Abstract
The existence of functional localization within the cerebellum was advanced exactly one century ago by both comparative anatomical and physiological studies. Here, we will discuss how models of cerebellar localization have evolved over the last 100 years. Like the somatotopic representation in neocortical sensorimotor areas, the representation size of different body parts in the cerebellum does not reflect their peripheral extent, but rather the different demands on the sensory inputs for different movements.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Functional connectivity and amplitude of low-frequency fluctuations changes in people with complete subacute and chronic spinal cord injury
Scientific Reports Open Access 03 December 2022
-
Wrist and finger motor representations embedded in the cerebral and cerebellar resting-state activation
Brain Structure and Function Open Access 08 July 2021
Access options
Subscribe to this journal
Receive 12 print issues and online access
$189.00 per year
only $15.75 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout





References
Rolando, L. Saggio Sopra la Vera Struttura Del Cervello Dell'uomo e Degli Animali Sopra le Funzioni del Sistema Nervoso (Sassari, Stamperia di S. S. R. M. Privilegiata, 1809).
Flourens, P. Recherches expérimentales sur les propriétés et les fonctions du système nerveux dans les animaux vertébrés. Arch. Gén. Méd. 2, 321–370 (1824).
Luciani, L. Il Cervelletto: Nuovi Studi di Fisiologia Normale e Patologica (Le Monnier, Firenze, 1891).
Manni, E. & Petrosini, L. Luciani's work on the cerebellum a century later. Trends Neurosci. 20, 112–116 (1997).
Sherrington, C. S. Double (antidrome) conduction in the central nervous system. Proc. Roy. Soc. Lond. 61, 243–246 (1897).
Loewenthal, M. & Horsley, V. On the relations between the cerebellar and other centers (namely cerebral and spinal) with special reference to the action of antagonistic muscles. Proc. Roy. Soc. Lond. 61, 20–25 (1897).
Luciani, L. Fisiologia Dell'uomo (4 Vols) (Soc. Ed. Lib., Milan, 1901–1911).
Sherrington, C. S. Textbook of Physiology Vol. 2 (ed. Schäfer, E. A.) 893–910 (Young J. Pentland, Edinburgh and London, 1900).
Bolk, L. Das Cerebellum der Säugetiere: Eine Vergleichende Anatomische Untersuchung. Nederl. Bydragen Anat. 3, 1–136 (1904).
Jansen, J. in Aspects of cerebellar anatomy (eds Jansen, J. and Brodal A.) 13–81 (J. Grundt Tanum, Oslo, 1954).
Pagano, G. Saggio di localizzazione cerebellare. Riv. Pat. Nerv. Ment. 9, 209–228 (1904).
Rijnberk, G. van Tentativi di localizzazioni funzionali nel cervelletto. Arch. Fisiol. 1, 569–574 (1904).
Comolli, A. Per una nuova divisione del cervelletto dei mammiferi. Arch. It. Anat. 9, 247–273 (1910).
Edinger, L. Ueber die Einteilung des Cerebellums. Anat. Anz. 35, 319–323 (1910).
Botterell, E. H. & Fulton, J. F. Functional localization in the cerebellum of primates. III. Lesions of hemispheres (neocerebellum). J. Comp. Neurol. 69, 63–87 (1938).
Bremer, F. in Traité de physiologie normale et pathologique vol. 10 (eds Roger, G. H. & Binet, L.) 39–135 (Masson, Paris, 1935).
Larsell, O. Morphogenesis and evolution of the cerebellum. Arch. Neurol. Psychatr. 31, 373–395 (1934).
Larsell, O. The Comparative Anatomy and Histology of the Cerebellum from Monotremes through Apes (ed. Jansen, J.) (Minnesota Univ. Press, Minneapolis, 1970).
Ingvar, S. Zur Phylo- und Ontogenese des Kleinhirns. Folia Neurobiol. 11, 205–495 (1918).
Simonelli, G. Sulla funzione dei lobi medi del cervelletto. Arch. Fisiol. 19, 447–479 (1921).
Dow, R. S. Effects of lesions in the vestibular part of the cerebellum in primates. Arch. Neurol. Psychiatr. 40, 500–520 (1938).
Manni, E. Localizzazioni cerebellari nella cavia. I. Il corpus cerebelli. Arch. Fisiol. 49, 213–237 (1950).
Manni, E. Localizzazioni cerebellari nella cavia. Il. Effetti di lesioni delle parti vestibolari del cervelletto. Arch. Fisiol. 50, 110–123 (1950).
Dow, R. S. The efferent connections of the flocculo-nodular lobe in Macaca mulatta. J. Comp. Neurol. 48, 297–306 (1938).
Adrian, E. D. Afferent areas in the cerebellum connected with the limbs. Brain 66, 289–315 (1943).
Snider, R. S. & Stowell, A. Receiving areas of the tactile, auditory and visual systems in the cerebellum. J. Neurophysiol. 7, 331–357 (1944).
Gerard, R. W. et al. Electrical activity of the cat's brain. Arch. Neurol. Psychiatr. 36, 675–738 (1936).
Dow, R. S. Cerebellar action potentials in response to stimulation of various afferent connections. J. Neurophysiol. 2, 543–555 (1939).
Combs, C. M. Electro-anatomical study of cerebellar localization: Stimulation of various afferents. J. Neurophysiol. 17, 123–143 (1954).
Armstrong, D. M., Edgley, S. A. & Lidierth, M. Complex spikes in Purkinje cells of the paravermal part of the anterior lobe of the cat cerebellum during locomotion. J. Physiol. (Lond.) 400, 405–414 (1988).
Voogd, J. & Bigaré, F. in The Inferior Olivary Nucleus: Anatomy and Physiology (eds Courville, J., de Montigny, C. & Lamarre, Y.) 207–234 (Raven Press, New York, 1980).
Armstrong, D. M. Topographical localization in the projections from the inferior olive to the paravermal cortex in the anterior lobe and paramedian lobule in the cerebellum of the cat. Arch. Ital. Biol. 128, 183–207 (1990).
Ekerot, C. -F., Garwicz, M. & Schouenborg, J. Topography and nociceptive receptive fields of climbing fibres projecting to the cerebellar anterior lobe in the cat. J. Physiol. (Lond.) 441, 257–274 (1991).
Garwicz, M., Ekerot, C. F. & Schouenborg, J. Distribution of cutaneous nociceptive and tactile climbing fibre input to sagittal zones in cat cerebellar anterior lobe. Eur. J. Neurosci. 4, 289–295 (1992).
Trott, J. R. & Armstrong, D. M. The cerebellar corticonuclear projection from lobule Vb/c of the cat anterior lobe: a combined electrophysiological and autoradiographic study. I. projections from the intermediate region. Exp. Brain Res. 66, 318–338 (1987).
Trott, J. R. & Armstrong, D. M. The cerebellar corticonuclear projection from lobule Vb/c of the cat anterior lobe: a combined electrophysiological and autoradiographic study. II. projections from the vermis. Exp. Brain Res. 66, 339–354 (1987).
Ekerot, C. F. & Larson, B. The dorsal spino-olivocerebellar system in the cat. II. Somatotopical organization. Exp. Brain Res. 36, 219–232 (1979).
Andersson, G. & Oscarsson, O. Climbing fibre microzones in cerebellar vermis and their projection to different groups of cells in the lateral vestibular nucleus. Exp. Brain Res. 32, 565–578 (1978).
Garwicz, M. & Ekerot, C. F. Topographical organization of the cerebellar cortical projection to nucleus interpositus anterior in the cat. J. Physiol. (Lond.) 474, 245–260 (1994).
Jorntell, H., Ekerot, C. F., Garwicz, M. & Luo, X. -L. Functional organization of the climbing fibre projection to the cerebellar anterior lobe in the cat. J. Physiol. (Lond.) 522, 297–309 (2000).
Garwicz, M., Ekerot, C. F., & Jorntell, H. Organizational principles of cerebellar neuronal circuitry. News Physiol. Sci. 13, 26–32 (1998).
Apps, R. & Lee, S. Gating of transmission in climbing fibre path to cerebellar cortical C1 and C3 zones in the rostral paramedian lobule during locomotion in the cat. J. Physiol. (Lond.) 516, 875–883 (1999).
Apps, R. Movement-related gating of climbing fibre input to cerebellar cortical zones. Prog. Neurobiol. 57, 537–562 (1999).
Apps, R. Rostrocaudal branching within the climbing fibre projection to forelimb-receiving areas of the cerebellar cortical C1 zone. J. Comp. Neurol. 419, 193–204 (2000).
Edge, A. L., Marple-Horvat, E. & Apps, R. Lateral cerebellum: functional localization within crus I and correspondence to cortical zones. Eur. J. Neurosci. 18, 1468–1485 (2003).
Ekerot, C. F. & Jörntell, H. Parallel fibre receptive fields of Purkinje cells and interneurons are climbing fibre-specific. Eur. J. Neurosci. 13, 1303–1310 (2001).
Ekerot, C. F. & Jörntell, H. Parallel fiber receptive fields: a key to understanding cerebellar operation and learning. Cerebellum 2, 101–109 (2003).
Voogd, J., Pardoe, J., Ruigrok, T. J. & Apps, R. The distribution of climbing and mossy fiber collateral branches from the copula pyramidis and the paramedian lobule: congruence of climbing fiber cortical zones and the pattern of zebrin banding within the rat cerebellum. J. Neurosci. 23, 4645–56 (2003).
Brown, I. E. & Bower, J. M. Congruence of mossy fibre and climbing fibre tactile projections in the lateral hemispheres of the rat cerebellum. J. Comp. Neurol. 429, 59–70 (2001).
Jörntell, H. & Ekerot, C. F. Reciprocal bi-directional plasticity of parallel fiber receptive fields in cerebellar Purkinje cells and their afferent interneurons. Neuron 34, 797–806 (2002).
Dow, R. S. & Moruzzi, G. The Physiology and Pathology of the Cerebellum (Minnesota Univ. Press, Minneapolis, 1958).
Hampson, J. L., Harrison, C. R. & Woolsey, C. N. Cerebro-cerebellar projections and the somatotopic localization of motor function in the cerebellum. Res. Nerv. Ment. Dis. Proc. 30, 299–316 (1952).
Moruzzi, G. & Pompeiano, O. Crossed fastigial influence on decebrate rigidità. J. Comp. Neurol. 106, 371–392 (1956).
Chambers, W. W. & Sprague, E. J. M. Functional localization in the cerebellum. II. Somatotopic organization in cortex and nuclei. Arch. Neurol. Psych. 74, 653–680 (1955).
Nulsen, F. E., Black, S. P. W. & Drake, C. G. Inhibition and facilitation of motor activity by the anterior cerebellum. Federation Proc. 7, 86–87 (1948).
Oscarsson, O. in Handbook of Sensory Physiology (ed. Iggo, A.) 340–380 (Springer-Verlag, Berlin, 1973).
Asanuma, C., Thach, W. T. & Jones, E. G. Brain stem and spinal projections of the deep cerebellar nuclei in the monkey, with observations on the brain stem projections of the dorsal column nuclei. Brain Res. Rev. 5, 299–322 (1983).
Van Kan, P. L., Houk, J. C. & Gibson, A. R. Output organization of intermediate cerebellum of the monkey. J. Neurophysiol. 69, 57–73 (1993).
Hesslow, G. Correspondence between climbing fibre input and motor output in eyeblink-related areas in cat cerebellar cortex. J. Physiol. (Lond.) 476, 229–244 (1994).
Attwell, P. J. E., Raham, S. & Yeo, C. H. Acquisition of eye blink conditioning is critically dependent on normal function in cerebellar cortical lobule HVI. J. Neurosci. 21, 5715–5722 (2001).
Attwell, P. J. E., Ivarsson, M., Millar, L. & Yeo, C. H. Cerebellar mechanisms in eyeblink conditioning. Ann. NY Acad. Sci. 978, 79–92 (2002).
Shambes, G. M., Gibson, J. M. & Welker, W. Fractured somatotopy in granule cell tactile areas of rat cerebellar hemispheres revealed by micromapping. Brain Behav. Evol. 15, 94–140 (1978).
Rijntjes, M., Buechel, C., Kiebel, S. & Weiller, C. Multiple somatotopic representations in the human cerebellum. Neuroreport 10, 3653–3658 (1999).
Grodd, W., Hulsmann, E., Lotze, M., Wildgruber, D. & Erb, M. Sensorimotor mapping of the human cerebellum: fMRI evidence of somatotopic organization. Hum. Brain Mapp. 13, 55–73 (2001).
Takanashi, M. et al. A functional MRI study of somatotopic representation of somatosensory stimulation in the cerebellum. Neuroradiology 45, 149–152 (2003).
Barlow, H. B. Critical limiting factors in the design of the eye and visual cortex. Proc. R. Soc. Lond. 212, 1–34 (1981).
Holmes, G. The cerebellum of man. Brain 62, 1–30 (1939).
Weisenburg, T. H. Cerebellar localization and its symptomatology. Brain 50, 357–377 (1927).
Acknowledgements
The authors express thanks to L. Mandolesi for her skillful and creative craftwomanship in preparing illustrations. This work was supported by MIUR grants to E.M. and L.P.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Related links
Rights and permissions
About this article
Cite this article
Manni, E., Petrosini, L. A century of cerebellar somatotopy: a debated representation. Nat Rev Neurosci 5, 241–249 (2004). https://doi.org/10.1038/nrn1347
Issue Date:
DOI: https://doi.org/10.1038/nrn1347
This article is cited by
-
Locus coeruleus degeneration and cerebellar gray matter changes in essential tremor
Journal of Neurology (2023)
-
Functional connectivity and amplitude of low-frequency fluctuations changes in people with complete subacute and chronic spinal cord injury
Scientific Reports (2022)
-
Posteroinferior cerebellar artery (PICA) infarction and central VII nerve palsy: two clinical reports
Neurological Sciences (2022)
-
The Cerebellar Cortex Receives Orofacial Proprioceptive Signals from the Supratrigeminal Nucleus via the Mossy Fiber Pathway in Rats
The Cerebellum (2022)
-
Wrist and finger motor representations embedded in the cerebral and cerebellar resting-state activation
Brain Structure and Function (2021)