The molecular basis of water transport in the brain

Key Points

  • The first aquaporin was identified in 1992. This family of specialized water channels now contains 11 mammalian members that are localized to various organs including kidney, secretory glands and brain.

  • Aquaporins assemble in membranes as homotetramers, wherein each monomer comprises a water channel and six membrane-spanning α-helical domains. Extensive homology between the intracellular carboxyl (C) and amino (N) termini is characteristic of aquaporins.

  • Aquaporins facilitate the passive bidirectional movement of water that is driven by osmotic gradients across membranes.

  • Three aquaporins — Aqp1, Aqp4 and Aqp9 — have been localized in the brain.

  • Aqp1 is expressed in the apical membrane of the epithelium of the choroid plexus where it probably contributes to the production of cerebrospinal fluid.

  • Aqp9 is expressed in the ependymal lining of the third ventricle, and probably also in astrocytes and epithelial cells. Aqp9 belongs to a subfamily of aquaporins — the aquaglyceroporins — that transport glycerol as well as water, and might therefore participate in energy metabolism.

  • Aqp4 is the predominant and best-characterized aquaporin in brain, and is principally located in the plasma membrane of astrocytes. Evidence indicates that Aqp4 is anchored in these membranes through interactions with α-syntrophin.

  • Aqp4 probably mediates the exchange of water between brain and extracerebral liquids, therefore playing an important part in the maintenance of ion and volume homeostasis. Specific functions might include efflux of metabolically generated excess water and permissive facilitation of extracellular K+ clearance.

  • Aquaporins have been linked to several pathophysiological conditions including brain oedema, and epileptic seizures, and might be new targets for therapeutic intervention.


Brain function is inextricably coupled to water homeostasis. The fact that most of the volume between neurons is occupied by glial cells, leaving only a narrow extracellular space, represents an important challenge, as even small extracellular volume changes will affect ion concentrations and therefore neuronal excitability. Further, the ionic transmembrane shifts that are required to maintain ion homeostasis during neuronal activity must be accompanied by water. It follows that the mechanisms for water transport across plasma membranes must have a central part in brain physiology. These mechanisms are also likely to be of pathophysiological importance in brain oedema, which represents a net accumulation of water in brain tissue. Recent studies have shed light on the molecular basis for brain water transport and have identified a class of specialized water channels in the brain that might be crucial to the physiological and pathophysiological handling of water.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Diagram showing members of the aquaporin (Aqp) family expressed in mammals.
Figure 2: Architecture of the aquaporin-1 (Aqp1) water channel (longitudinal section through an individual subunit).
Figure 3: Aquaporins in the brain.
Figure 4: Aqp4 expression at the blood—brain interface
Figure 5: Effect of α-syntrophin (α-Syn) deletion on aquaporin-4 (Aqp4) distribution.
Figure 6: Homeostatic functions of astrocytes.
Figure 7: Expression pattern of aquaporin-4 (Aqp4) in the subfornical organ of rat.


  1. 1

    Preston, G. M., Carroll, T. P., Guggino, W. B. & Agre, P. Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science 256, 385–387 (1992). Identification of the first member of the aquaporin family (Chip28, later renamed Aqp1).

    CAS  Google Scholar 

  2. 2

    Agre, P. et al. Aquaporin water channels — from atomic structure to clinical medicine. J. Physiol. (Lond.) 542, 3–16 (2002).

    CAS  Google Scholar 

  3. 3

    Johansson, I., Karlsson, M., Johanson, U., Larsson, C. & Kjellbom, P. The role of aquaporins in cellular and whole plant water balance. Biochim. Biophys. Acta 1465, 324–342 (2000).

    CAS  PubMed  Google Scholar 

  4. 4

    Santoni, V., Gerbeau, P., Javot, H. & Maurel, C. The high diversity of aquaporins reveals novel facets of plant membrane functions. Curr. Opin. Plant Biol. 3, 476–481 (2000).

    CAS  PubMed  Google Scholar 

  5. 5

    Marples, D., Knepper, M. A., Christensen, E. I. & Nielsen, S. Redistribution of aquaporin-2 water channels induced by vasopressin in rat kidney inner medullary collecting duct. Am. J. Physiol. 269, C655–C664 (1995).

    CAS  PubMed  Google Scholar 

  6. 6

    Agre, P. et al. Aquaporin CHIP: the archetypal molecular water channel. Am. J. Physiol. 265, F463–F476 (1993).

    CAS  PubMed  Google Scholar 

  7. 7

    Nielsen, S., Smith, B. L., Christensen, E. I., Knepper, M. A. & Agre, P. CHIP28 water channels are localized in constitutively water-permeable segments of the nephron. J. Cell Biol. 120, 371–383 (1993).

    CAS  PubMed  Google Scholar 

  8. 8

    Nielsen, S., Smith, B. L., Christensen, E. I. & Agre, P. Distribution of the aquaporin CHIP in secretory and resorptive epithelia and capillary endothelia. Proc. Natl Acad. Sci. USA 90, 7275–7279 (1993).

    CAS  PubMed  Google Scholar 

  9. 9

    Hasegawa, H., Ma, T., Skach, W., Matthay, M. A. & Verkman, A. S. Molecular cloning of a mercurial-insensitive water channel expressed in selected water-transporting tissues. J. Biol. Chem. 269, 5497–5500 (1994). A member of the aquaporin family was cloned that was later named Aqp4.

    CAS  PubMed  Google Scholar 

  10. 10

    Jung, J. S. et al. Molecular characterization of an aquaporin cDNA from brain: candidate osmoreceptor and regulator of water balance. Proc. Natl Acad. Sci. USA 91, 13052–13056 (1994).

    CAS  PubMed  Google Scholar 

  11. 11

    Nielsen, S. et al. Specialized membrane domains for water transport in glial cells: high-resolution immunogold cytochemistry of aquaporin-4 in rat brain. J. Neurosci. 17, 171–180 (1997). High resolution immunogold analysis revealed a concentration of Aqp4 in subpial and perivascular endfeet, and in ependymal cells, that is, at the interfaces between brain and extracerebral liquids (blood and CSF).

    CAS  PubMed  Google Scholar 

  12. 12

    Solenov, E., Watanabe, H., Manley, G. T. & Verkman A. S. Seven-fold reduced osmotic water permeability in primary astrocyte cultures from aquaporin-4 deficient mice measured by a calcein quenching method. Am. J. Physiol. Cell Physiol. (2003).

  13. 13

    Bai, L., Fushimi, K., Sasaki, S. & Marumo, F. Structure of aquaporin-2 vasopressin water channel. J. Biol. Chem. 271, 5171–5176 (1996).

    CAS  PubMed  Google Scholar 

  14. 14

    Shi, L. B., Skach, W. R. & Verkman, A. S. Functional independence of monomeric CHIP28 water channels revealed by expression of wild-type mutant heterodimers. J. Biol. Chem. 269, 10417–10422 (1994).

    CAS  PubMed  Google Scholar 

  15. 15

    Skach, W. R. et al. Biogenesis and transmembrane topology of the CHIP28 water channel at the endoplasmic reticulum. J. Cell Biol. 125, 803–815 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16

    Preston, G. M., Jung, J. S., Guggino, W. B. & Agre, P. Membrane topology of aquaporin CHIP. Analysis of functional epitope-scanning mutants by vectorial proteolysis. J. Biol. Chem. 269, 1668–1673 (1994).

    CAS  PubMed  Google Scholar 

  17. 17

    Chandy, G., Zampighi, G. A., Kreman, M. & Hall, J. E. Comparison of the water transporting properties of MIP and Aqp1. J. Membr. Biol. 159, 29–39 (1997).

    CAS  Google Scholar 

  18. 18

    Zhang, R., Van Hoek, A. N., Biwersi, J. & Verkman, A. S. A point mutation at cysteine 189 blocks the water permeability of rat kidney water channel CHIP28k. Biochemistry 32, 2938–2941 (1993).

    CAS  PubMed  Google Scholar 

  19. 19

    Farinas, J., Van Hoek, A. N., Shi, L. B., Erickson, C. & Verkman, A. S. Nonpolar environment of tryptophans in erythrocyte water channel CHIP28 determined by fluorescence quenching. Biochemistry 32, 11857–11864 (1993).

    CAS  PubMed  Google Scholar 

  20. 20

    Van Hoek, A. N. & Verkman, A. S. Functional reconstitution of the isolated erythrocyte water channel CHIP28. J. Biol. Chem. 267, 18267–18269 (1992).

    CAS  PubMed  Google Scholar 

  21. 21

    Zeidel, M. L., Ambudkar, S. V., Smith, B. L. & Agre, P. Reconstitution of functional water channels in liposomes containing purified red cell CHIP28 protein. Biochemistry 31, 7436–7440 (1992).

    CAS  PubMed  Google Scholar 

  22. 22

    Yang, B. & Verkman, A. S. Water and glycerol permeabilities of aquaporins 1–5 and MIP determined quantitatively by expression of epitope-tagged constructs in Xenopus oocytes. J. Biol. Chem. 272, 16140–16146 (1997).

    CAS  PubMed  Google Scholar 

  23. 23

    Tsukaguchi, H. et al. Molecular characterization of a broad selectivity neutral solute channel. J. Biol. Chem. 273, 24737–24743 (1998).

    CAS  PubMed  Google Scholar 

  24. 24

    de Groot, B. L. & Grubmuller, H. Water permeation across biological membranes: mechanism and dynamics of aquaporin-1 and GlpF. Science 294, 2353–2357 (2001).

    CAS  Google Scholar 

  25. 25

    Murata, K. et al. Structural determinants of water permeation through aquaporin-1. Nature 407, 599–605 (2000).

    CAS  Google Scholar 

  26. 26

    Sui, H., Han, B. G., Lee, J. K., Walian, P. & Jap, B. K. Structural basis of water-specific transport through the Aqp1 water channel. Nature 414, 872–878 (2001). This study describes an atomic model for Aqp1, revealing the three-dimensional structure of aqueous pore and providing an explanation of the water selectivity.

    CAS  Google Scholar 

  27. 27

    Fu, D. et al. Structure of a glycerol-conducting channel and the basis for its selectivity. Science 290, 481–486 (2000).

    CAS  Google Scholar 

  28. 28

    Thomas, D. et al. Aquaglyceroporins, one channel for two molecules. Biochim. Biophys. Acta 1555, 181–186 (2002).

    CAS  PubMed  Google Scholar 

  29. 29

    Preston, G. M., Jung, J. S., Guggino, W. B. & Agre, P. The mercury-sensitive residue at cysteine 189 in the CHIP28 water channel. J. Biol. Chem. 268, 17–20 (1993).

    CAS  PubMed  Google Scholar 

  30. 30

    Yasui, M. et al. Rapid gating and anion permeability of an intracellular aquaporin. Nature 402, 184–187 (1999).

    CAS  PubMed  Google Scholar 

  31. 31

    Hazama, A., Kozono, D., Guggino, W. B., Agre, P. & Yasui, M. Ion permeation of Aqp6 water channel protein. Single channel recordings after Hg2+ activation. J. Biol. Chem. 277, 29224–29230 (2002).

    CAS  PubMed  Google Scholar 

  32. 32

    Katsura, T., Gustafson, C. E., Ausiello, D. A. & Brown, D. Protein kinase A phosphorylation is involved in regulated exocytosis of aquaporin-2 in transfected LLC-PK1 cells. Am. J. Physiol. 272, F817–F822 (1997).

    CAS  PubMed  Google Scholar 

  33. 33

    Fushimi, K., Sasaki, S. & Marumo, F. Phosphorylation of serine 256 is required for cAMP-dependent regulatory exocytosis of the aquaporin-2 water channel. J. Biol. Chem. 272, 14800–14804 (1997).

    CAS  PubMed  Google Scholar 

  34. 34

    Brown, D. The ins and outs of aquaporin-2 trafficking. Am. J. Physiol. Renal Physiol. 284, F893–F901 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35

    Xu, D. L. et al. Upregulation of aquaporin-2 water channel expression in chronic heart failure rat. J. Clin. Invest 99, 1500–1505 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36

    Han, Z., Wax, M. B. & Patil, R. V. Regulation of aquaporin-4 water channels by phorbol ester-dependent protein phosphorylation. J. Biol. Chem. 273, 6001–6004 (1998).

    CAS  PubMed  Google Scholar 

  37. 37

    Niermann, H., Amiry-Moghaddam, M., Holthoff, K., Witte, O. W. & Ottersen, O. P. A novel role of vasopressin in the brain: modulation of activity-dependent water flux in the neocortex. J. Neurosci. 21, 3045–3051 (2001).

    CAS  PubMed  Google Scholar 

  38. 38

    Rash, J. E., Yasumura, T., Hudson, C. S., Agre, P. & Nielsen, S. Direct immunogold labeling of aquaporin-4 in square arrays of astrocyte and ependymocyte plasma membranes in rat brain and spinal cord. Proc. Natl Acad. Sci. USA 95, 11981–11986 (1998).

    CAS  PubMed  Google Scholar 

  39. 39

    Carmosino, M. et al. Histamine treatment induces rearrangements of orthogonal arrays of particles (OAPs) in human Aqp4-expressing gastric cells. J. Cell Biol. 154, 1235–1243 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Ke, C., Poon, W. S., Ng, H. K., Pang, J. C. & Chan, Y. Heterogeneous responses of aquaporin-4 in oedema formation in a replicated severe traumatic brain injury model in rats. Neurosci. Lett. 301, 21–24 (2001).

    CAS  PubMed  Google Scholar 

  41. 41

    Kiening, K. L. et al. Decreased hemispheric aquaporin-4 is linked to evolving brain edema following controlled cortical impact injury in rats. Neurosci. Lett. 324, 105–108 (2002).

    CAS  PubMed  Google Scholar 

  42. 42

    Saadoun, S., Papadopoulos, M. C., Davies, D. C., Krishna, S. & Bell, B. A. Aquaporin-4 expression is increased in oedematous human brain tumours. J. Neurol. Neurosurg. Psychiatry 72, 262–265 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43

    Sato, S. et al. Expression of water channel mRNA following cerebral ischemia. Acta Neurochir. Suppl 76, 239–241 (2000).

    CAS  PubMed  Google Scholar 

  44. 44

    Taniguchi, M. et al. Induction of aquaporin-4 water channel mRNA after focal cerebral ischemia in rat. Brain Res. Mol. Brain Res. 78, 131–137 (2000).

    CAS  PubMed  Google Scholar 

  45. 45

    Vizuete. M. L. et al. Differential upregulation of aquaporin-4 mRNA expression in reactive astrocytes after brain injury: potential role in brain edema. Neurobiol. Dis. 6, 245–258 (1999).

    CAS  PubMed  Google Scholar 

  46. 46

    Nakahama, K., Nagano, M., Fujioka, A., Shinoda, K. & Sasaki, H. Effect of TPA on aquaporin 4 mRNA expression in cultured rat astrocytes. Glia 25, 240–246 (1999).

    CAS  PubMed  Google Scholar 

  47. 47

    Yamamoto, N. et al. Differential regulation of aquaporin expression in astrocytes by protein kinase C. Brain Res. Mol. Brain Res. 95, 110–116 (2001).

    CAS  PubMed  Google Scholar 

  48. 48

    Arima, H. et al. Hyperosmolar mannitol stimulates expression of aquaporin 4 and 9 through a p38 mitogen activated protein kinase-dependent pathway in rat astrocytes. J. Biol. Chem. (2003).

  49. 49

    Wu, Q., Delpire, E., Hebert, S. C. & Strange, K. Functional demonstration of Na+-K+-2Cl cotransporter activity in isolated, polarized choroid plexus cells. Am. J. Physiol. 275, C1565–C1572 (1998).

    CAS  PubMed  Google Scholar 

  50. 50

    Speake, T., Freeman, L. J. & Brown, P. D. Expression of aquaporin 1 and aquaporin 4 water channels in rat choroid plexus. Biochim. Biophys. Acta 1609, 80–86 (2003).

    CAS  PubMed  Google Scholar 

  51. 51

    Nejsum, L. N. et al. Functional requirement of aquaporin-5 in plasma membranes of sweat glands. Proc. Natl Acad. Sci. USA 99, 511–516 (2002).

    CAS  PubMed  Google Scholar 

  52. 52

    Ma, T. et al. Severely impaired urinary concentrating ability in transgenic mice lacking aquaporin-1 water channels. J. Biol. Chem. 273, 4296–4299 (1998).

    CAS  PubMed  Google Scholar 

  53. 53

    Davson, H. & Bradbury, M. The fluid exchange of the central nervous system. Symp. Soc. Exp. Biol. 19, 349–364 (1965).

    CAS  PubMed  Google Scholar 

  54. 54

    Zeuthen, T. & Wright, E. M. An electrogenic Na+/K+ pump in the choroid plexus. Biochim. Biophys. Acta 511, 517–522 (1978).

    CAS  PubMed  Google Scholar 

  55. 55

    Wright, E. M. Transport processes in the formation of the cerebrospinal fluid. Rev. Physiol Biochem. Pharmacol. 83, 3–34 (1978).

    CAS  PubMed  Google Scholar 

  56. 56

    Keep, R. F., Xiang, J. & Betz, A. L. Potassium cotransport at the rat choroid plexus. Am. J. Physiol. 267, C1616–C1622 (1994).

    CAS  PubMed  Google Scholar 

  57. 57

    Plotkin, M. D. et al. Expression of the Na+-K+-2Cl cotransporter BSC2 in the nervous system. Am. J. Physiol. 272, C173–C183 (1997).

    CAS  PubMed  Google Scholar 

  58. 58

    Nakamura, N. et al. Inwardly rectifying K+ channel Kir7.1 is highly expressed in thyroid follicular cells, intestinal epithelial cells and choroid plexus epithelial cells: implication for a functional coupling with Na+,K+-ATPase. Biochem. J. 342, 329–336 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59

    Lindsey, A. E. et al. Functional expression and subcellular localization of an anion exchanger cloned from choroid plexus. Proc. Natl Acad. Sci. USA 87, 5278–5282 (1990).

    CAS  PubMed  Google Scholar 

  60. 60

    Alper, S. L., Stuart-Tilley, A., Simmons, C. F., Brown, D. & Drenckhahn, D. The fodrin-ankyrin cytoskeleton of choroid plexus preferentially colocalizes with apical Na+K+-ATPase rather than with basolateral anion exchanger AE2. J. Clin. Invest. 93, 1430–1438 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61

    Frigeri, A. et al. Localization of MIWC and GLIP water channel homologs in neuromuscular, epithelial and glandular tissues. J. Cell Sci. 108, 2993–3002 (1995).

    CAS  PubMed  Google Scholar 

  62. 62

    Frigeri, A., Nicchia, G. P., Verbavatz, J. M., Valenti, G. & Svelto, M. Expression of aquaporin-4 in fast-twitch fibers of mammalian skeletal muscle. J. Clin. Invest. 102, 695–703 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63

    Takumi, Y. et al. Select types of supporting cell in the inner ear express aquaporin-4 water channel protein. Eur. J. Neurosci. 10, 3584–3595 (1998).

    CAS  PubMed  Google Scholar 

  64. 64

    Nagelhus, E. A. et al. Immunogold evidence suggests that coupling of K+ siphoning and water transport in rat retinal Muller cells is mediated by a coenrichment of Kir4.1 and Aqp4 in specific membrane domains. Glia 26, 47–54 (1999). This study showed that Kir4.1, a K+ channel known to be involved in K+ clearance, is strictly co-localized with Aqp4, indicating that the two membrane molecules act in concert.

    CAS  PubMed  Google Scholar 

  65. 65

    Kobayashi, H. et al. Aquaporin subtypes in rat cerebral microvessels. Neurosci. Lett. 297, 163–166 (2001).

    CAS  PubMed  Google Scholar 

  66. 66

    Amiry-Moghaddam, M. Molecular basis of water homeostasis in brain. Thesis, Univ. Oslo. (2003).

  67. 67

    Adams, M. E., Mueller, H. A. & Froehner, S. C. In vivo requirement of the α-syntrophin PDZ domain for the sarcolemmal localization of nNOS and aquaporin-4. J. Cell Biol. 155, 113–122 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68

    Peters, M. F., Adams, M. E. & Froehner, S. C. Differential association of syntrophin pairs with the dystrophin complex. J. Cell Biol. 138, 81–93 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69

    Adams, M. E. et al. Absence of α-syntrophin leads to structurally aberrant neuromuscular synapses deficient in utrophin. J. Cell Biol. 150, 1385–1398 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70

    Albrecht, D. E. & Froehner, S. C. Syntrophins and dystrobrevins: defining the dystrophin scaffold at synapses. Neurosignals 11, 123–129 (2002).

    CAS  PubMed  Google Scholar 

  71. 71

    Froehner, S. C., Adams, M. E., Peters, M. F. & Gee, S. H. Syntrophins: modular adapter proteins at the neuromuscular junction and the sarcolemma. Soc. Gen. Physiol Ser. 52, 197–207 (1997).

    CAS  PubMed  Google Scholar 

  72. 72

    Wertz, K. & Fuchtbauer, E. M. Dmdmdx-βgeo: A new allele for the mouse dystrophin gene. Dev. Dyn. 212, 229–241 (1998).

    CAS  PubMed  Google Scholar 

  73. 73

    Frigeri, A. et al. Aquaporin-4 deficiency in skeletal muscle and brain of dystrophic mdx mice. FASEB J. 15, 90–98 (2001).

    CAS  PubMed  Google Scholar 

  74. 74

    Amiry-Moghaddam, M. et al. An α-syntrophin-dependent pool of Aqp4 in astroglial end-feet confers bidirectional water flow between blood and brain. Proc. Natl Acad. Sci. USA 100, 2106–2111 (2003). This study showed that selective removal of perivascular Aqp4 by α-Syn deletion reduced the extent of post-ischaemic oedema and that the binding between Aqp4 and α-Syn is sensitive to ischaemia.

    CAS  PubMed  Google Scholar 

  75. 75

    Neely, J. D. et al. Syntrophin-dependent expression and localization of Aquaporin-4 water channel protein. Proc. Natl Acad. Sci. USA 98, 14108–14113 (2001).

    CAS  PubMed  Google Scholar 

  76. 76

    Wen, H. et al. Ontogeny of water transport in rat brain: postnatal expression of the aquaporin-4 water channel. Eur. J. Neurosci. 11, 935–945 (1999).

    CAS  PubMed  Google Scholar 

  77. 77

    Nico, B. et al. Role of aquaporin-4 water channel in the development and integrity of the blood-brain barrier. J. Cell Sci. 114, 1297–1307 (2001).

    CAS  PubMed  Google Scholar 

  78. 78

    Newman, E. A., Frambach, D. A. & Odette, L. L. Control of extracellular potassium levels by retinal glial cell K+ siphoning. Science 225, 1174–1175 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79

    Newman, E. A. Regional specialization of the membrane of retinal glial cells and its importance to K+ spatial buffering. Ann. NY Acad. Sci. 481, 273–286 (1986).

    CAS  PubMed  Google Scholar 

  80. 80

    Gardner-Medwin, A. R., Coles, J. A. & Tsacopoulos, M. Clearance of extracellular potassium: evidence for spatial buffering by glial cells in the retina of the drone. Brain Res. 209, 452–457 (1981).

    CAS  PubMed  Google Scholar 

  81. 81

    Dietzel, I., Heinemann, U., Hofmeier, G. & Lux, H. D. Transient changes in the size of the extracellular space in the sensorimotor cortex of cats in relation to stimulus-induced changes in potassium concentration. Exp. Brain Res. 40, 432–439 (1980).

    CAS  PubMed  Google Scholar 

  82. 82

    Lux, H. D., Heinemann, U. & Dietzel, I. Ionic changes and alterations in the size of the extracellular space during epileptic activity. Adv. Neurol. 44, 619–639 (1986).

    CAS  PubMed  Google Scholar 

  83. 83

    Holthoff, K. & Witte, O. W. Directed spatial potassium redistribution in rat neocortex. Glia 29, 288–292 (2000).

    CAS  PubMed  Google Scholar 

  84. 84

    Sarfaraz, D. & Fraser, C. L. Effects of arginine vasopressin on cell volume regulation in brain astrocyte in culture. Am. J. Physiol. 276, E596–E601 (1999).

    CAS  PubMed  Google Scholar 

  85. 85

    Sykova, E., Vargova, L., Prokopova, S. & Simonova, Z. Glial swelling and astrogliosis produce diffusion barriers in the rat spinal cord. Glia 25, 56–70 (1999).

    CAS  PubMed  Google Scholar 

  86. 86

    Sykova, E. & Chvatal, A. Extracellular ionic and volume changes: the role in glia-neuron interaction. J. Chem. Neuroanat. 6, 247–260 (1993).

    CAS  PubMed  Google Scholar 

  87. 87

    Sykova, E. Modulation of spinal cord transmission by changes in extracellular K+ activity and extracellular volume. Can. J. Physiol. Pharmacol. 65, 1058–1066 (1987).

    CAS  PubMed  Google Scholar 

  88. 88

    Amiry-Moghaddam, M. et al. Delayed K+ clearance associated with aquaporin-4 mislocalization: phenotypic defects in brains of α-syntrophin-null mice. Proc. Natl Acad. Sci. USA 100, 13615–13620 (2003).

    CAS  PubMed  Google Scholar 

  89. 89

    Lehninger, A. L. Biochemistry, The Molecular Base of Cell Structure and Function (Worth, New York, 1970).

    Google Scholar 

  90. 90

    Manley, G. T. et al. Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nature Med. 6, 159–163 (2000). This is the first study suggesting that Aqp4 has a role in the development of brain oedema.

    CAS  PubMed  Google Scholar 

  91. 91

    Deleuze, C., Duvoid, A. & Hussy, N. Properties and glial origin of osmotic-dependent release of taurine from the rat supraoptic nucleus. J. Physiol. (Lond.) 507, 463–471 (1998).

    CAS  Google Scholar 

  92. 92

    Hussy, N., Deleuze, C., Pantaloni, A., Desarmenien, M. G. & Moos, F. Agonist action of taurine on glycine receptors in rat supraoptic magnocellular neurones: possible role in osmoregulation. J. Physiol. (Lond.) 502, 609–621 (1997).

    CAS  Google Scholar 

  93. 93

    Hussy, N., Deleuze, C., Desarmenien, M. G. & Moos, F. C. Osmotic regulation of neuronal activity: a new role for taurine and glial cells in a hypothalamic neuroendocrine structure. Prog. Neurobiol. 62, 113–134 (2000).

    CAS  PubMed  Google Scholar 

  94. 94

    Elkjaer, M. et al. Immunolocalization of Aqp9 in liver, epididymis, testis, spleen, and brain. Biochem. Biophys. Res. Commun. 276, 1118–1128 (2000).

    CAS  PubMed  Google Scholar 

  95. 95

    Carbrey, J. M. et al. Aquaglyceroporin Aqp9: solute permeation and metabolic control of expression in liver. Proc. Natl Acad. Sci. USA 100, 2945–2950 (2003).

    CAS  PubMed  Google Scholar 

  96. 96

    Ishibashi, K. et al. Cloning and functional expression of a new aquaporin (Aqp9) abundantly expressed in the peripheral leukocytes permeable to water and urea, but not to glycerol. Biochem. Biophys. Res. Commun. 244, 268–274 (1998).

    CAS  PubMed  Google Scholar 

  97. 97

    Venero, J. L., Vizuete, M. L., Machado, A. & Cano, J. Aquaporins in the central nervous system. Prog. Neurobiol. 63, 321–336 (2001).

    CAS  PubMed  Google Scholar 

  98. 98

    Vajda, Z. et al. Delayed onset of brain edema and mislocalization of aquaporin-4 in dystrophin-null transgenic mice. Proc. Natl Acad. Sci. USA 99, 13131–13136 (2002). Mdx mice that lacked Aqp4 at the interfaces between brain and blood/CSF showed a delayed development of hyponatremic oedema, compared with wild-type mice.

    CAS  PubMed  Google Scholar 

  99. 99

    Cadnapaphornchai, M. A. & Schrier, R. W. Pathogenesis and management of hyponatremia. Am. J. Med. 109, 688–692 (2000).

    CAS  PubMed  Google Scholar 

  100. 100

    Hise, M. A. & Johanson, C. E. The sink action of cerebrospinal fluid in uremia. Eur. Neurol. 18, 328–337 (1979).

    CAS  PubMed  Google Scholar 

  101. 101

    Klatzo, I., Chui, E., Fujiwara, K. & Spatz, M. Resolution of vasogenic brain edema. Adv. Neurol. 28, 359–373 (1980).

    CAS  PubMed  Google Scholar 

  102. 102

    Wolburg, H. Orthogonal arrays of intramembranous particles: a review with special reference to astrocytes. J. Hirnforsch. 36, 239–258 (1995).

    CAS  PubMed  Google Scholar 

  103. 103

    Loo, D. D. F., Wright, E. M. & Zeuthen, T. Water pumps. J. Physiol. (Lond.) 542, 53–60 (2002).

    CAS  Google Scholar 

  104. 104

    Yan, Y., Dempsey, R. J. & Sun, D. Expression of Na+-K+-Cl cotransporter in rat brain during development and its localization in mature astrocytes. Brain Res. 911, 43–55 (2001).

    CAS  PubMed  Google Scholar 

  105. 105

    Nitta, T. et al. Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice. J. Cell Biol. 161, 653–660 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. 106

    Hamann, S., Kiilgaard, J. F., la Cour, M., Prause, J. U. & Zeuthen, T. Cotransport of H+, lactate, and H2O in porcine retinal pigment epithelial cells. Exp. Eye Res. 76, 493–504 (2003).

    CAS  PubMed  Google Scholar 

  107. 107

    Zeuthen, T. & MacAulay, N. Cotransporters as molecular water pumps. Int. Rev. Cytol. 215, 259–284 (2002).

    CAS  PubMed  Google Scholar 

  108. 108

    MacAulay, N., Gether, U., Klaerke, D. A. & Zeuthen, T. Water transport by the human Na+-coupled glutamate cotransporter expressed in Xenopus oocytes. J. Physiol. (Lond.) 530, 367–378 (2001).

    CAS  Google Scholar 

  109. 109

    Zeuthen, T. Molecular water pumps. Rev. Physiol Biochem. Pharmacol. 141, 97–151 (2000).

    CAS  PubMed  Google Scholar 

  110. 110

    Zeuthen, T. et al. Water transport by the Na+/glucose cotransporter under isotonic conditions. Biol. Cell 89, 307–312 (1997).

    CAS  PubMed  Google Scholar 

  111. 111

    MacAulay, N., Gether, U., Klaeke, D. A. & Zeuthen, T. Passive water and urea permeability of a human Na+-glutamate cotransporter expressed in Xenopus oocytes. J. Physiol. (Lond.) 542, 817–828 (2002).

    CAS  Google Scholar 

  112. 112

    Gerhart, D. Z., Enerson, B. E., Zhdankina, O. Y., Leino, R. L. & Drewes, L. R. Expression of monocarboxylate transporter MCT1 by brain endothelium and glia in adult and suckling rats. Am. J. Physiol. (Lond.) 273, E207–E213 (1997).

    CAS  Google Scholar 

  113. 113

    Yu, S. & Ding, W. G. The 45 kDa form of glucose transporter 1 (GLUT1) is localized in oligodendrocyte and astrocyte but not in microglia in the rat brain. Brain Res. 797, 65–72 (1998).

    CAS  PubMed  Google Scholar 

  114. 114

    Kacem, K., Lacombe, P., Seylaz, J. & Bonvento, G. Structural organization of the perivascular astrocyte endfeet and their relationship with the endothelial glucose transporter: a confocal microscopy study. Glia 23, 1–10 (1998).

    CAS  PubMed  Google Scholar 

  115. 115

    McCall, A. L. et al. Forebrain ischemia increases GLUT1 protein in brain microvessels and parenchyma. J. Cereb. Blood Flow Metab. 16, 69–76 (1996).

    CAS  PubMed  Google Scholar 

  116. 116

    Takakura, Y. et al. Hexose uptake in primary cultures of bovine brain microvessel endothelial cells. II. Effects of conditioned media from astroglial and glioma cells. Biochim. Biophys. Acta 1070, 11–19 (1991).

    CAS  PubMed  Google Scholar 

  117. 117

    Bergersen, L., Rafiki, A. & Ottersen, O. P. Immunogold cytochemistry identifies specialized membrane domains for monocarboxylate transport in the central nervous system. Neurochem. Res. 27, 89–96 (2002).

    CAS  PubMed  Google Scholar 

  118. 118

    Danbolt, N. C. et al. Properties and localization of glutamate transporters. Prog. Brain Res. 116, 23–43 (1998).

    CAS  PubMed  Google Scholar 

  119. 119

    Pellerin, L. & Magistretti, P. J. Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc. Natl Acad. Sci. USA 91, 10625–10629 (1994).

    CAS  PubMed  Google Scholar 

  120. 120

    Weed, L. H. & McKibben, P. S. Experimental alteration of brain bulk. Am. J. Physiol. 48, 531–558 (1919).

    Google Scholar 

  121. 121

    Li, J. & Verkman, A. S. Impaired hearing in mice lacking aquaporin-4 water channels. J. Biol. Chem. 276, 31233–31237 (2001).

    CAS  PubMed  Google Scholar 

  122. 122

    Li, J., Patil, R. V. & Verkman, A. S. Mildly abnormal retinal function in transgenic mice without Muller cell aquaporin-4 water channels. Invest. Ophthalmol. Vis. Sci. 43, 573–579 (2002).

    PubMed  Google Scholar 

  123. 123

    Worton, R. Muscular dystrophies: diseases of the dystrophin-glycoprotein complex. Science 270, 755–756 (1995).

    CAS  PubMed  Google Scholar 

  124. 124

    Blake, D. J., Hawkes, R., Benson, M. A. & Beesley, P. W. Different dystrophin-like complexes are expressed in neurons and glia. J. Cell Biol. 147, 645–658 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. 125

    Austin, R. C., Morris, G. E., Howard, P. L., Klamut, H. J. & Ray, P. N. Expression and synthesis of alternatively spliced variants of Dp71 in adult human brain. Neuromuscul. Disord. 10, 187–193 (2000).

    CAS  PubMed  Google Scholar 

  126. 126

    Chelly, J. et al. Dystrophin gene transcribed from different promoters in neuronal and glial cells. Nature 344, 64–65 (1990).

    CAS  PubMed  Google Scholar 

  127. 127

    Newey, S. E., Benson, M. A., Ponting, C. P., Davies, K. E. & Blake, D. J. Alternative splicing of dystrobrevin regulates the stoichiometry of syntrophin binding to the dystrophin protein complex. Curr. Biol. 10, 1295–1298 (2000).

    CAS  PubMed  Google Scholar 

  128. 128

    Kachinsky, A. M., Froehner, S. C. & Milgram, S. L. A PDZ-containing scaffold related to the dystrophin complex at the basolateral membrane of epithelial cells. J. Cell Biol. 145, 391–402 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. 129

    Kozono, D., Yasui, M., King, L. S. & Agre, P. Aquaporin water channels: atomic structure molecular dynamics meet clinical medicine. J. Clin. Invest. 109, 1395–1399 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references


We thank C. Knudsen and G. Lothe for help with the illustrations and P. Agre, H. Kimelberg and S. Froehner for invaluable advice. Supported by the Norwegian Research Council, the European Co-operation in Scientific and Technological Research (COST) and the European Union.

Author information



Corresponding author

Correspondence to Ole P. Ottersen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links











A liposome into which a specific protein, or group of proteins, has been incorporated.


The main glial elements of the retina that assume many of the functions that are carried out by astrocytes, oligodendrocytes and ependymal cells in other central nervous system regions.


A peptide-binding domain that is important for the organization of membrane proteins, particularly at cell–cell junctions, including synapses. It can bind to the carboxyl termini of proteins or can form dimers with other PDZ domains. PDZ domains are named after the proteins in which these sequence motifs were originally identified (PSD95, discs large, zona occludens 1).


A sequence of about 100 amino acids that is present in many signalling molecules. Pleckstrin is a protein of unknown function that was originally identified in platelets. It is a principal substrate of protein kinase C.


A type of ependymal cell found principally in the walls of the third ventricle of the brain. The tanycytes might have branched or unbranched processes, some of which end on capillaries or neurons.


Measurement of the retinal response to light, typically using an electrode attached to the cornea.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Amiry-Moghaddam, M., Ottersen, O. The molecular basis of water transport in the brain. Nat Rev Neurosci 4, 991–1001 (2003).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing