ATM. FASEB J. 18, 896–898 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Bakkenist, C. J. & Kastan, M. B. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421, 499–506 (2003). An outstanding contribution that highlights the crucial role of ATM in the cellular response to DNA damage through the demonstration that it initiates the repair cascade by autophosphorylation.

    Article  CAS  PubMed  Google Scholar 

  70. Sluss, H. K., Armata, H., Gallant, J., Jones, S. N. Phosphorylation of serine 18 regulates distinct p53 functions in mice. Mol. Cell. Biol. 24, 976–984 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Uziel, T. et al. Requirement of the MRN complex for ATM activation by DNA damage. EMBO J. 22, 5612–5621 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Stewart, G. S. et al. The DNA double-strand break repair gene hMRE11 is mutated in individuals with an ataxia-telangiectasia-like disorder. Cell 99, 577–587 (1999).

    Article  CAS  PubMed  Google Scholar 

  73. Carney, J. P. et al. The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response. Cell 93, 477–486 (1998).

    Article  CAS  PubMed  Google Scholar 

  74. Herzog, K. H., Chong, M. J., Kapsetaki, M., Morgan, J. I. & McKinnon, P. J. Requirement for Atm in ionizing radiation-induced cell death in the developing central nervous system. Science 280, 1089–1091 (1998).

    Article  CAS  PubMed  Google Scholar 

  75. Stern, N. et al. Accumulation of DNA damage and reduced levels of nicotine adenine dinucleotide in the brains of Atm-deficient mice. J. Biol. Chem. 277, 602–608 (2002).

    Article  CAS  PubMed  Google Scholar 

  76. Meira, L. B. et al. Heterozygosity for the mouse Apex gene results in phenotypes associated with oxidative stress. Cancer Res. 61, 5552–5557 (2001).

    CAS  PubMed  Google Scholar 

  77. Barlow, C. et al. Loss of the ataxia-telangiectasia gene product causes oxidative damage in target organs. Proc. Natl Acad. Sci. USA 96, 9915–9919 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Aicardi, J. et al. Ataxia-ocular motor apraxia: a syndrome mimicking ataxia-teleangiectasia. Ann. Neurol. 24, 497–502 (1988).

    Article  CAS  PubMed  Google Scholar 

  79. Hannan, M. A., Sigut, D., Waghray, M. & Gascon, G. G. Ataxia-ocular motor apraxia syndrome: an investigation of cellular radiosensitivity of patients and their families. J. Med. Genet. 31, 953–956 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Date, H. et al. Early-onset ataxia with ocular motor apraxia and hypoalbuminemia is caused by mutations in a new HIT superfamily gene. Nature Genet. 29, 184–188 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Moreira, M. C. et al. The gene mutated in ataxia-ocular apraxia 1 encodes the new HIT/Zn-finger protein aprataxin. Nature Genet. 29, 189–193 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Jilani, A. et al. Molecular cloning of the human gene, PNKP, encoding a polynucleotide kinase 3′-phosphatase and evidence for its role in repair of DNA strand breaks caused by oxidative damage. J. Biol. Chem. 274, 24176–24186 (1999).

    Article  CAS  PubMed  Google Scholar 

  83. Brenner, C., Bieganowski, P., Pace, H. C. & Huebner, K. The histidine triad superfamily of nucleotide-binding proteins. J. Cell. Physiol. 181, 179–187 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Sano, Y. et al. Aprataxin, the causative protein for EAOH is a nuclear protein with a potential role as a DNA repair protein. Ann. Neurol. 55, 241–249 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Whitehouse, C. J. et al. XRCC1 stimulates human polynucleotide kinase activity at damaged DNA termini and accelerates DNA single-strand break repair. Cell 104, 107–117 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Gueven, N. et al. Aprataxin, a novel protein that protects against genotoxic stress. Hum. Mol. Genet. 13, 1081–1093 (2004). An extensive biochemical study that provides convincing evidence that aprataxin is primarily involved in the cellular response to diverse genotoxic events.

    Article  CAS  PubMed  Google Scholar 

  87. Bomont, P. et al. Homozygosity mapping of spinocerebellar ataxia with cerebellar atrophy and peripheral neuropathy to 9q33-34, and with hearing impairment and optic atrophy to 6p21-23. Eur. J. Hum. Genet. 8, 986–990 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Nemeth, A. H. et al. Autosomal recessive cerebellar ataxia with oculomotor apraxia (ataxia-telangiectasia-like syndrome) is linked to chromosome 9q34. Am. J. Hum. Genet. 67, 1320–1326 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Moreira, M. C. et al. Senataxin, the ortholog of a yeast RNA helicase, is mutant in ataxia-ocular apraxia 2. Nature Genet. 36, 225–227 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Kim, H. D., Choe, J. & Seo, Y. S. The sen1+ gene of Schizosaccharomyces pombe, a homologue of budding yeast SEN1, encodes an RNA and DNA helicase. Biochemistry 38, 14697–14710 (1999).

    Article  CAS  PubMed  Google Scholar 

  91. Wang, W., Czaplinski, K., Rao, Y. & Peltz, S. W. The role of Upf proteins in modulating the translation read-through of nonsense-containing transcripts. EMBO J. 20, 880–890 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Grohmann, K. et al. Mutations in the gene encoding immunoglobulin μ-binding protein 2 cause spinal muscular atrophy with respiratory distress type 1. Nature Genet. 29, 75–77 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Takashima, H. et al. Mutation of TDP1, encoding a topoisomerase I-dependent DNA damage repair enzyme, in spinocerebellar ataxia with axonal neuropathy. Nature Genet. 32, 267–272 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. Brusco, A. et al. Molecular genetics of hereditary spinocerebellar ataxia. Mutation analysis of spinocerebellar ataxia genes and CAG/CTG repeat expansion detection in 225 Italian families. Arch. Neurol. 61, 727–733 (2004).

    Article  PubMed  Google Scholar 

  95. Robitaille, Y., Schut, L. & Kish, S. J. Structural and immunocytochemical features of olivopontocerebellar atrophy caused by the spinocerebellar ataxia type 1 (SCA-1) mutation define a unique phenotype. Acta Neuropathol. Berl. 90, 572–581 (1995).

    Article  CAS  PubMed  Google Scholar 

  96. Durr, A. et al. Autosomal dominant cerebellar ataxia type I in Martinique (French West Indies). Clinical and neuropathological analysis of 53 patients from three unrelated SCA2 families. Brain 118, 1573–1581 (1995).

    Article  PubMed  Google Scholar 

  97. Durr, A. et al. Spinocerebellar ataxia 3 and Machado-Joseph disease: clinical, molecular, and neuropathological features. Ann. Neurol. 39, 490–499 (1996).

    Article  CAS  PubMed  Google Scholar 

  98. Gomez, C. M. et al. Spinocerebellar ataxia type 6: gaze-evoked and vertical nystagmus, Purkinje cell degeneration, and variable age of onset. Ann. Neurol. 42, 933–950 (1997).

    Article  CAS  PubMed  Google Scholar 

  99. Gouw, L. G., Digre, K. B., Harris, C. P., Haines, J. H. & Ptacek, L. J. Autosomal dominant cerebellar ataxia with retinal degeneration: clinical, neuropathologic, and genetic analysis of a large kindred. Neurology 44, 1441–1447 (1994).

    Article  CAS  PubMed  Google Scholar 

  100. Rolfs, A. et al. Clinical features and neuropathology of autosomal dominant spinocerebellar ataxia (SCA17). Ann. Neurol. 54, 367–375 (2003).

    Article  PubMed  Google Scholar 

  101. Takahashi, H. et al. Hereditary dentatorubral-pallidoluysian atrophy: clinical and pathologic variants in a family. Neurology 38, 1065–1070 (1988).

    Article  CAS  PubMed  Google Scholar 

  102. Ikeda, H. et al. Expanded polyglutamine in the Machado-Joseph disease protein induces cell death in vitro and in vivo. Nature Genet. 13, 196–202 (1996).

    Article  CAS  PubMed  Google Scholar 

  103. Burright, E. N. et al. SCA1 transgenic mice: a model for neurodegeneration caused by an expanded CAG trinucleotide repeat. Cell 82, 937–948 (1995). Generation of the first mice to bear full-length ataxin-1 with an expanded allele of 82 glutamine residues. The mice show loose motor coordination and extensive Purkinje cell loss. It was the first animal model for polyglutamine disorders.

    Article  CAS  PubMed  Google Scholar 

  104. Ordway, J. M. et al. Ectopically expressed CAG repeats cause intranuclear inclusions and a progressive late onset neurological phenotype in the mouse. Cell 91, 753–763 (1997).

    Article  CAS  PubMed  Google Scholar 

  105. Perutz, M. F. Glutamine repeats and inherited neurodegenerative disease: molecular aspects. Curr. Opin. Struct. Biol. 6, 848–858 (1996). A full theoretical model for conformational change of polyglutamine stretches of 40 or more repeats from α-coiled to pleated β-sheets linked by hydrogen bonds between both their main-chain and side-chain amides, leading, through their adhesive properties, to aggregate formation and neurodegeneration.

    Article  CAS  PubMed  Google Scholar 

  106. La Spada, A. R. & Taylor, J. P. Polyglutamines placed into context. Neuron 38, 681–684 (2003).

    Article  CAS  PubMed  Google Scholar 

  107. Lorenzetti, D. et al. Repeat instability and motor incoordination in mice with a targeted expanded CAG repeat in the Sca1 locus. Hum. Mol. Genet. 9, 779–785 (2000).

    Article  CAS  PubMed  Google Scholar 

  108. Yoo, S. Y. et al. SCA7 knockin mice model human SCA7 and reveal gradual accumulation of mutant ataxin-7 in neurons and abnormalities in short-term plasticity. Neuron 37, 383–401 (2003).

    Article  CAS  PubMed  Google Scholar 

  109. Scheel, H., Tomiuk, S. & Hofmann, K. Elucidation of ataxin-3 and ataxin-7 function by integrative bioinformatics. Hum. Mol. Genet. 12, 2845–2852 (2003).

    Article  CAS  PubMed  Google Scholar 

  110. Chen, H. K. et al. Interaction of Akt-phosphorylated ataxin-1 with 14-3-3 mediates neurodegeneration in spinocerebellar ataxia type 1. Cell 113, 457–468 (2003). The demonstration that 14-3-3 protein binds to and stabilizes ataxin-1, mediating its intrinsic neurotoxicity after phosphorylation of Ser-776 of ataxin-1 by the PI3K Akt. This work underscores the importance of the protein context in polyQ-mediated neurodegeneration.

    Article  CAS  PubMed  Google Scholar 

  111. Chai, Y., Shoesmith Berke, S., Cohen, R. E., & Paulson H. L. Poly-ubiquitin binding by the polyglutamine disease protein ataxin-3 links its normal function to protein surveillance pathways. J. Biol. Chem. 279, 3605–3611 (2004). In stably transfected cell lines, normal and expanded ataxin-3 firmly binds through its UIMs to poly-ubiquitylated, but not mono- or di-ubiquitylated proteins, showing that ataxin-3 has a specific function that is linked to the protein surveillance machinery.

    Article  CAS  PubMed  Google Scholar 

  112. Huynh, D. P., Figueroa, K., Hoang, N. & Pulst, S. M. Nuclear localization or inclusion body formation of ataxin-2 are not necessary for SCA2 pathogenesis in mouse or human. Nature Genet. 26, 44–50 (2000).

    Article  CAS  PubMed  Google Scholar 

  113. Ishikawa, K. et al. Abundant expression and cytoplasmic aggregations of 1A voltage-dependent calcium channel protein associated with neurodegeneration in spinocerebellar ataxia type 6. Hum. Mol. Genet. 8, 1185–1193 (1999).

    Article  CAS  PubMed  Google Scholar 

  114. Sisodia, S. S. Nuclear inclusions in glutamine repeat disorders: are they pernicious, coincidental, or beneficial? Cell 95, 1–4 (1998).

    Article  CAS  PubMed  Google Scholar 

  115. Warrick, J. M. et al. Suppression of polyglutamine-mediated neurodegeneration in Drosophila by the molecular chaperone HSP70. Nature Genet. 23, 425–428 (1999). In an elegant model of neurodegeneration in D. melanogaster obtained through the expression of a truncated C-terminal fragment of ataxin-3 containing 78 Gln repeats, cell pathology and phenotype are rescued by the overexpression of the molecular chaperone Hsp70.

    Article  CAS  PubMed  Google Scholar 

  116. Chai, Y., Koppenhafer, S. L., Shoesmith, S. J., Perez, M. K. & Paulson, H. L. Evidence for proteasome involvement in polyglutamine disease: localization to nuclear inclusions in SCA3/MJD and suppression of polyglutamine aggregation in vitro. Hum. Mol. Genet. 8, 673–682 (1999).

    Article  CAS  PubMed  Google Scholar 

  117. Schmidt, T. et al. Protein surveillance machinery in brains with spinocerebellar ataxia type 3: redistribution and differential recruitment of 26S proteasome subunits and chaperones to neuronal intranuclear inclusions. Ann. Neurol. 51, 302–310 (2002).

    Article  CAS  PubMed  Google Scholar 

  118. McCampbell, A. et al. CREB-binding protein sequestration by expanded polyglutamine. Hum. Mol. Genet. 9, 2197–2202 (2000).

    Article  CAS  PubMed  Google Scholar 

  119. Berke, S. J. & Paulson, H. L. Protein aggregation and the ubiquitin proteasome pathway: gaining the UPPer hand on neurodegeneration. Curr. Opin. Genet. Dev. 13, 253–261 (2003).

    Article  CAS  PubMed  Google Scholar 

  120. Yvert, G. et al. SCA7 mouse models show selective stabilization of mutant ataxin-7 and similar cellular responses in different neuronal cell types. Hum. Mol. Genet. 10, 1679–1692 (2001).

    Article  CAS  PubMed  Google Scholar 

  121. Shimohata, T., et al. Expanded polyglutamine stretches interact with TAFII130. interfering with CREB-dependent transcription. Nature Genet. 26, 29–35 (2000).

    Article  CAS  PubMed  Google Scholar 

  122. Cummings, C. J. et al. Chaperone suppression of aggregation and altered subcellular proteasome localization imply protein misfolding in SCA1. Nature Genet. 19, 148–154 (1998).

    Article  CAS  PubMed  Google Scholar 

  123. Klement, I. A. et al. Ataxin-1 nuclear localization and aggregation: role in polyglutamine-induced disease in SCA1 transgenic mice. Cell 95, 41–53 (1998).

    Article  CAS  PubMed  Google Scholar 

  124. Emamian, E. S. et al. Serine 776 of ataxin-1 is critical for polyglutamine-induced disease in SCA1 transgenic mice. Neuron 38, 375–387 (2003).

    Article  CAS  PubMed  Google Scholar 

  125. Sanchez, I., Mahlke, C. & Yuan, J. Pivotal role of oligomerization in expanded polyglutamine neurodegenerative disorders. Nature 421, 373–379 (2003).

    Article  CAS  PubMed  Google Scholar 

  126. Matilla, A. et al. The cerebellar leucine-rich acidic nuclear protein interacts with ataxin-1. Nature 389, 974–978 (1997).

    Article  CAS  PubMed  Google Scholar 

  127. Lin, X., Antalffy, B., Kang, D., Orr, H. T. & Zoghbi, H. Y. Polyglutamine expansion down-regulates specific neuronal genes before pathologic changes in SCA1. Nature Neurosci. 3, 157–163 (2000).

    Article  CAS  PubMed  Google Scholar 

  128. Fernandez-Funez, P. et al. Identification of genes that modify ataxin-1-induced neurodegeneration. Nature 408, 101–106 (2000).

    Article  CAS  PubMed  Google Scholar 

  129. Paulson, H. L. et al. Machado-Joseph disease gene product is a cytoplasmic protein widely expressed in brain. Ann. Neurol. 41, 453–462 (1997).

    Article  CAS  PubMed  Google Scholar 

  130. Kaytor, M. D. et al. Nuclear localization of the spinocerebellar ataxia type 7 protein, ataxin-7. Hum. Mol. Genet. 8, 1657–1664 (1999).

    Article  CAS  PubMed  Google Scholar 

  131. Schmidt, T. et al. An isoform of ataxin-3 accumulates in the nucleus of neuronal cells in affected brain regions of SCA3 patients. Brain Pathol. 8, 669–679 (1998).

    Article  CAS  PubMed  Google Scholar 

  132. Nucifora, F. C. Jr et al. Nuclear localization of a non-caspase truncation product of atrophin-1, with an expanded polyglutamine repeat, increases cellular toxicity. J. Biol. Chem. 278, 13047–13055 (2003).

    Article  CAS  PubMed  Google Scholar 

  133. Warrick, J. M. et al. Expanded polyglutamine protein forms nuclear inclusions and causes neural degeneration in Drosophila. Cell 93, 939–949 (1998).

    Article  CAS  PubMed  Google Scholar 

  134. Bonini, N. M. Chaperoning brain degeneration. Proc. Natl Acad. Sci. USA 99 (Suppl. 4), 16407–16411 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Evert, B. O. et al. High level expression of expanded full-length ataxin-3 in vitro causes cell death and formation of intranuclear inclusions in neuronal cells. Hum. Mol. Genet. 8, 1169–1176 (1999).

    Article  CAS  PubMed  Google Scholar 

  136. Donaldson, K. M. et al. Ubiquitin-mediated sequestration of normal cellular proteins into polyglutamine aggregates. Proc. Natl Acad. Sci. USA 100, 8892–8897 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Wang, G. H., Sawai, N., Kotliarova, S., Kanazawa, I. & Nukina, N. Ataxin-3, the MJD1 gene product, interacts with the two human homologs of yeast DNA reapair protein RAD23, HHR23A and HHR23B. Hum. Mol. Genet. 9, 1795–1803 (2000).

    Article  CAS  PubMed  Google Scholar 

  138. Chen, L. & Madura, K. Rad23 promotes targeting of proteolytic substrates to the proteasome. Mol. Cell. Biol. 22, 4902–4913 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Doss-Pepe, E. W., Stenroos, E. S., Johnson, W. G., & Madura, K. Ataxin-3 interactions with Rad23 and valosin-containing protein and its association with ubiquitin chains and the proteasome are consistent with a role in ubiquitin-mediated proteolysis. Mol. Cell. Biol. 23, 6469–6483 (2003). Demonstration that ataxin-3 interacts with both ubiquitinated proteins and the proteasome-binding factors Rad23 and VCP, which are part of the proteasome system. The paper indicates that ataxin-3 might act as a proteasome-associated factor, which mediates the degradation of ubiquitinated proteins.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Burnett, B., Li, F. & Pittman, R. N. The polyglutamine neurodegenerative protein ataxin-3 binds polyubiquitylated proteins and has ubiquitin protease activity. Hum. Mol. Genet. 12, 3195–3205 (2003).

    Article  CAS  PubMed  Google Scholar 

  141. Gunawardena, S. et al. Disruption of axonal transport by loss of huntingtin or expression of pathogenic polyQ proteins in Drosophila. Neuron 40, 25–40 (2003). Ataxin-3 with short polyQ repeats in its C-terminal region is normally transported within axons of D. melanogaster larvae and accumulated at the neuromuscular junction. Larvae expressing ataxin-3 with expanded polyQ stretches show prominent axonal inclusions and axonal blockage, indicating that disruption of axonal transport could contribute to early neuropathology in polyQ diseases.

    Article  CAS  PubMed  Google Scholar 

  142. Yue, S., Serra, H. G., Zoghbi, H. Y. & Orr, H. T. The spinocerebellar ataxia type 1 protein, ataxin-1, has RNA-binding activity that is inversely affected by the length of its polyglutamine tract. Hum. Mol. Genet. 10, 25–30 (2001).

    Article  CAS  PubMed  Google Scholar 

  143. Zhang, S., Xu, L., Lee, J. & Xu, T. Drosophila atrophin homolog functions as a transcriptional corepressor in multiple developmental processes. Cell 108, 45–56 (2002).

    Article  CAS  PubMed  Google Scholar 

  144. Li, F., Macfarlan, T., Pittman, R. N. & Chakravarti, D. Ataxin-3 is a histone-binding protein with two independent transcriptional corepressor activities. J. Biol. Chem. 277, 45004–45012 (2002).

    Article  CAS  PubMed  Google Scholar 

  145. La Spada, A. R. et al. Polyglutamine-expanded ataxin-7 antagonizes CRX function and induces cone-rod dystrophy in a mouse model of SCA7. Neuron 31, 913–927 (2001).

    Article  CAS  PubMed  Google Scholar 

  146. Mariotti, C. et al. Idebenone treatment in Friedreich patients: one-year-long randomized placebo-controlled trial. Neurology 60, 1676–1679 (2003).

    Article  CAS  PubMed  Google Scholar 

  147. DeKosky, S. T. & Marek, K. Looking backward to move forward: early detection of neurodegenerative disorders. Science 302, 830–834 (2003).

    Article  CAS  PubMed  Google Scholar 

  148. Martin, J. H. Neuroanatomy: Text and Atlas 2nd edn (Appleton & Lange, Stamford, Connecticut, 1996).

    Google Scholar 

Download references

Acknowledgements

This study was promoted by the European Community (EUROSCA integrated project awarded to S.D.). Work in the authors' laboratory is supported by grants from the Italian Ministry of Health (Ministero della Salute to S.D. and F.T.), Fondazione Cariplo (F.T.) and Fondazione Pierfranco e Luisa Mariani (F.T.). We wish to thank our colleagues Cinzia Gellera and Caterina Mariotti for invaluable discussion and contribution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano DiDonato.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

APTX

ATCAY

Atm1

ATM

CRX

DRPLA

FRDA

Isu1

MRE11

MTP

NBS1

Nfs1

PARP

PNKP

RAD50

Rpn10

SCA1

SCA2

SCA3

SCA6

SCA7

SCA17

SETX

TDP1

TTPA

VCP

XRCC1

Yfh1

OMIM

ABL

AT

AOA1

AOA2

ATLD

AVED

Cayman ataxia

FRDA

NBS

SCAN1

XLSA/A

FURTHER INFORMATION

DiDonato's homepage

Istituto Nazionale Neurologico Carlo Besta

Glossary

OCULOMOTOR APRAXIA

Impairment of planning and organization of voluntary conjugate movements of the eyes (saccadic movements). When asked to move the eyes laterally, the patient makes a lateral head turn, and the eyes then follow. Involuntary and random eye movements are usually normal.

FERRITINS

A class of major iron-storage proteins that are widely distributed in animals, plants and microorganisms. They consist of a mineral core of hydrated ferric oxide and a hollow spherical protein shell composed of 24 apoferritin monomers. The iron is therefore stored in a soluble, nontoxic, readily available form.

CRAL-TRIO

CRAL defines the C-terminal binding motif of various retinaldehyde/retinal-binding proteins that might be functional components of the visual cycle. TRIO refers to a protein that contains three enzyme domains: a protein kinase domain and two distinct guanine nucleotide exchange factor domains. Proteins with a CRAL-TRIO domain are transfer proteins.

DOUBLE-STRAND BREAKS

(DSBs). DNA lesions caused by agents including ionizing radiation and reactive chemicals.

SINGLE-STRAND BREAKS

(SSBs). DNA lesions that arise directly from an attack on deoxyribose by free radicals, or indirectly as, for example, normal intermediates of DNA base excision repair.

MICROCEPHALY

The condition of having an abnormally small head (circumference smaller than 2 standard deviations of the mean for age and sex). It most often occurs because of failure of the brain to grow at a normal rate. It usually results in mental retardation.

SSBR COMPLEX

A coordinated group of proteins that participate in the repair of SSBs.

ABORTIVE SSBs

Inhibition of the catalytic activity of TOPO1, which transiently breaks DNA and generates SSBs, results in an abortive TOPO1–DNA complex.

OPHTHALMOPLEGIA

Paralysis or weakness of one or more of the muscles that control eye movement, innervated by the third (oculomotor), fourth (trochlear) and sixth (abducens) cranial nerves. It results in the impairment of both voluntary and involuntary movements of the eyes.

AMYOTROPHY

Progressive wasting of muscle tissues.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taroni, F., DiDonato, S. Pathways to motor incoordination: the inherited ataxias. Nat Rev Neurosci 5, 641–655 (2004). https://doi.org/10.1038/nrn1474

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1474

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing