Anterior prefrontal cortex: insights into function from anatomy and neuroimaging

Key Points

  • The prefrontal cortex is essential for the control and organization of behaviour. Although progress has been made in understanding the functions of some regions within the frontal lobes, the most anterior sector (the aPFC) is one of the least well understood regions of the human brain.

  • Recent studies using functional neuroimaging in humans have demonstrated that the aPFC is activated during many types of task, including problem solving, memory retrieval, 'prospective memory', memory for source and context, 'branching' and the reallocation of attention.

  • This ubiquity indicates that if the aPFC has a function, then it is one that can be applied to the solution of problems across multiple domains, yet must be specific enough to explain those studies in which this region is not activated.

  • Here, we use an account consistent with the connectional and cellular anatomy of the aPFC to explain the key features of existing models and to try and accommodate their results within a common theoretical framework. The model indicates that the coordination of information processing and information transfer between multiple cognitive operations within supramodal cortex is an important aspect of aPFC function.

  • Crucially, the cellular properties of neurons in the aPFC are better suited than other comparable areas to integrating their inputs, providing an anatomical basis for such an explanation. Moreover, consideration of the functional neuroimaging literature confirms that aPFC is almost always activated when the solutions of two or more discrete cognitive operations need to be integrated in the pursuit of a more general behavioural goal.

  • This account predicts that specific computational resources in the aPFC will be devoted to the integration of sub-problem solutions, over and above the processing that is required for the individual solutions themselves.

Abstract

The anterior prefrontal cortex (aPFC), or Brodmann area 10, is one of the least well understood regions of the human brain. Work with non-human primates has provided almost no indications as to the function of this area. In recent years, investigators have attempted to integrate findings from functional neuroimaging studies in humans to generate models that might describe the contribution that this area makes to cognition. In all cases, however, such explanations are either too tied to a given task to be plausible or too general to be theoretically useful. Here, we use an account that is consistent with the connectional and cellular anatomy of the aPFC to explain the key features of existing models within a common theoretical framework. The results indicate a specific role for this region in integrating the outcomes of two or more separate cognitive operations in the pursuit of a higher behavioural goal.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Brodmann area (BA) 10.
Figure 2: The right prefrontal cortex of in human (left) and macaque (right) brains represented as flattened surfaces.

References

  1. 1

    Brett, M., Johnsrude, I. S. & Owen, A. M. The problem of functional localization in the human brain. Nature Rev. Neurosci. 3, 243–249 (2002).

    CAS  Article  Google Scholar 

  2. 2

    Goldman-Rakic, P. S. Working memory dysfunction in schizophrenia. J. Neuropsychiatry Clin. Neurosci. 6, 348–357 (1994).

    CAS  Article  PubMed  Google Scholar 

  3. 3

    Jonides, J. et al. Spatial working memory in humans as revealed by PET. Nature 363, 623–625 (1993).

    CAS  Article  PubMed  Google Scholar 

  4. 4

    Courtney, S. M., Petit, L., Haxby, J. V. & Ungerleider, L. G. The role of prefrontal cortex in working memory: examining the contents of consciousness. Philos. Trans. R. Soc. Lond. B 353, 1819–1828 (1998).

    CAS  Article  Google Scholar 

  5. 5

    Owen, A. M. The functional organization of working memory processes within human lateral frontal cortex: the contribution of functional neuroimaging. Eur. J. Neurosci. 9, 1329–1339 (1997).

    CAS  Article  PubMed  Google Scholar 

  6. 6

    Petrides, M. Frontal lobes and behaviour. Curr. Opin. Neurobiol. 4, 207–211 (1994).

    CAS  Article  PubMed  Google Scholar 

  7. 7

    Rowe, J. B., Toni, I., Josephs, O., Frackowiak, R. S. & Passingham, R. E. The prefrontal cortex: response selection or maintenance within working memory? Science 288, 1656–1660 (2000).

    CAS  Article  PubMed  Google Scholar 

  8. 8

    Bor, D., Duncan, J., Wiseman, R. J. & Owen, A. M. Encoding strategies dissociate prefrontal activity from working memory demand. Neuron 37, 361–367 (2003).

    CAS  Article  PubMed  Google Scholar 

  9. 9

    Fletcher, P. C., Shallice, T. & Dolan, R. J. The functional roles of prefrontal cortex in episodic memory. I. Encoding. Brain 121, 1239–1248 (1998).

    Article  PubMed  Google Scholar 

  10. 10

    Dobbins, I. G., Foley, H., Schacter, D. L. & Wagner, A. D. Executive control during episodic retrieval: multiple prefrontal processes subserve source memory. Neuron 35, 989–996 (2002).

    CAS  Article  PubMed  Google Scholar 

  11. 11

    Rugg, M. D. et al. Neural correlates of memory retrieval during recognition memory and cued recall. Neuroimage 8, 262–273 (1998).

    CAS  Article  PubMed  Google Scholar 

  12. 12

    Courtney, S. M., Ungerleider, L. G., Keil, K. & Haxby, J. V. Transient and sustained activity in a distributed neural system for human working memory. Nature 386, 608–611 (1997).

    CAS  Article  PubMed  Google Scholar 

  13. 13

    Dove, A., Pollmann, S., Schubert, T., Wiggins, C. J. & von Cramon, D. Y. Prefrontal cortex activation in task switching: an event-related fMRI study. Brain Res. Cogn. Brain Res. 9, 103–109 (2000).

    CAS  Article  PubMed  Google Scholar 

  14. 14

    Cools, R., Clark, L., Owen, A. M. & Robbins, T. W. Defining the neural mechanisms of probabilistic reversal learning using event-related functional magnetic resonance imaging. J. Neurosci. 22, 4563–4567 (2002).

    CAS  Article  PubMed  Google Scholar 

  15. 15

    Rushworth, M. F., Nixon, P. D., Eacott, M. J. & Passingham, R. E. Ventral prefrontal cortex is not essential for working memory. J. Neurosci. 17, 4829–4838 (1997).

    CAS  Article  PubMed  Google Scholar 

  16. 16

    Henson, R. N., Shallice, T. & Dolan, R. J. Right prefrontal cortex and episodic memory retrieval: a functional MRI test of the monitoring hypothesis. Brain 122, 1367–1381 (1999).

    Article  PubMed  Google Scholar 

  17. 17

    Wagner, A. D. et al. Building memories: remembering and forgetting of verbal experiences as predicted by brain activity. Science 281, 1188–1191 (1998).

    CAS  Article  PubMed  Google Scholar 

  18. 18

    Tataranni, P. A. et al. Neuroanatomical correlates of hunger and satiation in humans using positron emission tomography. Proc. Natl Acad. Sci. USA 96, 4569–4574 (1999).

    CAS  Article  PubMed  Google Scholar 

  19. 19

    Gottfried, J. A., O'Doherty, J. & Dolan, R. J. Appetitive and aversive olfactory learning in humans studied using event-related functional magnetic resonance imaging. J. Neurosci. 22, 10829–10837 (2002).

    CAS  Article  PubMed  Google Scholar 

  20. 20

    Rolls, E. T. The orbitofrontal cortex and reward. Cereb. Cortex 10, 284–294 (2000).

    CAS  Article  PubMed  Google Scholar 

  21. 21

    Rolls, E. T., Critchley, H. D., Browning, A. & Hernadi, I. The neurophysiology of taste and olfaction in primates, and umami flavor. Ann. NY Acad. Sci. 855, 426–437 (1998).

    CAS  Article  PubMed  Google Scholar 

  22. 22

    Tremblay, L. & Schultz, W. Relative reward preference in primate orbitofrontal cortex. Nature 398, 704–708 (1999).

    CAS  Article  PubMed  Google Scholar 

  23. 23

    Roberts, A. C. & Wallis, J. D. Inhibitory control and affective processing in the prefrontal cortex: neuropsychological studies in the common marmoset. Cereb. Cortex 10, 252–262 (2000).

    CAS  Article  PubMed  Google Scholar 

  24. 24

    Montague, P. R. & Berns, G. S. Neural economics and the biological substrates of valuation. Neuron 36, 265–284 (2002).

    CAS  Article  PubMed  Google Scholar 

  25. 25

    Elliott, R., Friston, K. J. & Dolan, R. J. Dissociable neural responses in human reward systems. J. Neurosci. 20, 6159–6165 (2000).

    CAS  Article  PubMed  Google Scholar 

  26. 26

    Dias, R., Robbins, T. W. & Roberts, A. C. Dissociation in prefrontal cortex of affective and attentional shifts. Nature 380, 69–72 (1996).

    CAS  Article  PubMed  Google Scholar 

  27. 27

    Duncan, J. & Owen, A. M. Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends Neurosci. 23, 475–483 (2000).

    CAS  Article  PubMed  Google Scholar 

  28. 28

    Ongur, D., Ferry, A. T. & Price, J. L. Architectonic subdivision of the human orbital and medial prefrontal cortex. J. Comp. Neurol. 460, 425–449 (2003). This paper describes the cytoarchitecture of the medial and orbital PFC. The results are particularly striking because they indicate that BA 10 is larger than all other prefrontal areas in the human brain.

    Article  PubMed  Google Scholar 

  29. 29

    Semendeferi, K., Armstrong, E., Schleicher, A., Zilles, K. & van Hoesen, G. W. Prefrontal cortex in humans and apes: a comparative study of area 10. Am. J. Phys. Anthropol. 114, 224–241 (2001). This is the only anatomical study to comprehensively examine the comparative cytoarchitecture of BA 10 in the brains of several primate species, including humans.

    CAS  Article  PubMed  Google Scholar 

  30. 30

    Brodmann, K. Vergleichende Lokalisationlehre der Grosshirnrinde in ihren Prinzipien Dargestellt auf Grund des Zellenbaues (Barth, Leipzig, Germany, 1909).

    Google Scholar 

  31. 31

    Petrides, M. & Pandya, D. N. Comparative cytoarchitectonic analysis of the human and the macaque ventrolateral prefrontal cortex and corticocortical connection patterns in the monkey. Eur. J. Neurosci. 16, 291–310 (2002).

    CAS  Article  PubMed  Google Scholar 

  32. 32

    Jacobs, B. et al. Regional dendritic and spine variation in human cerebral cortex: a quantitative golgi study. Cereb. Cortex 11, 558–571 (2001).

    CAS  Article  PubMed  Google Scholar 

  33. 33

    Passingham, R. E. The Frontal Lobes and Voluntary Action (Oxford Univ. Press, Oxford, 1995).

    Google Scholar 

  34. 34

    Petrides, M. & Pandya, D. N. Dorsolateral prefrontal cortex: comparative cytoarchitectonic analysis in the human and the macaque brain and corticocortical connection patterns. Eur. J. Neurosci. 11, 1011–1036 (1999).

    CAS  Article  PubMed  Google Scholar 

  35. 35

    McGuire, P. K., Bates, J. F. & Goldman-Rakic, P. S. Interhemispheric integration: I. Symmetry and convergence of the corticocortical connections of the left and the right principal sulcus (PS) and the left and the right supplementary motor area (SMA) in the rhesus monkey. Cereb. Cortex 1, 390–407 (1991).

    CAS  Article  PubMed  Google Scholar 

  36. 36

    Barbas, H. & Pandya, D. N. Architecture and intrinsic connections of the prefrontal cortex in the rhesus monkey. J. Comp. Neurol. 286, 353–375 (1989).

    CAS  Article  PubMed  Google Scholar 

  37. 37

    Bachevalier, J., Meunier, M., Lu, M. X. & Ungerleider, L. G. Thalamic and temporal cortex input to medial prefrontal cortex in rhesus monkeys. Exp. Brain Res. 115, 430–444 (1997).

    CAS  Article  PubMed  Google Scholar 

  38. 38

    Andersen, R. A., Asanuma, C. & Cowan, W. M. Callosal and prefrontal associational projecting cell populations in area 7A of the macaque monkey: a study using retrogradely transported fluorescent dyes. J. Comp. Neurol. 232, 443–455 (1985).

    CAS  Article  PubMed  Google Scholar 

  39. 39

    Moran, M. A., Mufson, E. J. & Mesulam, M. M. Neural inputs into the temporopolar cortex of the rhesus monkey. J. Comp. Neurol. 256, 88–103 (1987).

    CAS  Article  PubMed  Google Scholar 

  40. 40

    Amaral, D. G. & Price, J. L. Amygdalo-cortical projections in the monkey (Macaca fascicularis). J. Comp. Neurol. 230, 465–496 (1984).

    CAS  Article  PubMed  Google Scholar 

  41. 41

    Morecraft, R. J. & Van Hoesen, G. W. Frontal granular cortex input to the cingulate (M3), supplementary (M2) and primary (M1) motor cortices in the rhesus monkey. J. Comp. Neurol. 337, 669–689 (1993).

    CAS  Article  PubMed  Google Scholar 

  42. 42

    Arikuni, T., Sako, H. & Murata, A. Ipsilateral connections of the anterior cingulate cortex with the frontal and medial temporal cortices in the macaque monkey. Neurosci. Res. 21, 19–39 (1994).

    CAS  Article  PubMed  Google Scholar 

  43. 43

    Passingham, R. E., Stephan, K. E. & Kotter, R. The anatomical basis of functional localization in the cortex. Nature Rev. Neurosci. 3, 606–616 (2002).

    CAS  Article  Google Scholar 

  44. 44

    Christoff, K. & Gabrieli, J. D. E. The frontopolar cortex and human cognition: evidence for a rostrocaudal heirarchical organisation within the human prefrontal cortex. Psychobiology 28, 168–186 (2000). In this comprehensive review of functional neuroimaging studies of reasoning and episodic memory, Christoff and Gabrieli set out their arguments that BA 10 might be specialized for the explicit processing of internal states.

    Google Scholar 

  45. 45

    Buckner, R. L., Raichle, M. E., Miezin, F. M. & Petersen, S. E. Functional anatomic studies of memory retrieval for auditory words and visual pictures. J. Neurosci. 16, 6219–6235 (1996).

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  46. 46

    Shallice, T. Specific impairments of planning. Philos. Trans. R Soc. Lond. B 298, 199–209 (1982).

    CAS  Article  Google Scholar 

  47. 47

    Baker, S. C. et al. Neural systems engaged by planning: a PET study of the Tower of London task. Neuropsychologia 34, 515–526 (1996).

    CAS  Article  PubMed  Google Scholar 

  48. 48

    Owen, A. M., Downes, J. J., Sahakian, B. J., Polkey, C. E. & Robbins, T. W. Planning and spatial working memory following frontal lobe lesions in man. Neuropsychologia 28, 1021–1034 (1990).

    CAS  Article  PubMed  Google Scholar 

  49. 49

    Owen, A. M., Sahakian, B. J., Semple, J., Polkey, C. E. & Robbins, T. W. Visuo-spatial short-term recognition memory and learning after temporal lobe excisions, frontal lobe excisions or amygdalo-hippocampectomy in man. Neuropsychologia 33, 1–24 (1995).

    CAS  Article  PubMed  Google Scholar 

  50. 50

    Lee, A. C., Robbins, T. W. & Owen, A. M. Episodic memory meets working memory in the frontal lobe: functional neuroimaging studies of encoding and retrieval. Crit. Rev. Neurobiol. 14, 165–197 (2000).

    CAS  Article  PubMed  Google Scholar 

  51. 51

    Tulving, E. Elements of Episodic Memory (Clarendon, Oxford, 1983).

    Google Scholar 

  52. 52

    Cabeza, R. et al. Age-related differences in neural activity during memory encoding and retrieval: a positron emission tomography study. J. Neurosci. 17, 391–400 (1997).

    CAS  Article  PubMed  Google Scholar 

  53. 53

    Duzel, E. et al. Task-related and item-related brain processes of memory retrieval. Proc. Natl Acad. Sci. USA 96, 1794–1799 (1999).

    CAS  Article  PubMed  Google Scholar 

  54. 54

    Kapur, S. et al. Functional role of the prefrontal cortex in retrieval of memories: a PET study. Neuroreport 6, 1880–1884 (1995).

    CAS  Article  PubMed  Google Scholar 

  55. 55

    Nyberg, L. et al. Functional brain maps of retrieval mode and recovery of episodic information. Neuroreport 7, 249–252 (1995).

    CAS  Article  PubMed  Google Scholar 

  56. 56

    Rugg, M. D., Schloerscheidt, A. M., Doyle, M. C., Cox, C. J. & Patching, G. R. Event-related potentials and the recollection of associative information. Brain Res. Cogn. Brain Res. 4, 297–304 (1996).

    CAS  Article  PubMed  Google Scholar 

  57. 57

    Wagner, A. D., Desmond, J. E., Glover, G. H. & Gabrieli, J. D. Prefrontal cortex and recognition memory. Functional-MRI evidence for context-dependent retrieval processes. Brain 121, 1985–2002 (1998).

    Article  PubMed  Google Scholar 

  58. 58

    Velanova, K. et al. Functional-anatomic correlates of sustained and transient processing components engaged during controlled retrieval. J. Neurosci. 23, 8460–8470 (2003).

    CAS  Article  PubMed  Google Scholar 

  59. 59

    Lepage, M., Ghaffar, O., Nyberg, L. & Tulving, E. Prefrontal cortex and episodic memory retrieval mode. Proc. Natl Acad. Sci. USA 97, 506–511 (2000).

    CAS  Article  PubMed  Google Scholar 

  60. 60

    MacLeod, A. K., Buckner, R. L., Miezin, F. M., Petersen, S. E. & Raichle, M. E. Right anterior prefrontal cortex activation during semantic monitoring and working memory. Neuroimage 7, 41–48 (1998).

    CAS  Article  PubMed  Google Scholar 

  61. 61

    Ranganath, C., Johnson, M. K. & D'Esposito, M. Left anterior prefrontal activation increases with demands to recall specific perceptual information. J. Neurosci. 20, RC108 (2000).

    CAS  Article  PubMed  Google Scholar 

  62. 62

    Ranganath, C. & Paller, K. A. Neural correlates of memory retrieval and evaluation. Brain Res. Cogn. Brain Res. 9, 209–222 (2000).

    CAS  Article  PubMed  Google Scholar 

  63. 63

    Raye, C. L., Johnson, M. K., Mitchell, K. J., Nolde, S. F. & D'Esposito, M. fMRI investigations of left and right prefrontal contribtions to episodic remembering. Psychobiology 28, 197–206 (2000).

    Google Scholar 

  64. 64

    Ranganath, C. & Paller, K. A. Frontal brain activity during episodic and semantic retrieval: insights from event-related potentials. J. Cogn. Neurosci. 11, 598–609 (1999).

    CAS  Article  PubMed  Google Scholar 

  65. 65

    Ranganath, C. & Paller, K. A. Frontal brain potentials during recognition are modulated by requirements to retrieve perceptual detail. Neuron 22, 605–613 (1999).

    CAS  Article  PubMed  Google Scholar 

  66. 66

    Nolde, S. F., Johnson, M. K. & D'Esposito, M. Left prefrontal activation during episodic remembering: an event-related fMRI study. Neuroreport 9, 3509–3514 (1998).

    CAS  Article  PubMed  Google Scholar 

  67. 67

    Nyberg, L. et al. General and specific brain regions involved in encoding and retrieval of events: what, where, and when. Proc. Natl Acad. Sci. USA 93, 11280–11285 (1996).

    CAS  Article  PubMed  Google Scholar 

  68. 68

    Janowsky, J. S., Shimamura, A. P. & Squire, L. R. Source memory impairment in patients with frontal lobe lesions. Neuropsychologia 27, 1043–1056 (1989).

    CAS  Article  PubMed  Google Scholar 

  69. 69

    Thaiss, L. & Petrides, M. Source versus content memory in patients with a unilateral frontal cortex or a temporal lobe excision. Brain 126, 1112–1126 (2003).

    Article  PubMed  Google Scholar 

  70. 70

    Burgess, P. W., Quayle, A. & Frith, C. D. Brain regions involved in prospective memory as determined by positron emission tomography. Neuropsychologia 39, 545–555 (2001).

    CAS  Article  PubMed  Google Scholar 

  71. 71

    Burgess, P. W., Veitch, E., de Lacy Costello, A. & Shallice, T. The cognitive and neuroanatomical correlates of multitasking. Neuropsychologia 38, 848–863 (2000).

    CAS  Article  PubMed  Google Scholar 

  72. 72

    Okuda, J. et al. Participation of the prefrontal cortices in prospective memory: evidence from a PET study in humans. Neurosci. Lett. 253, 127–130 (1998).

    CAS  Article  PubMed  Google Scholar 

  73. 73

    Coull, J. T., Frith, C. D., Frackowiak, R. S. & Grasby, P. M. A fronto-parietal network for rapid visual information processing: a PET study of sustained attention and working memory. Neuropsychologia 34, 1085–1095 (1996).

    CAS  Article  PubMed  Google Scholar 

  74. 74

    Koechlin, E., Basso, G., Pietrini, P., Panzer, S. & Grafman, J. The role of the anterior prefrontal cortex in human cognition. Nature 399, 148–151 (1999). We have suggested that the aPFC is required for integrating the outcomes of two or more separate cognitive processes. It is necessary to test for super-additive effects in functional neuroimaging studies to demonstrate a relationship between such a process and brain activity. Reference 74 elegantly demonstrates a highly specific super-additive effect in the aPFC when subjects held in mind goals while at the same time they processed secondary goals.

    CAS  Article  PubMed  Google Scholar 

  75. 75

    Koechlin, E., Corrado, G., Pietrini, P. & Grafman, J. Dissociating the role of the medial and lateral anterior prefrontal cortex in human planning. Proc. Natl Acad. Sci. USA 97, 7651–7656 (2000).

    CAS  Article  PubMed  Google Scholar 

  76. 76

    Braver, T. S. & Bongiolatti, S. R. The role of frontopolar cortex in subgoal processing during working memory. Neuroimage 15, 523–536 (2002).

    Article  PubMed  Google Scholar 

  77. 77

    Owen, A. M., Doyon, J., Petrides, M. & Evans, A. C. Planning and spatial working memory: a positron emission tomography study in humans. Eur. J. Neurosci. 8, 353–364 (1996).

    CAS  Article  PubMed  Google Scholar 

  78. 78

    Pollmann, S., Weidner, R., Muller, H. J. & von Cramon, D. Y. A fronto-posterior network involved in visual dimension changes. J. Cogn. Neurosci. 12, 480–494 (2000).

    CAS  Article  PubMed  Google Scholar 

  79. 79

    Pollmann, S. Switching between dimensions, locations, and responses: the role of the left frontopolar cortex. Neuroimage 14, S118–124 (2001).

    CAS  Article  PubMed  Google Scholar 

  80. 80

    Owen, A. M., Roberts, A. C., Polkey, C. E., Sahakian, B. J. & Robbins, T. W. Extradimensional versus intradimensional set shifting performance following frontal lobe excisions, temporal lobe excisions or amygdalohippocampectomy in man. Neuropsychologia 29, 993–1006 (1991).

    CAS  Article  PubMed  Google Scholar 

  81. 81

    Owen, A. M. et al. Contrasting mechanisms of impaired attentional set-shifting in patients with frontal lobe damage or Parkinson's disease. Brain 116, 1159–1175 (1993).

    Article  PubMed  Google Scholar 

  82. 82

    Kroger, J. K. et al. Recruitment of anterior dorsolateral prefrontal cortex in human reasoning: a parametric study of relational complexity. Cereb. Cortex 12, 477–485 (2002).

    Article  PubMed  Google Scholar 

  83. 83

    Christoff, K. et al. Rostrolateral prefrontal cortex involvement in relational integration during reasoning. Neuroimage 14, 1136–1149 (2001).

    CAS  Article  PubMed  Google Scholar 

  84. 84

    Robin, N. & Holyoak, K. J. in The Cognitive Neurosciences (ed. Gazzaniga, M. S.) 987–997 (MIT Press, Cambridge, Massachusetts, 1995).

    Google Scholar 

  85. 85

    Raven, J. C. Standardization of progressive matrices. Br. J. Med. Psychol. 19, 137–170 (1938, 1941).

    Article  Google Scholar 

  86. 86

    Carpenter, P. A., Just, M. A. & Shell, P. What one intelligence test measures: a theoretical account of the processing in the Raven Progressive Matrices Test. Psychol. Rev. 97, 404–431 (1990).

    CAS  Article  PubMed  Google Scholar 

  87. 87

    Waltz, J. A. et al. A system for relational reasoning in human prefrontal cortex. Psychol. Sci. 10, 119–125 (1999).

    Article  Google Scholar 

  88. 88

    Duncan, J., Burgess, P. & Emslie, H. Fluid intelligence after frontal lobe lesions. Neuropsychologia 33, 261–268 (1995).

    CAS  Article  PubMed  Google Scholar 

  89. 89

    Ramnani, N. & Passingham, R. -E. Changes in the human brain during rhythm learning. J. Cogn. Neurosci. 13, 1–15 (2001).

    Article  Google Scholar 

  90. 90

    Sakai, K., Ramnani, N. & Passingham, R. E. Learning of sequences of finger movements and timing: frontal lobe and action-oriented representation. J. Neurophysiol. 88, 2035–2046 (2002).

    Article  PubMed  Google Scholar 

  91. 91

    Rogers, R. D. et al. Choosing between small, likely rewards and large, unlikely rewards activates inferior and orbital prefrontal cortex. J. Neurosci. 19, 9029–9038 (1999).

    CAS  Article  PubMed  Google Scholar 

  92. 92

    Ramnani, N. & Miall, C. Instructed delay activity in the human prefrontal cortex is modulated by monetary reward expectation. Cereb. Cortex 13, 318–327 (2003).

    CAS  Article  PubMed  Google Scholar 

  93. 93

    Braver, T. S., Reynolds, J. R. & Donaldson, D. I. Neural mechanisms of transient and sustained cognitive control during task switching. Neuron 39, 713–726 (2003).

    CAS  Article  PubMed  Google Scholar 

  94. 94

    Ramnani, N. & Passingham, R. E. Changes in the human brain during rhythm learning. J. Cogn. Neurosci. 13, 952–966 (2001).

    CAS  Article  PubMed  Google Scholar 

  95. 95

    Zeki, S. & Shipp, S. The functional logic of cortical connections. Nature 335, 311–317 (1988).

    CAS  Article  PubMed  Google Scholar 

  96. 96

    Ungerleider, L. G. & Mishkin, M. in Analysis of Visual Behavior (ed. Mansfield, R. J. W.) 549–586 (MIT Press, Cambridge, Massachusetts, 1982).

    Google Scholar 

  97. 97

    Haxby, J. V. et al. Dissociation of object and spatial visual processing pathways in human extrastriate cortex. Proc. Natl Acad. Sci. USA 88, 1621–1625 (1991).

    CAS  Article  PubMed  Google Scholar 

  98. 98

    Ettlinger, G. 'Object vision' and 'spatial vision': the neuropsychological evidence for the distinction. Cortex 26, 319–341 (1990).

    CAS  Article  PubMed  Google Scholar 

  99. 99

    Passingham, R. E. & Toni, I. Contrasting the dorsal and ventral visual systems: guidance of movement versus decision making. Neuroimage 14, S125–131 (2001).

    CAS  Article  PubMed  Google Scholar 

  100. 100

    Nobre, A. C., Coull, J. T., Frith, C. D. & Mesulam, M. M. Orbitofrontal cortex is activated during breaches of expectation in tasks of visual attention. Nature Neurosci. 2, 11–12 (1999).

    CAS  Article  PubMed  Google Scholar 

  101. 101

    Schultz, W., Tremblay, L. & Hollerman, J. R. Reward processing in primate orbitofrontal cortex and basal ganglia. Cereb. Cortex 10, 272–284 (2000).

    CAS  Article  PubMed  Google Scholar 

  102. 102

    Lu, T., Preston, J. B. & Strick, P. L. Interconnections between the prefrontal cortex and the premotor areas in the frontal lobe. J. Comp. Neurol. 341, 375–392 (1994).

    CAS  Article  PubMed  Google Scholar 

  103. 103

    Hadland, K. A., Rushworth, M. F., Passingham, R. E., Jahanshahi, M. & Rothwell, J. C. Interference with performance of a response selection task that has no working memory component: an rTMS comparison of the dorsolateral prefrontal and medial frontal cortex. J. Cogn. Neurosci. 13, 1097–1108 (2001).

    CAS  Article  PubMed  Google Scholar 

  104. 104

    Ramnani, N., Toni, I., Passingham, R. E. & Haggard, P. The cerebellum and parietal cortex play a specific role in coordination: a PET study. Neuroimage 14, 899–911 (2001).

    CAS  Article  PubMed  Google Scholar 

  105. 105

    Sarkissov, S. A., Filimonoff, I. N., Kononowa, E. P., Preopraschenskaja, I. S. & Kukuew, L. A. Atlas of the Cytoarchitectonics of the Human Cerebral Cortex (Medgiz, Moscow, 1955).

    Google Scholar 

  106. 106

    Petrides, M. & Pandya, D. N. in Handbook of Neuropsychology, Vol. 9 (ed. Grafman, J.) 17–58 (Elsevier, Amsterdam, 1994).

    Google Scholar 

Download references

Acknowledgements

N.R. was funded by a grant from the Medical Research Council to P. M. Matthews (FMRIB Centre, Oxford). We thank K. Christoff for helpful discussion during the preparatory stages of this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Adrian M. Owen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Adrian M. Owen's homepage

Narender Ramnani's homepage

Glossary

BRODMANN AREA

(BA). Korbinian Brodmann (1868–1918) was an anatomist who divided the cerebral cortex into numbered subdivisions on the basis of cell arrangements, types and staining properties (for example, the dorsolateral prefrontal cortex contains subdivisions, including BA 46, BA 9 and others). Modern derivatives of his maps are commonly used as the reference system for discussion of brain-imaging findings.

TOWER OF LONDON TEST

A widely used neuropsychological test of planning and problem solving. Participants move a set of three balls between three rods (or 'pockets') to match a separate goal arrangement.

RAVEN'S PROGRESSIVE MATRICES

A non-verbal test of inductive reasoning in which participants are required to discern the relationship between complex shapes, usually in more than one dimension.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ramnani, N., Owen, A. Anterior prefrontal cortex: insights into function from anatomy and neuroimaging. Nat Rev Neurosci 5, 184–194 (2004). https://doi.org/10.1038/nrn1343

Download citation

Further reading