Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Neurobiology of intelligence: science and ethics

Key Points

  • Intelligence research is more advanced and less controversial than is generally realized. Definitive conclusions about the neural and genetic bases of intelligence are being drawn — these have ethical implications that need to be addressed.

  • General intelligence and volume of frontal grey matter (assessed by magnetic resonance imaging) are correlated.

  • The lateral prefrontal cortex is consistently activated during intelligence testing. Frontal and parietal brain regions implicated in working memory are also activated under test conditions. These data contribute to the debate on whether intelligence has a unitary (activation of a single brain region/functional unit) or multiple basis.

  • The structure of brain regions that influence intelligence is under strong genetic control. Studies of intelligence using twins reared separately support the heritability of cognitive function.

  • Environmental factors — such as prenatal exposure to toxins, duration of breastfeeding and shared family environment — affect intellectual function. These non-genetic factors have a much greater effect on childhood intelligence in impoverished families.

  • Establishing a neurobiological basis for intelligence has important ethical implications. For example, is it ethical to assess racial differences in intelligence? Such questions need to be proactively addressed so that the field of intelligence research is not perceived as socially divisive.


Human mental abilities, such as intelligence, are complex and profoundly important, both in a practical sense and for what they imply about the human condition. Understanding these abilities in mechanistic terms has the potential to facilitate their enhancement. There is strong evidence that the lateral prefrontal cortex, and possibly other areas, support intelligent behaviour. Variations in intelligence and brain structure are heritable, but are also influenced by factors such as education, family environment and environmental hazards. Cognitive, psychometric, genetic and neuroimaging studies are converging, and the emergence of mechanistic models of intelligence is inevitable. These exciting scientific advances encourage renewed responsiveness to the social and ethical implications of conducting such research.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Studies of the biological bases of intelligence have identified relationships between variables at three broad levels of analysis: behaviour, biology and the wider context.
Figure 2: Frontal brain damage compromises fluid intelligence more than crystallized intelligence.
Figure 3: Linking genes, brain structure and intelligence.
Figure 4: Different methods of assessing the relationship between intelligence and the brain implicate similar brain regions.


  1. 1

    Ross, L. The intuitive psychologist and his shortcomings: distortions in the attribution process. Adv. Exp. Soc. Psychol. 10, 173–220 (1977).

    Google Scholar 

  2. 2

    Aronson, J. & Steele, C. M. in The Handbook of Competence and Motivation (eds Elliot, A. & Dweck, C.) (Wiley, New York, in the press). Reviews the large body of literature on stereotype threat, illustrating how subtle situational factors can impact performance on tests of mental ability. The implications for standardized testing have been largely ignored by the testing industry.

  3. 3

    Pinker, S. The Blank Slate (Viking, New York, 2002). A strong critique of the standard social science position that individual differences result only from differing environment (the 'blank slate' view of human nature). It emphasizes that such a view is not merely incorrect but also dangerous.

    Google Scholar 

  4. 4

    Kagan, J. Three Seductive Ideas (Harvard Univ. Press, Cambridge, Massachusetts, 1998).

    Google Scholar 

  5. 5

    Hunt, M. The New Know-nothings: The Political Foes of the Scientific Study of Human Nature (Transaction, New Brunswick, 1999).

    Google Scholar 

  6. 6

    Goode, E. Brain scans reflect problem-solving skill. The New York Times 17 Feb (2003).

  7. 7

    Ordover, N. American Eugenics: Race, Queer Anatomy, and the Science of Nationalism (Univ. Minnesota Press, Minneapolis, 2003). A disturbing and instructive history of oversimplified genetic science misapplied to social policy in the United States.

    Google Scholar 

  8. 8

    Hume, D. A Treatise of Human Nature (Clarendon, Oxford, 1739/1964).

    Google Scholar 

  9. 9

    Loehlin, J. C. in Handbook of Intelligence (ed. Sternberg, R. J.) 176–193 (Cambridge Univ. Press, New York, 2000).

    Google Scholar 

  10. 10

    Gould, S. J. The Mismeasure of Man (Norton, New York, 1981/1996).

    Google Scholar 

  11. 11

    Cattell, R. B. Abilities: Their Structure, Growth, and Action (Houghton Mifflin, Boston, 1971).

    Google Scholar 

  12. 12

    Sternberg, R. J. Beyond IQ: A Triarchic Theory of Human Intelligence (Cambridge Univ. Press, Cambridge, UK, 1985). An empirically grounded argument against a unitary view of intelligence.

    Google Scholar 

  13. 13

    Jensen, A. R. Bias in Mental Testing (Free, New York, 1980).

    Google Scholar 

  14. 14

    Carroll, J. Human Cognitive Abilities: A Survey of Factor–Analytic Studies (Cambridge Univ. Press, Cambridge, UK, 1993).

    Google Scholar 

  15. 15

    Neisser, U. et al. Intelligence: knowns and unknowns. Am. Psychol. 51, 77–101 (1996). A consensus of experts on the state of intelligence research, outlining many points of agreement despite some contentious issues.

    Article  Google Scholar 

  16. 16

    Lubinski, D. Introduction to the special section on cognitive abilities: 100 years after Spearman's (1904) 'general intelligence', objectively determined and measured. J. Pers. Soc. Psychol. 86, 96–111 (2004).

    Article  PubMed  Google Scholar 

  17. 17

    Deary, I. J. Human intelligence differences: a recent history. Trends Cogn. Sci. 5, 127–130 (2001).

    Article  PubMed  Google Scholar 

  18. 18

    Kane, M. J. & Engle, R. W. The role of prefrontal cortex in working-memory capacity, executive attention and general fluid intelligence: an individual-differences perspective. Psychon. Bull. Rev. 9, 637–671 (2002). An exhaustive review of the behavioural literature on intelligence and individual differences in working memory capacity, especially as related to the prefrontal cortex.

    Article  PubMed  Google Scholar 

  19. 19

    Vernon, P. A. et al. in Handbook of Intelligence (ed. Sternberg, R. J.) 245–264 (Cambridge Univ. Press, New York, 2000).

    Google Scholar 

  20. 20

    Deary, I. J. Looking Down on Human Intelligence (Oxford Univ. Press, New York, 2000).

    Google Scholar 

  21. 21

    Finger, S. Origins of Neuroscience (Oxford Univ. Press, New York, 1994).

    Google Scholar 

  22. 22

    Piercy, M. The effects of cerebral lesions on intellectual function: a review of current research trends. Brit. J. Psychiatry 110, 310–352 (1964).

    CAS  Article  Google Scholar 

  23. 23

    Kolb, I. & Whishaw, B. Fundamentals of Human Neuropsychology (W. H. Freeman, New York, 1996).

    Google Scholar 

  24. 24

    Duncan, J., Emslie, H., Williams, P., Johnson, R. & Freer, C. Intelligence and the frontal lobe: the organization of goal-directed behavior. Cogn. Psychol. 30, 257–303 (1996).

    CAS  Article  PubMed  Google Scholar 

  25. 25

    Duncan, J., Burgess, P. & Emslie, H. Fluid intelligence after frontal lobe lesions. Neuropsychologia 33, 261–268 (1995).

    CAS  Article  PubMed  Google Scholar 

  26. 26

    Waltz, J. A. et al. A system for relational reasoning in human prefrontal cortex. Psychol. Sci. 10, 119–125 (1999).

    Article  Google Scholar 

  27. 27

    Gray, J. R., Chabris, C. F. & Braver, T. S. Neural mechanisms of general fluid intelligence. Nature Neurosci. 6, 316–322 (2003). The first large-sample event-related fMRI study of intelligence, reporting correlations between Gf and activity in lateral prefrontal cortex and parietal cortex. It is notable for its individual-differences approach and emphasis on theoretically motivated trials.

    CAS  Article  PubMed  Google Scholar 

  28. 28

    Andreasen, N. C. et al. Intelligence and brain structure in normal individuals. Am. J. Psychiatry 150, 130–134 (1993).

    CAS  Article  PubMed  Google Scholar 

  29. 29

    Peters, M. Does brain size matter? A reply to Rushton and Ankney. Can. J. Exp. Psychol. 49 (1995).

  30. 30

    McDaniel, M. A. & Nguyen, N. T. A meta-analysis of the relationship between MRI-assessed brain volume and intelligence. Proc. Int. Soc. Intell. Res. (2002).

  31. 31

    Pennington, B. F. et al. A twin MRI study of size variations in human brain. J. Cogn. Neurosci. 12, 223–232 (2000).

    CAS  Article  PubMed  Google Scholar 

  32. 32

    Thompson, P. M. et al. Genetic influences on brain structure. Nature Neurosci. 4, 1253–1258 (2001). This twin study presents the first maps of genetic influences on human brain structure, revealing that the quantity of frontal grey matter is under strong genetic control and is also linked with intelligence.

    CAS  Article  PubMed  Google Scholar 

  33. 33

    Plomin, R. & Kosslyn, S. M. Genes, brain and cognition. Nature Neurosci. 4, 1153–1154 (2001).

    CAS  Article  PubMed  Google Scholar 

  34. 34

    Posthuma, D. et al. The association between brain volume and intelligence is of genetic origin. Nature Neurosci. 5, 83–84 (2002).

    CAS  Article  PubMed  Google Scholar 

  35. 35

    Draganski, B. et al. Changes in grey matter induced by training. Nature 247, 311–312 (2004).

    Article  CAS  Google Scholar 

  36. 36

    Duncan, J. et al. A neural basis for general intelligence. Science 289, 457–460 (2000). A PET study of high- g versus low- g tasks. It is notable for using brain imaging data to inform the debate about the structure of intelligence.

    CAS  Article  PubMed  Google Scholar 

  37. 37

    Prabhakaran, V., Smith, J. A. L., Desmond, J. E., Glover, G. H. & Gabrieli, J. D. E. Neuronal substrates of fluid reasoning: an fMRI study of neocortical activation during performance of the Raven's Progressive Matrices Test. Cogn. Psychol. 33, 43–63 (1997).

    CAS  Article  PubMed  Google Scholar 

  38. 38

    Prabhakaran, V., Rypma, B. & Gabrieli, J. D. E. Neural substrates of mathematical reasoning: a functional magnetic resonance imaging study of neocortical activation during performance of the Necessary Arithmetic Operations Test. Neuropsychology 15, 115–127 (2001).

    CAS  Article  PubMed  Google Scholar 

  39. 39

    Esposito, G., Kirby, B. S., Van Horn, J. D., Ellmore, T. M. & Berman, K. F. Context-dependent, neural system-specific neurophysiological concomitants of ageing: mapping PET correlates during cognitive activation. Brain 122, 963–979 (1999).

    Article  PubMed  Google Scholar 

  40. 40

    Jensen, A. R. The g Factor: The Science of Mental Ability (Praeger, Westport, 1998). The modern argument for a unitary view of intelligence.

    Google Scholar 

  41. 41

    Smith, E. E. & Jonides, J. Storage and executive processes in the frontal lobes. Science 283, 1657–1661 (1999).

    CAS  Article  PubMed  Google Scholar 

  42. 42

    Cabeza, R. & Nyberg, L. Imaging cognition II: an empirical review of 275 PET and fMRI studies. J. Cogn. Neurosci. 12, 1–47 (2000).

    CAS  Article  PubMed  Google Scholar 

  43. 43

    Ruff, C. C., Knauff, M., Fangmeier, T. & Spreer, J. Reasoning and working memory: common and distinct neuronal processes. Neuropsychologia 41, 1241–1253 (2003).

    Article  PubMed  Google Scholar 

  44. 44

    Carpenter, P. A., Just, M. A. & Shell, P. What one intelligence test measures: a theoretical account of the processing in the Raven Progressive Matrices Test. Psychol. Rev. 97, 404–431 (1990).

    CAS  Article  PubMed  Google Scholar 

  45. 45

    Kyllonen, P. C. & Christal, R. E. Reasoning ability is (little more than) working memory capacity?! Intelligence 14, 389–433 (1990).

    Article  Google Scholar 

  46. 46

    Conway, A. R. A., Kane, M. J. & Engle, R. W. Working memory capacity and its relation to general intelligence. Trends Cogn. Sci. 7, 547–552 (2003).

    Article  PubMed  Google Scholar 

  47. 47

    Kroger, J. K. et al. Recruitment of anterior dorsolateral prefrontal cortex in human reasoning: a parametric study of relational complexity. Cereb. Cortex 12, 477–485 (2002).

    Article  PubMed  Google Scholar 

  48. 48

    Goel, V. & Dolan, R. J. Functional neuroanatomy of three-term relational reasoning. Neuropsychologia 39, 901–909 (2001).

    CAS  Article  PubMed  Google Scholar 

  49. 49

    Christoff, K. et al. Rostrolateral prefrontal cortex involvement in relational integration during reasoning. Neuroimage 14, 1136–1149 (2001).

    CAS  Article  PubMed  Google Scholar 

  50. 50

    Braver, T. S. & Bongiolatti, S. R. The role of the frontopolar prefrontal cortex in subgoal processing during working memory. Neuroimage 15, 523–536 (2002).

    Article  PubMed  Google Scholar 

  51. 51

    Koechlin, E., Basso, G., Pietrini, P., Panzer, S. & Grafman, J. The role of the anterior prefrontal cortex in human cognition. Nature 399, 148–151 (1999).

    CAS  Article  PubMed  Google Scholar 

  52. 52

    Deary, I. J. Human intelligence differences: toward a combined experimental-differential approach. Trends Cogn. Sci. 5, 164–170 (2001).

    Article  PubMed  Google Scholar 

  53. 53

    Kosslyn, S. M. et al. Bridging psychology and biology: the analysis of individuals in groups. Am. Psychol. 57, 341–351 (2002).

    Article  PubMed  Google Scholar 

  54. 54

    Haier, R. J. et al. Cortical glucose metabolic-rate correlates of abstract reasoning and attention studied with positron emission tomography. Intelligence 12, 199–217 (1988).

    Article  Google Scholar 

  55. 55

    Haier, R. J. et al. Regional glucose metabolic changes after learning a complex visuospatial/motor task: a positron emission tomography study. Brain Res. 570, 134–143 (1992).

    CAS  Article  PubMed  Google Scholar 

  56. 56

    Neubauer, A. C., Fink, A. & Schrausser, D. G. Intelligence and neural efficiency: the influence of task content and sex on the brain–IQ relationship. Intelligence 30, 515–536 (2002).

    Article  Google Scholar 

  57. 57

    Haier, R. J., White, N. S. & Alkire, M. T. Individual differences in general intelligence correlate with brain function during nonreasoning tasks. Intelligence 31, 429–441 (2003).

    Article  Google Scholar 

  58. 58

    Kane, M. J. & Engle, R. W. Working-memory capacity and the control of attention: the contributions of goal neglect, response competition, and task set to Stroop interference. J. Exp. Psychol. Gen. 132, 47–70 (2003).

    Article  PubMed  Google Scholar 

  59. 59

    Engle, R. W., Tuholski, S. W., Laughlin, J. E. & Conway, A. R. A. Working memory, short-term memory, and general fluid intelligence: a latent-variable approach. J. Exp. Psychol. Gen. 128, 309–331 (1999).

    Article  PubMed  Google Scholar 

  60. 60

    Deary, I. J. et al. The functional anatomy of inspection time: a pilot fMRI study. Intelligence 29, 497–510 (2001).

    Article  Google Scholar 

  61. 61

    Stough, C., Thompson, J. C., Bates, T. C. & Nathan, P. J. Examining neurochemical determinants of inspection time: development of a biological model. Intelligence 29, 511–522 (2001).

    Article  Google Scholar 

  62. 62

    Furey, M. L., Pietrini, P. & Haxby, J. V. Cholinergic enhancement and increased selectivity of perceptual processing during working memory. Science 290, 2315–2319 (2000).

    CAS  Article  PubMed  Google Scholar 

  63. 63

    Scarmeas, N. et al. Cognitive reserve modulates functional brain responses during memory tasks: a PET study in healthy young and elderly subjects. Neuroimage 19, 1215–1227 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  64. 64

    Stern, Y. et al. Exploring the neural basis of cognitive reserve. J. Clin. Exp. Neuropsychol. 25, 691–701 (2003).

    Article  PubMed  Google Scholar 

  65. 65

    Seidman, L. J. et al. A functional magnetic resonance imaging study of auditory vigilance with low and high information processing demands. Neuropsychology 12, 505–518 (1998).

    CAS  Article  PubMed  Google Scholar 

  66. 66

    Miller, E. K. & Cohen, J. D. An integrative theory of prefrontal cortex function. Ann. Rev. Neurosci. 21, 167–202 (2001).

    Article  Google Scholar 

  67. 67

    Jung, R. E. et al. Biochemical markers of intelligence: a proton MR spectroscopy study of normal human brain. Proc. R. Soc. Lond. B 266, 1375–1379 (1999).

    CAS  Article  Google Scholar 

  68. 68

    Rae, C. et al. Brain bioenergetics and cognitive ability. Dev. Neurosci. 25, 324–331 (2003).

    CAS  Article  PubMed  Google Scholar 

  69. 69

    Anokhin, A. P., Lutzenberger, W. & Birbaumer, N. Spatiotemporal organization of brain dynamics and intelligence: an EEG study in adolescents. Int. J. Psychophysiol. 33, 259–273 (1999).

    CAS  Article  PubMed  Google Scholar 

  70. 70

    Gevins, A. & Smith, M. E. Neurophysiological measures of working memory and individual differences in cognitive ability and cognitive style. Cereb. Cortex 10, 829–839 (2000).

    CAS  Article  PubMed  Google Scholar 

  71. 71

    Haier, R. J., Siegel, B., Tang, C., Abel, L. & Buchsbaum, M. S. Intelligence and changes in regional cerebral glucose metabolic-rate following learning. Intelligence 16, 415–426 (1992).

    Article  Google Scholar 

  72. 72

    Garlick, D. Understanding the nature of the general factor of intelligence: the role of individual differences in neural plasticity as an explanatory mechanism. Psychol. Rev. 109, 116–136 (2002).

    Article  PubMed  Google Scholar 

  73. 73

    Salovey, P., Mayer, J. D. & Caruso, D. in The Handbook of Positive Psychology (eds Snyder, C. R. & Lopez, S. J.) 159–171 (Oxford Univ. Press, New York, 2002).

    Google Scholar 

  74. 74

    Bar-On, R., Tranel, D., Denburg, N. L. & Bechara, A. Exploring the neurological substrate of emotional and social intelligence. Brain 126, 1790–1800 (2003).

    Article  PubMed  Google Scholar 

  75. 75

    Bouchard, T. J. Jr & McGue, M. Familial studies of intelligence: a review. Science 212, 1055–1059 (1981).

    Article  PubMed  Google Scholar 

  76. 76

    Grigorenko, E. L. in Handbook of Intelligence (ed. Sternberg, R. J.) 53–91 (Cambridge Univ. Press, New York, 2000).

    Google Scholar 

  77. 77

    Plomin, R. & Loehlin, J. C. Direct and indirect IQ heritability estimates: a puzzle. Behav. Genet. 19, 331–342 (1989).

    CAS  Article  PubMed  Google Scholar 

  78. 78

    Neale, M. C. & Cardon, L. R. Methodology for Genetic Studies of Twins and Families (Kluwer, Boston, 1992).

    Google Scholar 

  79. 79

    Scarr, S. & Weinberg, R. A. Educational and occupational achievements of brothers and sisters in adoptive and biologically related families. Behav. Genet. 24, 301–325 (1994).

    CAS  Article  PubMed  Google Scholar 

  80. 80

    Posthuma, D. & Boomsma, D. I. A note on the statistical power in extended twin designs. Behav. Genet. 30, 147–158 (2000).

    CAS  Article  PubMed  Google Scholar 

  81. 81

    Vogel, F. & Motulsky, A. G. Human Genetics (Springer, New York, 1997).

    Google Scholar 

  82. 82

    Lewontin, R., Rose, S. & Kamin, L. J. Not in Our Genes: Biology, Ideology and Human Nature (Random House, New York, 1984).

    Google Scholar 

  83. 83

    Bouchard, T. J. Jr, Lykken, D. T., McGue, M., Segal, N. L. & Tellegen, A. Sources of human psychological differences: the Minnesota study of twins reared apart. Science 250, 223–228 (1990).

    Article  PubMed  Google Scholar 

  84. 84

    Dorfman, D. D. Soft science with a neoconservative agenda (review of Richard J. Herrnstein and Charles Murray The Bell Curve: Intelligence and Class Structure in American Life). Contemp. Psychol. 40 (1995).

  85. 85

    Spearman, C. The Nature of 'Intelligence' and the Principles of Cognition (Macmillan, London, 1927).

    Google Scholar 

  86. 86

    Kamin, L. J. Twin studies, heritability, and intelligence. Science 278, 1385 (1997).

    CAS  PubMed  Google Scholar 

  87. 87

    McClearn, G. E. et al. Substantial genetic influence on cognitive abilities in twins 80 or more years old. Science 276, 1560–1563 (1997).

    CAS  Article  PubMed  Google Scholar 

  88. 88

    Feldman, M. W. & Otto, S. P. Twin studies, heritability, and intelligence. Science 278, 1383–1384 (1997).

    CAS  Article  PubMed  Google Scholar 

  89. 89

    Devlin, B., Daniels, M. & Roeder, K. The heritability of IQ. Nature 388, 468–471 (1997). A meta-analysis of IQ studies, showing that the prenatal environment might be more influential, and genetic factors less influential, in determining childhood IQ than was previously appreciated.

    CAS  Article  PubMed  Google Scholar 

  90. 90

    Finkel, D., Pedersen, N. L., Plomin, R. & McClearn, G. E. Longitudinal and cross-sectional twin data on cognitive abilities in adulthood: the Swedish Adoption/Twin Study of Aging. Dev. Psychol. 34, 1400–1413 (1998).

    CAS  Article  PubMed  Google Scholar 

  91. 91

    Loehlin, J. C. Partitioning environmental and genetic contributions to behavioral development. Am. Psychol. 44, 1285–1292 (1989).

    CAS  Article  PubMed  Google Scholar 

  92. 92

    Rowe, D. C. & Jacobson, K. C. in Behavioral Genetics (eds Carson, R. A. & Rothstein, M. A.) 12–34 (Johns Hopkins Univ. Press, Baltimore, 1999).

    Google Scholar 

  93. 93

    Boomsma, D. I., de Geus, E. J., van Baal, G. C. & Koopmans, J. R. A religious upbringing reduces the influence of genetic factors on disinhibition: evidence for interaction between genotype and environment on personality. Twin Research 2, 115–125 (1999).

    CAS  Article  PubMed  Google Scholar 

  94. 94

    Plomin, R. Genetics of childhood disorders. III. Genetics and intelligence. J. Am. Acad. Child Adolesc. Psychiatry 38, 786–788 (1999).

    CAS  Article  PubMed  Google Scholar 

  95. 95

    Dickens, W. T. & Flynn, J. R. Heritability estimates versus large environmental effects: the IQ paradox resolved. Psychol. Rev. 108, 346–369 (2001). A mathematical model that proposes powerful gene–environment interactions to reconcile the paradox that IQ is highly heritable even though average scores have increased significantly in recent decades.

    CAS  Article  PubMed  Google Scholar 

  96. 96

    Little, P. Genetic Destinies (Oxford Univ. Press, New York, 2002).

    Google Scholar 

  97. 97

    Ceci, S. J. & Williams, W. M. Schooling, intelligence, and income. Am. Psychol. 52, 1051–1058 (1997).

    Article  Google Scholar 

  98. 98

    Neisser, U. (ed.) The Rising Curve: Long-term Gains in IQ and Related Measures (American Psychological Association, Washington DC, 1998).

    Google Scholar 

  99. 99

    Oddy, W. H. et al. Breast feeding and cognitive development in childhood: a prospective birth cohort study. Paediatr. Perinat. Epidemiol. 17, 81–90 (2003).

    Article  PubMed  Google Scholar 

  100. 100

    Drane, D. L. & Logemann, J. A. A critical evaluation of the evidence on the association between type of infant feeding and cognitive development. Paediatr. Perinat. Epidemiol. 14, 349–356 (2000).

    CAS  Article  PubMed  Google Scholar 

  101. 101

    McGue, M., Bouchard, T. J. Jr, Iacono, W. G. & Lykken, D. T. in Nature, Nurture and Psychology (eds Plomin, R. & McClearn, G. E.) 59–76 (American Psychological Association, Washington DC, 1993).

    Google Scholar 

  102. 102

    Turkheimer, E., Haley, A., Waldron, M., D'Onofrio, B. & Gottesman, I. I. Socioeconomic status modifies heritability of IQ in young children. Psychol. Sci. 14, 623–628 (2003). The heritability of intelligence depends on socioeconomic status, with low heritability at low socioeconomic status, and higher heritability for high socioeconomic status.

    Article  PubMed  Google Scholar 

  103. 103

    Sherry, S. T. et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 29, 308–311 (2001).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  104. 104

    Chorney, M. J. et al. A quantitative trait locus (QTL) associated with cognitive ability in children. Psychol. Sci. 9, 159–166 (1998).

    Article  Google Scholar 

  105. 105

    Hill, L., Chorney, M. J., Lubinski, D., Thompson, L. A. & Plomin, R. A quantitative trait locus not associated with cognitive ability in children: a failure to replicate. Psychol. Sci. 13, 561–562 (2002).

    Article  PubMed  Google Scholar 

  106. 106

    Comings, D. E. et al. Role of the cholinergic muscarinic 2 receptor (CHRM2) gene in cognition. Mol. Psychiatry 8, 10–11 (2002).

    Article  CAS  Google Scholar 

  107. 107

    Fisher, P. J. et al. DNA pooling identifies QTLs on chromosome 4 for general cognitive ability in children. Hum. Mol. Genet. 8, 915–922 (1999).

    CAS  Article  PubMed  Google Scholar 

  108. 108

    Payton, A. et al. Cathepsin D exon 2 polymorphism associated with general intelligence in a healthy older population. Mol. Psychiatry 8, 14–18 (2003).

    CAS  Article  PubMed  Google Scholar 

  109. 109

    Plomin, R. et al. A genome-wide scan of 1842 DNA markers for allelic associations with general cognitive ability: a five-stage design using DNA pooling and extreme selected groups. Behav. Genet. 31, 497–509 (2001). Describes a multistage molecular genetic approach to identify individual genetic variations that affect intelligence in healthy, normal individuals.

    CAS  Article  PubMed  Google Scholar 

  110. 110

    McGuffin, P., Riley, B. & Plomin, R. Genomics and behavior. Toward behavioral genomics. Science 291, 1232–1249 (2001).

    CAS  Article  PubMed  Google Scholar 

  111. 111

    Tamayo, P. et al. Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. Proc. Natl Acad. Sci. USA 96, 2907–2912 (1999).

    CAS  Article  PubMed  Google Scholar 

  112. 112

    Mazziotta, J. C. et al. A probabilistic atlas and reference system for the human brain. J. R. Soc. 356, 1293–1322 (2001).

    CAS  Google Scholar 

  113. 113

    Posthuma, D. et al. Multivariate genetic analysis of brain structure in an extended twin design. Behav. Genet. 30, 311–319 (2000).

    CAS  Article  PubMed  Google Scholar 

  114. 114

    Pfefferbaum, A., Sullivan, E. V., Swan, G. E. & Carmelli, D. Brain structure in men remains highly heritable in the seventh and eighth decades of life. Neurobiol. Aging 21, 63–74 (2000).

    CAS  Article  PubMed  Google Scholar 

  115. 115

    Baare, W. F. et al. Quantitative genetic modeling of variation in human brain morphology. Cereb. Cortex 11, 816–824 (2001).

    CAS  Article  PubMed  Google Scholar 

  116. 116

    Geschwind, D. H., Miller, B. L., DeCarli, C. & Carmelli, D. Heritability of lobar brain volumes in twins supports genetic models of cerebral laterality and handedness. Proc. Natl Acad. Sci. USA 99, 3176–3181 (2002).

    CAS  Article  PubMed  Google Scholar 

  117. 117

    Wright, I. C., Sham, P., Murray, R. M., Weinberger, D. R. & Bullmore, E. T. Genetic contributions to regional human brain variability estimated in a twin study by path analysis of parcellated grey matter maps. Neuroimage 17, 256–271 (2002).

    CAS  Article  PubMed  Google Scholar 

  118. 118

    Carmelli, D., Swan, G. E., DeCarli, C. & Reed, T. Quantitative genetic modeling of regional brain volumes and cognitive performance in older male twins. Biol. Psychol. 61, 139–155 (2002).

    Article  PubMed  Google Scholar 

  119. 119

    Thompson, P. M., Cannon, T. D. & Toga, A. W. Mapping genetic influences on human brain structure. Ann. Med. 24, 523–536 (2002).

    Article  Google Scholar 

  120. 120

    Bond, J. et al. ASPM is a major determinant of cerebral cortical size. Nature Genet. 32, 316–320 (2002).

    CAS  Article  PubMed  Google Scholar 

  121. 121

    Egan, M. F. et al. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 112, 257–269 (2003).

    CAS  Article  PubMed  Google Scholar 

  122. 122

    Egan, M. F. et al. Effect of COMT Val 108/158 Met genotype on frontal lobe function and risk for schizophenia. Proc. Natl Acad. Sci. USA 98, 6917–6922 (2001).

    CAS  Article  PubMed  Google Scholar 

  123. 123

    Diamond, A., Briand, L., Fossella, J. & Gehlbach, L. Genetic and neurochemical modulation of prefrontal cognitive functions in children. Am. J. Psychiatry 161, 125–132 (2004).

    Article  PubMed  Google Scholar 

  124. 124

    Fan, J., Fossella, J., Sommer, T., Wu, Y. & Posner, M. I. Mapping the genetic variation of executive attention onto brain activity. Proc. Natl Acad. Sci. USA 100, 7406–7411 (2003).

    CAS  Article  PubMed  Google Scholar 

  125. 125

    Gottfredson, L. S. Why g matters: the complexity of everyday life. Intelligence 24, 79–132 (1997).

    Article  Google Scholar 

  126. 126

    Lubinski, D. & Humphreys, L. G. Incorporating general intelligence into epidemiology and the social sciences. Intelligence 24, 159–201 (1997).

    Article  Google Scholar 

  127. 127

    Duncan, J. in The Cognitive Neurosciences (ed. Gazzaniga, M.) 721–733 (MIT Press, Cambridge, Massachusetts, 1995).

    Google Scholar 

  128. 128

    Wolpert, L. Is science dangerous? Nature 398, 281–282 (1999). An essay on the relationship between science and society, emphasizing a distinction between knowledge and the application of knowledge, and the importance of not censoring research.

    CAS  Article  PubMed  Google Scholar 

  129. 129

    Farah, M. J. Emerging ethical issues in neuroscience. Nature Neurosci. 5, 1123–1129 (2002).

    CAS  Article  PubMed  Google Scholar 

  130. 130

    Kulynych, J. Legal and ethical issues in neuroimaging research: human subjects protection, medical privacy, and the public communication of research results. Brain Cogn. 50, 345–357 (2002).

    Article  PubMed  Google Scholar 

  131. 131

    Illes, J., Kirschen, M. P. & Gabrieli, J. D. From neuroimaging to neuroethics. Nature Neurosci. 6, 205 (2003).

    CAS  Article  PubMed  Google Scholar 

  132. 132

    Gottfredson, L. Egalitarian fiction and collective fraud. Society 31, 53–59 (1994).

    Article  Google Scholar 

  133. 133

    Miele, F. Intelligence, Race, and Genetics: Conversations with Arthur R. Jensen (Westview, Boulder, 2002).

    Google Scholar 

  134. 134

    Feldman, M. W., Lewontin, R. C. & King, M. C. Race: a genetic melting-pot. Nature 424, 374 (2003).

    CAS  Article  PubMed  Google Scholar 

  135. 135

    Loehlin, J. C. Should we do research on race differences in intelligence? Intelligence 16, 1–4 (1992).

    Article  Google Scholar 

  136. 136

    Steele, C. M. & Aronson, J. Stereotype threat and the intellectual test performance of African Americans. J. Pers. Soc. Psychol. 69, 797–811 (1995).

    CAS  Article  PubMed  Google Scholar 

  137. 137

    Schmader, T. & Johns, M. Converging evidence that stereotype threat reduces working memory capacity. J. Pers. Soc. Psychol. 85, 440–452 (2004).

    Article  Google Scholar 

  138. 138

    Gray, J. R., Braver, T. S. & Raichle, M. E. Integration of emotion and cognition in the lateral prefrontal cortex. Proc. Natl Acad. Sci. USA 99, 4115–4120 (2002).

    CAS  Article  PubMed  Google Scholar 

  139. 139

    Bishop, S., Duncan, J., Brett, M. & Lawrence, A. D. Prefrontal cortical function and anxiety: controlling attention to threat-related stimuli. Nature Neurosci. 7, 184–188 (2004).

    CAS  Article  PubMed  Google Scholar 

  140. 140

    Mellers, B., Hertwig, R. & Kahneman, D. Do frequency representations eliminate conjunction effects? An exercise in adversarial collaboration. Psychol. Sci. 12, 269–275 (2001).

    CAS  Article  PubMed  Google Scholar 

  141. 141

    Thurstone, L. L. The Vectors of Mind (Univ. Chicago Press, Chicago, 1940).

    Google Scholar 

  142. 142

    Sternberg, R. J. The theory of successful intelligence. Rev. Gen. Psychol. 3, 292–316 (1999).

    Article  Google Scholar 

  143. 143

    Baumeister, R. F., Twenge, J. & Nuss, C. K. Effects of social exclusion on cognitive processes: anticipated aloneness reduces intelligent thought. J. Pers. Soc. Psychol. 83, 817–827 (2002).

    Article  PubMed  Google Scholar 

  144. 144

    Snow, R. E., Kyllonen, P. C. & Marshalek, B. in Advances in the Psychology of Human Intelligence Vol. 2 (ed. Sternberg, R. J.) 47–103 (Erlbaum, Hillsdale, 1984).

    Google Scholar 

  145. 145

    Flynn, J. R. Massive IQ gains in 14 nations: what IQ tests really measure. Psychol. Bull. 101, 171–191 (1987).

    Article  Google Scholar 

  146. 146

    Plomin, R., DeFries, J. C. & Loehlin, J. C. Genotype–environment interaction and correlation in the analysis of human behavior. Psychol. Bull. 84, 309–322 (1977).

    CAS  Article  PubMed  Google Scholar 

  147. 147

    Block, N. How heritability misleads about race. Cognition 56, 99–128 (1995).

    CAS  Article  PubMed  Google Scholar 

  148. 148

    Neale, M. C. Mx: Statistical Modeling (Virginia Commonwealth Univ., Richmond, 1997).

    Google Scholar 

  149. 149

    Sesardic, N. Heritability and indirect causation. Proc. Phil. Sci. Assoc. (2002). Available at;

  150. 150

    Lewontin, R. Race and Intelligence. Bull. At. Sci. 2–8 Mar (1970). Reprinted in The IQ Controversy (eds Block, N. & Dworkin, G.) 78–92 (Pantheon, New York, 1976).

    Google Scholar 

  151. 151

    Mortensen, E. L., Michaelsen, K. F., Sanders, S. A. & Reinisch, J. M. The association between duration of breastfeeding and adult intelligence. JAMA 287, 2365–2371 (2002).

    Article  PubMed  Google Scholar 

  152. 152

    Brumback, C. R., Low, K. A., Gratton, G. & Fabiani, M. Sensory ERPs predict differences in working memory span and fluid intelligence. Neuroreport 15, 373–376 (2004).

    Article  PubMed  Google Scholar 

  153. 153

    Haier, R. J, Jung, R. E., Yeo, R. A., Head, K. & Alkire, M. T. Structural brain variation and general intelligence. Neuroimage (in the press).

  154. 154

    Farah, M. J. et al. Neurocognitive enhancement: what can we do and what should we do? Nature Rev. Neurosci. 5, 421–426 (2004).

    CAS  Article  Google Scholar 

Download references


This work was supported in part by research grants from the National Institute of Mental Health to J.R.G., and from the National Institute for Biomedical Imaging and Bioengineering and the National Center for Research Resources to P.M.T. The authors thank R. J. Sternberg and W. R. Gray for their comments on a draft.

Author information



Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links


Entrez Gene











Gray's homepage

Thompson's homepage



(Gf). 'On the spot' reasoning and novel problem-solving ability.


(IQ). Intelligence scaled by age, standardized to have a population mean of 100 and SD of 15 (mental age divided by chronological age). It produces an intelligence ranking relative to other individuals of the same age, which tends to be stable across the lifespan of the individual.


(Gc). Performance guided by overlearned skills or knowledge, such as vocabulary.


A measure of how strongly individual differences in performance on a particular task predict differences in general intelligence (g). A task with a high g loading will better reveal differences between people of higher and lower intelligence.


A cognitive/neural system for maintaining information actively in mind (storage) and manipulating it (executive processing), or holding it in mind despite potential distraction or interference (control of attention).


Intelligence as measured by an IQ-type test, typically assessing the accuracy of a response (and not the speed).


The minimum duration of exposure to a visual stimulus that a study participant requires to respond accurately about that stimulus.


Different variants of the same gene.


A key regulator of embryonic development, highly conserved across species, which controls cell and organ differentiation. Homeobox genes can activate many other genes, producing entire body segments.


(QTL). A genetic polymorphism that affects the expression of a continuously distributed phenotype. Typically, QTLs are statistically associated with trait variations that depend on multiple interacting loci.


A complex trait is polygenic if it is determined by multiple genes that each have small effects and that can interact with each other to produce effects.


Gene products (phenotypes) that are not visible.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gray, J., Thompson, P. Neurobiology of intelligence: science and ethics. Nat Rev Neurosci 5, 471–482 (2004).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing