Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A clockwork web: circadian timing in brain and periphery, in health and disease

Key Points

  • Circadian rhythms are daily cycles of physiology and behaviour that are driven by an endogenous oscillator with a period of approximately (circa-) one day (diem). Exemplified in humans by the rhythm of sleep and wakefulness and their attendant neurophysiological and metabolic states, they are a pervasive feature of eukaryotes, enabling the organism to anticipate and thereby adapt to the solar cycle.

  • In mammals, the principal oscillator is the suprachiasmatic nuclei (SCN) of the hypothalamus. The circadian timing mechanism is cell-autonomous and is expressed individually by SCN neurons. Synchrony across the SCN neuronal network is maintained by γ-aminobutyric acid (GABA) and peptide signalling. It is entrained to the light–dark cycle by glutamatergic retinal afferents, derived in part from a class of intrinsically photosensitive, melanopsin-positive retinal ganglion cells.

  • The cellular oscillator consists of interlocked transcriptional and post-translational feedback loops. Heterodimeric complexes encoded by the Clock and Bmal genes drive expression of Per and Cry genes during circadian day, leading to accumulation of Per/Cry protein complexes that enter the nucleus and suppress transcription of their cognate genes, thereby establishing an oscillatory negative feedback loop. A feedforward loop, mediated by rhythmic expression of Rev-erbα, phases the expression of Bmal to circadian night, in antiphase to Per and Cry, thereby augmenting the core oscillation.

  • This SCN cycle is synchronized to solar time by neurochemical cues that activate or suppress Per expression. Circadian organization within and beyond SCN neurons is mediated by rhythmic expression of clock-controlled genes that sit outside the feedback loop, but undergo periodic transcriptional activation and repression by Per, Cry and Rev-erbα.

  • Circadian oscillators based on rhythmic Per gene expression are also present in non-neural, peripheral tissues and immortalized cell lines. They have tissue-specific variations in molecular composition and coordinate the local, tissue-specific temporal patterns of gene expression that underpin circadian metabolic programmes.

  • As with the SCN oscillator, where up- and down-regulation of Per resets circadian time, these peripheral oscillators can be reset or activated by various biochemical cues that acutely regulate Per expression. In vivo, this resonant network of peripheral oscillators is synchronized by behavioural, neural, endocrine and food-related cues that depend on the SCN. Manipulation of these cues in vivo can desynchronize peripheral oscillators from the SCN.

  • Circumstances that disrupt the smooth temporal integration of metabolism within and between tissues impose a burden on health. Therapeutic managements should be designed to maintain circadian structure in the periphery. Circadian prevalence of chronic disease is a reflection of the activity of peripheral oscillators and their interactions. Targeted modification of these local endogenous clocks should provide avenues for selective and specific treatment. The contribution of circadian mechanisms to tumour progression highlights the value of incorporating and exploiting temporal specificity in therapeutic regimes.

Abstract

The hypothalamic suprachiasmatic nuclei (SCN) are our principal circadian oscillator, coordinating daily cycles of physiology and behaviour that adapt us to the world. Local versions of the SCN clockwork are also active in peripheral, non-neural tissues, driving the tissue-specific cycles of gene expression that underpin circadian organization. These local oscillators are tuned to each other, and to solar time, by neuroendocrine and metabolic cues that depend on the SCN. The discovery of these local circadian clocks forces a re-appraisal of established models of circadian biology. It also presents new avenues for therapeutic intervention in conditions where disturbance of circadian gene expression is an important cause of morbidity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A brief history of circadian time.
Figure 2: The molecular feedback loops that define circadian time.
Figure 3: Per::luciferase transgenes reveal a diversity of tissue-based circadian oscillators.
Figure 4: Peripheral circadian clocks in cardiovascular disease.

Similar content being viewed by others

References

  1. Aschoff, J. Circadian timing. Ann. NY Acad. Sci. 423, 442–468 (1984).

    Article  CAS  PubMed  Google Scholar 

  2. Pittendrigh, C. S. Temporal organization: reflections of a Darwinian clock-watcher. Annu. Rev. Physiol. 55, 16–54 (1993). References 1 and 2 summarize the basic biology of circadian timing, from two workers who established the field.

    Article  CAS  PubMed  Google Scholar 

  3. Pace-Schott, E. F. & Hobson, J. A. The neurobiology of sleep: genetics, cellular physiology and subcortical networks. Nature Rev. Neurosci. 3, 591–605 (2002). An extensive review that places the circadian system into the broader context of sleep regulation.

    Article  CAS  Google Scholar 

  4. Hastings, M. H. Neuroendocrine rhythms. Pharmacol. Ther. 50, 35–71 (1991).

    Article  CAS  PubMed  Google Scholar 

  5. Ouyang, Y. et al. Resonating circadian clocks enhance fitness in cyanobacteria. Proc. Natl Acad. Sci. USA 95, 8660–8664 (1998). A definitive experimental demonstration of the selective advantage conferred by a circadian clock.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rajaratnam, S. M. & Arendt, J. Health in a 24-h society. Lancet 358, 999–1005 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Knutsson, A. Health disorders of shift workers. Occup. Med. (Lond.) 53, 103–108 (2003).

    Article  Google Scholar 

  8. Reppert, S. M. & Weaver, D. R. Coordination of circadian timing in mammals. Nature 418, 935–941 (2002). An in-depth, authoritative review of molecular events in the core oscillator.

    Article  CAS  PubMed  Google Scholar 

  9. Ikeda, M. et al. Circadian dynamics of cytosolic and nuclear Ca2+ in single suprachiasmatic nucleus neurons. Neuron 38, 253–263 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Yamazaki, S. et al. Resetting central and peripheral circadian oscillators in transgenic rats. Science. 288, 682–685 (2000). The first demonstration of autonomous circadian timing in rat peripheral tissues, revealed at the molecular level by the Per::luc transgene.

    Article  CAS  PubMed  Google Scholar 

  11. Abrahamson, E. E. & Moore, R. Y. Suprachiasmatic nucleus in the mouse: retinal innervation, intrinsic organization and efferent projections. Brain Res. 916, 172–191 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Buijs, R. M. & Kalsbeek, A. Hypothalamic integration of central and peripheral clocks. Nature Rev. Neurosci. 2, 521–526 (2001).

    Article  CAS  Google Scholar 

  13. Abrahamson, E. E., Leak, R. K. & Moore, R. Y. The suprachiasmatic nucleus projects to posterior hypothalamic arousal systems. Neuroreport 12, 435–440 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Kramer, A. et al. Regulation of daily locomotor activity and sleep by hypothalamic EGF receptor signaling. Science 294, 2511–2515 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Cheng, M. Y. et al. Prokineticin 2 transmits the behavioural circadian rhythm of the suprachiasmatic nucleus. Nature 417, 405–410 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Liu, C. & Reppert, S. M. GABA synchronizes clock cells within the suprachiasmatic circadian clock. Neuron 25, 123–128 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Harmar, A. J. et al. The VPAC2 receptor is essential for circadian function in the mouse suprachiasmatic nuclei. Cell 109, 497–508 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Cutler, D. J. et al. The mouse VPAC2 receptor confers suprachiasmatic nuclei cellular rhythmicity and responsiveness to vasoactive intestinal polypeptide in vitro. Eur. J. Neurosci. 17, 197–204 (2003). References 17 and 18 show that extracellular activation through VPAC2 receptors is necessary to sustain the core molecular oscillation of SCN neurons.

    Article  PubMed  Google Scholar 

  19. Mrosovsky, N. et al. Cycle of period gene expression in a diurnal mammal (Spermophilus tridecemlineatus): implications for nonphotic phase shifting. J. Biol. Rhythms 16, 471–478 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Maywood, E. S., O'Brien, J. A. & Hastings, M. H. Expression of mCLOCK and other circadian clock-relevant proteins in the mouse suprachiasmatic nuclei. J. Neuroendocrinol. 15, 329–334 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Preitner, N. et al. The orphan nuclear receptor REV-ERBα controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110, 251–260 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Ueda, H. R. et al. A transcription factor response element for gene expression during circadian night. Nature 418, 534–539 (2002). References 21 and 22 revealed the contribution of Rev-erbα in establishing appropriate phasing of circadian gene expression, both within the core loop and for clock-controlled genes.

    Article  CAS  PubMed  Google Scholar 

  23. Etchegaray, J. P. et al. Rhythmic histone acetylation underlies transcription in the mammalian circadian clock. Nature 421, 177–182 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Hastings, M. H. Circadian clockwork: two loops are better than one. Nature Rev. Neurosci. 1, 143–146 (2000).

    Article  CAS  Google Scholar 

  25. Hirata, H. et al. Oscillatory expression of the bHLH factor Hes1 regulated by a negative feedback loop. Science 298, 840–843 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Toh, K. L. et al. An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science 291, 1040–1043 (2001). Shows a clear biochemical linkage between a human clock gene mutation and a marked sleep disorder.

    Article  CAS  PubMed  Google Scholar 

  27. Ebisawa, T. et al. Association of structural polymorphisms in the human period3 gene with delayed sleep phase syndrome. EMBO Rep. 2, 342–346 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Katzenberg, D. et al. A CLOCK polymorphism associated with human diurnal preference. Sleep 21, 569–576 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Archer, S. N. et al. A length polymorphism in the circadian clock gene Per3 is linked to delayed sleep phase syndrome and extreme diurnal preference. Sleep 26, 413–415 (2003).

    Article  PubMed  Google Scholar 

  30. Lowrey, P. L. et al. Positional syntenic cloning and functional characterization of the mammalian circadian mutation tau. Science 288, 483–492 (2000). A landmark piece of work defining the molecular genetic basis of the first described mutation of circadian periodicity in a mammal.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jones, C. R. et al. Familial advanced sleep-phase syndrome: a short-period circadian rhythm variant in humans. Nature Med. 5, 1062–1065 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Yagita, K. et al. Nucleocytoplasmic shuttling and mCRY-dependent inhibition of ubiquitylation of the mPER2 clock protein. EMBO J. 21, 1301–1314 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Grima, B. et al. The F-box protein slimb controls the levels of clock proteins period and timeless. Nature 420, 178–182 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Menaker, M. Circadian rhythms. Circadian photoreception. Science 299, 213–214 (2003). A contemporary mini-review of the breakthrough findings that melanopsin and melanopsin-containing retinal ganglion cells are components of the circadian photoreceptive pathway in mammals.

    Article  CAS  PubMed  Google Scholar 

  35. Provencio, I. et al. A novel human opsin in the inner retina. J. Neurosci. 20, 600–605 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hattar, S. et al. Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295, 1065–1070 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Panda, S. et al. Melanopsin (Opn4) requirement for normal light-induced circadian phase shifting. Science 298, 2213–2216 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Lucas, R. J. et al. Diminished pupillary light reflex at high irradiances in melanopsin-knockout mice. Science 299, 245–247 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Kuhlman, S. J. et al. Phase resetting light pulses induce Per1 and persistent spike activity in a subpopulation of biological clock neurons. J. Neurosci. 23, 1441–1450 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Travnickova-Bendova, Z. et al. Bimodal regulation of mPeriod promoters by CREB-dependent signaling and CLOCK/BMAL1 activity. Proc. Natl Acad. Sci. USA 99, 7728–7733 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Crosio, C. et al. Light induces chromatin modification in cells of the mammalian circadian clock. Nature Neurosci. 3, 1241–1247 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Field, M. D. et al. Analysis of clock proteins in mouse SCN demonstrates phylogenetic divergence of the circadian clockwork and resetting mechanisms. Neuron 25, 437–447 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Reddy, A. B. et al. Differential resynchronisation of circadian clock gene expression within the suprachiasmatic nuclei of mice subjected to experimental jet lag. J. Neurosci. 22, 7326–7330 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shigeyoshi, Y. et al. Light-induced resetting of a mammalian circadian clock is associated with rapid induction of the mPer1 transcript. Cell 91, 1043–1053 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Messager, S. et al. Decoding photoperiodic time through Per1 and ICER gene amplitude. Proc. Natl Acad. Sci. USA 96, 9938–9943 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hastings, M. H. & Follett, B. K. Toward a molecular biological calendar? J. Biol. Rhythms 16, 424–430 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Nuesslein-Hildesheim, B. et al. The circadian cycle of mPER clock gene products in the suprachiasmatic nucleus of the siberian hamster encodes both daily and seasonal time. Eur. J. Neurosci. 12, 2856–2864 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Maywood, E. S. et al. Rapid down-regulation of mammalian period genes during behavioral resetting of the circadian clock. Proc. Natl Acad. Sci. USA 96, 15211–15216 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Maywood, E. S., Okamura, H. & Hastings, M. H. Opposing actions of neuropeptide Y and light on the expression of circadian clock genes in the mouse suprachiasmatic nuclei. Eur. J. Neurosci. 15, 216–220 (2002).

    Article  PubMed  Google Scholar 

  50. Horikawa, K. et al. Nonphotic entrainment by 5-HT1A/7 receptor agonists accompanied by reduced Per1 and Per2 mRNA levels in the suprachiasmatic nuclei. J. Neurosci. 20, 5867–5873 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Honma, S. et al. Dec1 and Dec2 are regulators of the mammalian molecular clock. Nature 419, 841–844 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Baggs, J. E. & Green, C. B. Nocturnin, a deadenylase in Xenopus laevis retina. A mechanism for posttranscriptional control of circadian-related mRNA. Curr. Biol. 13, 189–198 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Wang, Y. et al. Rhythmic expression of Nocturnin mRNA in multiple tissues of the mouse. BMC Dev. Biol. 1, 9 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Giebultowicz, J. M. & Hege, D. M. Circadian clock in Malpighian tubules. Nature 386, 664 (1997).

    Article  CAS  PubMed  Google Scholar 

  55. Plautz, J. D. et al. Independent photoreceptive circadian clocks throughout Drosophila. Science 278, 1632–1635 (1997). References 54 and 55 are the original reports of self-sustaining, Per -based peripheral circadian oscillators in Drosophila.

    Article  CAS  PubMed  Google Scholar 

  56. Krishnan, B., Dryer, S. E. & Hardin, P. E. Circadian rhythms in olfactory responses of Drosophila melanogaster. Nature 400, 375–378 (1999).

    Article  CAS  PubMed  Google Scholar 

  57. Levine, J. D. et al. Resetting the circadian clock by social experience in Drosophila melanogaster. Science 298, 2010–2012 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Whitmore, D., Foulkes, N. S. & Sassone-Corsi, P. Light acts directly on organs and cells in culture to set the vertebrate circadian clock. Nature 404, 87–91 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Akhtar, R. A. et al. Circadian cycling of the mouse liver transcriptome, as revealed by cDNA microarray, is driven by the suprachiasmatic nucleus. Curr. Biol. 12, 540–550 (2002). The demonstration that circadian control of the mouse liver transcriptome is dependent on the SCN.

    Article  CAS  PubMed  Google Scholar 

  60. King, V. M. et al. A hVIPR transgene as a novel tool for the analysis of circadian function in the mouse suprachiasmatic nucleus. Eur. J. Neurosci. 17, 822–832 (2003).

    Article  PubMed  Google Scholar 

  61. Sujino, M. et al. Suprachiasmatic nucleus grafts restore circadian behavioral rhythms of genetically arrhythmic mice. Curr. Biol. 13, 664–668 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Balsalobre, A., Damiola, F. & Schibler, U. A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 93, 929–937 (1998). A breakthrough paper revealing the capacity of cell cultures to express circadian molecular oscillations.

    Article  CAS  PubMed  Google Scholar 

  63. Yagita, K. et al. Molecular mechanisms of the biological clock in cultured fibroblasts. Science 292, 278–281 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Pando, M. P. et al. Phenotypic rescue of a peripheral clock genetic defect via SCN hierarchical dominance. Cell 110, 107–117 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Reick, M. et al. NPAS2: an analog of clock operative in the mammalian forebrain. Science 293, 506–509 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. McNamara, P. et al. Regulation of CLOCK and MOP4 by nuclear hormone receptors in the vasculature: a humoral mechanism to reset a peripheral clock. Cell 105, 877–889 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Schoenhard, J. A. et al. Alternative splicing yields novel BMAL2 variants: tissue distribution and functional characterization. Am. J. Physiol. Cell. Physiol. 283, C103–114 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Lincoln, G. et al. Temporal expression of seven clock genes in the suprachiasmatic nucleus and the pars tuberalis of the sheep: evidence for an internal coincidence timer. Proc. Natl Acad. Sci. USA 99, 13890–13895 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Panda, S. et al. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 109, 307–320 (2002).

    Article  CAS  PubMed  Google Scholar 

  70. Storch, K. F. et al. Extensive and divergent circadian gene expression in liver and heart. Nature 417, 78–83 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Duffield, G. E. et al. Circadian programs of transcriptional activation, signaling, and protein turnover revealed by microarray analysis of mammalian cells. Curr. Biol. 12, 551–557 (2002).

    Article  CAS  PubMed  Google Scholar 

  72. Redfern, P. H. & Lemmer, B. Handbook of Experimental Pharmacology Vol. 125 (Springer, Berlin, 1997).

    Google Scholar 

  73. Gallerani, M. et al. Circadian differences in the individual sensitivity to opiate overdose. Crit. Care Med. 29, 96–101 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Bliwise, D. L. et al. Survival by time of day of hemodialysis in an elderly cohort. J. Am. Med. Assoc. 286, 2690–2694 (2001).

    Article  CAS  Google Scholar 

  75. Yamazaki, S. et al. Effects of aging on central and peripheral mammalian clocks. Proc. Natl Acad. Sci. USA 99, 10801–10806 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Mistlberger, R. E. Circadian food-anticipatory activity: formal models and physiological mechanisms. Neurosci. Biobehav. Rev. 18, 171–195 (1994).

    Article  CAS  PubMed  Google Scholar 

  77. Davidson, A. J. & Stephan, F. K. Feeding-entrained circadian rhythms in hypophysectomized rats with suprachiasmatic nucleus lesions. Am. J. Physiol. 277, R1376–1384 (1999).

    CAS  PubMed  Google Scholar 

  78. Damiola, F. et al. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev. 14, 2950–2961 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Stokkan, K. A. et al. Entrainment of the circadian clock in the liver by feeding. Science 291, 490–493 (2001). References 78 and 79 showed that restricted feeding can entrain the autonomous circadian clockwork of the liver.

    Article  CAS  PubMed  Google Scholar 

  80. Pitts, S., Perone, E. & Silver, R. Food-entrained circadian rhythms are sustained in arrhythmic Clk/Clk mutant mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 285, R57–67 (2003).

    Article  CAS  PubMed  Google Scholar 

  81. Oishi, K., Miyazaki, K. & Ishida, N. Functional CLOCK is not involved in the entrainment of peripheral clocks to the restricted feeding: entrainable expression of mPer2 and BMAL1 mRNAs in the heart of Clock mutant mice on Jcl:ICR background. Biochem. Biophys. Res. Commun. 298, 198–202 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Balsalobre, A., Marcacci, L. & Schibler, U. Multiple signaling pathways elicit circadian gene expression in cultured Rat-1 fibroblasts. Curr. Biol. 10, 1291–1294 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Balsalobre, A. et al. Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science 289, 2344–2347 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. Le Minh, N. et al. Glucocorticoid hormones inhibit food-induced phase-shifting of peripheral circadian oscillators. EMBO J. 20, 7128–7136 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Akashi, M. & Nishida, E. Involvement of the MAP kinase cascade in resetting of the mammalian circadian clock. Genes Dev. 14, 645–649 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Yagita, K. & Okamura, H. Forskolin induces circadian gene expression of rPer1, rPer2 and dbp in mammalian rat-1 fibroblasts. FEBS Lett. 465, 79–82 (2000).

    Article  CAS  PubMed  Google Scholar 

  87. Hirota, T. et al. Glucose down-regulates Per1 and Per2 mRNA levels and induces circadian gene expression in cultured Rat-1 fibroblasts. J. Biol. Chem. 277, 44244–44251 (2002).

    Article  CAS  PubMed  Google Scholar 

  88. Davidson, A. J. et al. Food-anticipatory activity and liver per1-luc activity in diabetic transgenic rats. Physiol. Behav. 76, 21–26 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Nonaka, H. et al. Angiotensin II induces circadian gene expression of clock genes in cultured vascular smooth muscle cells. Circulation 104, 1746–1748 (2001).

    Article  CAS  PubMed  Google Scholar 

  90. von Gall, C. et al. Rhythmic gene expression in pituitary depends on heterologous sensitization by the neurohormone melatonin. Nature Neurosci. 5, 234–238 (2002).

    Article  CAS  PubMed  Google Scholar 

  91. Earnest, D. J. et al. Immortal time: circadian clock properties of rat suprachiasmatic cell lines. Science 283, 693–695 (1999).

    Article  CAS  PubMed  Google Scholar 

  92. Rutter, J., Reick, M. & McKnight, S. L. Metabolism and the control of circadian rhythms. Annu. Rev. Biochem. 71, 307–331 (2002).

    Article  CAS  PubMed  Google Scholar 

  93. Brown, S. A. et al. Rhythms of mammalian body temperature can sustain peripheral circadian clocks. Curr. Biol. 12, 1574–1583 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. Takekida, S. et al. Differential adrenergic regulation of the circadian expression of the clock genes Period1 and Period2 in the rat pineal gland. Eur. J. Neurosci. 12, 4557–4561 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. Terazono, H. et al. Adrenergic regulation of clock gene expression in the mouse liver. Proc. Natl Acad. Sci. USA 100, 6795–6800 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Duffy, J. F. et al. Later endogenous circadian temperature nadir relative to an earlier wake time in older people. Am. J. Physiol. 275, R1478–1487 (1998).

    CAS  PubMed  Google Scholar 

  97. van Someren, E. J. Circadian and sleep disturbances in the elderly. Exp. Gerontol. 35, 1229–1237 (2000). A contemporary review of the effects of ageing on sleep patterns.

    Article  PubMed  Google Scholar 

  98. Satlin, A. et al. Circadian locomotor activity and core-body temperature rhythms in Alzheimer's disease. Neurobiol. Aging 16, 765–771 (1995).

    Article  CAS  PubMed  Google Scholar 

  99. Volicer, L. et al. Sundowning and circadian rhythms in Alzheimer's disease. Am. J. Psychiatry 158, 704–711 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Harper, D. G. et al. Differential circadian rhythm disturbances in men with Alzheimer disease and frontotemporal degeneration. Arch. Gen. Psychiatry 58, 353–360 (2001). The demonstration of the impact of Alzheimer's disease on circadian function.

    Article  CAS  PubMed  Google Scholar 

  101. Bliwise, D. L. in Regulation of Sleep and Circadian Rhythms (eds Turek, F. & Zee, P.) 752 (Marcel-Dekker, New York, 1999).

    Google Scholar 

  102. Cannon, C. P. et al. Circadian variation in the onset of unstable angina and non-Q-wave acute myocardial infarction (the TIMI III Registry and TIMI IIIB). Am. J. Cardiol. 79, 253–258 (1997).

    Article  CAS  PubMed  Google Scholar 

  103. Casetta, I. et al. Circadian variability in hemorrhagic stroke. J. Am. Med. Assoc. 287, 1266–1267 (2002).

    Article  Google Scholar 

  104. Cohen, M. C. et al. Meta-analysis of the morning excess of acute myocardial infarction and sudden cardiac death. Am. J. Cardiol. 79, 1512–1516 (1997). A comprehensive meta-analysis of circadian prevalence in acute cardiovascular disease.

    Article  CAS  PubMed  Google Scholar 

  105. Goldberg, R. J. et al. Time of onset of symptoms of acute myocardial infarction. Am. J. Cardiol. 66, 140–144 (1990).

    Article  CAS  PubMed  Google Scholar 

  106. Muller, J. E. et al. Circadian variation in the frequency of onset of acute myocardial infarction. N. Engl. J. Med. 313, 1315–1322 (1985).

    Article  CAS  PubMed  Google Scholar 

  107. Onaka, H. et al. Circadian variation of myocardial ischemia in patients with unstable angina pectoris secondary to fixed and/or spastic coronary narrowing. Am. J. Cardiol. 81, 629–632 (1998).

    Article  CAS  PubMed  Google Scholar 

  108. White, W. B. et al. Preventing increases in early-morning blood pressure, heart rate, and the rate-pressure product with controlled onset extended release verapamil at bedtime versus enalapril, losartan, and placebo on arising. Am. Heart J. 144, 657–665 (2002).

    Article  CAS  PubMed  Google Scholar 

  109. Smith, D. H., Neutel, J. M. & Weber, M. A. A new chronotherapeutic oral drug absorption system for verapamil optimizes blood pressure control in the morning. Am. J. Hypertens. 14, 14–19 (2001).

    Article  CAS  PubMed  Google Scholar 

  110. Lemmer, B. Chronopharmacology of hypertension. Ann. NY Acad. Sci. 783, 242–253 (1996).

    Article  CAS  PubMed  Google Scholar 

  111. Young, M. E. et al. Intrinsic diurnal variations in cardiac metabolism and contractile function. Circ. Res. 89, 1199–1208 (2001).

    Article  CAS  PubMed  Google Scholar 

  112. Young, M. E., Razeghi, P. & Taegtmeyer, H. Clock genes in the heart: characterization and attenuation with hypertrophy. Circ. Res. 88, 1142–1150 (2001).

    Article  CAS  PubMed  Google Scholar 

  113. Young, M. E. et al. Alterations of the circadian clock in the heart by streptozotocin-induced diabetes. J. Mol. Cell. Cardiol. 34, 223–231 (2002).

    Article  CAS  PubMed  Google Scholar 

  114. Naito, Y. et al. Augmented diurnal variations of the cardiac renin-angiotensin system in hypertensive rats. Hypertension 40, 827–833 (2002).

    Article  CAS  PubMed  Google Scholar 

  115. Gaenzer, H. et al. Circadian variation of endothelium-dependent vasodilatation of the brachial artery as a confounding factor in the evaluation of endothelial function. Atherosclerosis 149, 227–228 (2000).

    Article  CAS  PubMed  Google Scholar 

  116. Etsuda, H. et al. Morning attenuation of endothelium-dependent, flow-mediated dilation in healthy young men: possible connection to morning peak of cardiac events? Clin. Cardiol. 22, 417–421 (1999).

    Article  CAS  PubMed  Google Scholar 

  117. Elherik, K. et al. Circadian variation in vascular tone and endothelial cell function in normal males. Clin. Sci. (Lond.) 102, 547–552 (2002).

    Article  CAS  Google Scholar 

  118. Tofler, G. H. et al. Concurrent morning increase in platelet aggregability and the risk of myocardial infarction and sudden cardiac death. N. Engl. J. Med. 316, 1514–1518 (1987).

    Article  CAS  PubMed  Google Scholar 

  119. Kurnik, P. B. Practical implications of circadian variations in thrombolytic and antithrombotic activities. Cardiol. Clin. 14, 251–262 (1996).

    Article  CAS  PubMed  Google Scholar 

  120. Braunwald, E. Morning resistance to thrombolytic therapy. Circulation 91, 1604–1606 (1995).

    Article  CAS  PubMed  Google Scholar 

  121. Kurnik, P. B. Circadian variation in the efficacy of tissue-type plasminogen activator. Circulation 91, 1341–1346 (1995).

    Article  CAS  PubMed  Google Scholar 

  122. Decousus, H. A. et al. Circadian changes in anticoagulant effect of heparin infused at a constant rate. Br. Med. J. Clin. Res. Ed. 290, 341–344 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Krulder, J. W. et al. Diurnal changes in heparin effect during continuous constant-rate infusion. A study in nine patients with venous thromboembolism. J. Intern. Med. 235, 411–417 (1994).

    Article  CAS  PubMed  Google Scholar 

  124. Bridges, A. B. et al. Circadian variation of endothelial cell function, red blood cell deformability and dehydro-thromboxane B2 in healthy volunteers. Blood Coagul. Fibrinolysis 2, 447–452 (1991).

    Article  CAS  PubMed  Google Scholar 

  125. Maemura, K. et al. CLIF, a novel cycle-like factor, regulates the circadian oscillation of plasminogen activator inhibitor-1 gene expression. J. Biol. Chem. 275, 36847–36851 (2000). A key study linking the core molecular clockwork to a mechanism that contributes to circadian prevalence of acute cardiovascular disease.

    Article  CAS  PubMed  Google Scholar 

  126. Minami, Y. et al. Restricted feeding induces daily expression of clock genes and Pai-1 mRNA in the heart of Clock mutant mice. FEBS Lett. 526, 115–118 (2002).

    Article  CAS  PubMed  Google Scholar 

  127. Bruzdzinski, C. J. et al. Mechanism of glucocorticoid induction of the rat plasminogen activator inhibitor-1 gene in HTC rat hepatoma cells: identification of cis-acting regulatory elements. Mol. Endocrinol. 7, 1169–1177 (1993).

    CAS  PubMed  Google Scholar 

  128. Penev, P. D. et al. Chronic circadian desynchronization decreases the survival of animals with cardiomyopathic heart disease. Am. J. Physiol. 275, H2334–2337 (1998).

    CAS  PubMed  Google Scholar 

  129. Filipski, E. et al. Chronic jet-lag alters circadian gene expression and accelerates malignant growth in tumor-bearing mice. Am. Assoc. Cancer Res. Abstr. 2463 (2003).

  130. Oklejewicz, M. et al. Metabolic rate changes proportionally to circadian frequency in tau mutant Syrian hamsters. J. Biol. Rhythms 12, 413–422 (1997).

    Article  CAS  PubMed  Google Scholar 

  131. Lucas, R. J. et al. Postnatal growth rate and gonadal development in circadian tau mutant hamsters reared in constant dim red light. J. Reprod. Fertil. 118, 327–330 (2000).

    Article  CAS  PubMed  Google Scholar 

  132. Furlan, R. et al. Modifications of cardiac autonomic profile associated with a shift schedule of work. Circulation 102, 1912–1916 (2000).

    Article  CAS  PubMed  Google Scholar 

  133. Hokanson, J. E. & Austin, M. A. Plasma triglyceride level is a risk factor for cardiovascular disease independent of high-density lipoprotein cholesterol level: a meta-analysis of population-based prospective studies. J. Cardiovasc. Risk 3, 213–219 (1996).

    Article  CAS  PubMed  Google Scholar 

  134. Sopowski, M. J. et al. Postprandial triacylglycerol responses in simulated night and day shift: gender differences. J. Biol. Rhythms 16, 272–276 (2001).

    Article  CAS  PubMed  Google Scholar 

  135. Ribeiro, D. C. et al. Altered postprandial hormone and metabolic responses in a simulated shift work environment. J. Endocrinol. 158, 305–310 (1998).

    Article  CAS  PubMed  Google Scholar 

  136. Hampton, S. M. et al. Postprandial hormone and metabolic responses in simulated shift work. J. Endocrinol. 151, 259–267 (1996).

    Article  CAS  PubMed  Google Scholar 

  137. Lund, J. et al. Postprandial hormone and metabolic responses amongst shift workers in Antarctica. J. Endocrinol. 171, 557–564 (2001).

    Article  CAS  PubMed  Google Scholar 

  138. Rensing, L. & Goedeke, K. Circadian rhythm and cell cycle: possible entraining mechanisms. Chronobiologia 3, 853–865 (1976).

    CAS  PubMed  Google Scholar 

  139. Bjarnason, G. A., Jordan, R. C. & Sothern, R. B. Circadian variation in the expression of cell-cycle proteins in human oral epithelium. Am. J. Pathol. 154, 613–622 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Bjarnason, G. A. et al. Circadian expression of clock genes in human oral mucosa and skin: association with specific cell-cycle phases. Am. J. Pathol. 158, 1793–1801 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Clayton, F. et al. Circadian variation of topoisomerase II-α in human rectal crypt epithelium: implications for reduction of toxicity of chemotherapy. Mod. Pathol. 15, 1191–1196 (2002).

    Article  PubMed  Google Scholar 

  142. Levi, F. Circadian chronotherapy for human cancers. Lancet Oncol. 2, 307–315 (2001).

    Article  CAS  PubMed  Google Scholar 

  143. Hrushesky, W. J. Tumor chronobiology. J. Control. Release 74, 27–30 (2001). References 142 and 143 review the prospects for exploiting knowledge of circadian biology in cancer therapy.

    Article  CAS  PubMed  Google Scholar 

  144. Levi, F. et al. A multicenter evaluation of intensified, ambulatory, chronomodulated chemotherapy with oxaliplatin, 5-fluorouracil, and leucovorin as initial treatment of patients with metastatic colorectal carcinoma. International Organization for Cancer Chronotherapy. Cancer 85, 2532–2540 (1999).

    Article  CAS  PubMed  Google Scholar 

  145. Filipski, E. et al. Host circadian clock as a control point in tumor progression. J. Natl Cancer. Inst. 94, 690–697 (2002).

    Article  PubMed  Google Scholar 

  146. Fu, L. et al. The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo. Cell 111, 41–50 (2002).

    Article  CAS  PubMed  Google Scholar 

  147. Fu, L. & Lee, C. C. The circadian clock: pacemaker and tumour suppressor. Nature Rev. Cancer 3, 350–361 (2003). An excellent review of molecular interactions between cancer and the circadian clockwork.

    Article  CAS  Google Scholar 

  148. Hansen, J. Increased breast cancer risk among women who work predominantly at night. Epidemiology 12, 74–77 (2001).

    Article  CAS  PubMed  Google Scholar 

  149. Schernhammer, E. S. et al. Rotating night shifts and risk of breast cancer in women participating in the nurses' health study. J. Natl Cancer Inst. 93, 1563–1568 (2001).

    Article  CAS  PubMed  Google Scholar 

  150. Davis, S., Mirick, D. K. & Stevens, R. G. Night shift work, light at night, and risk of breast cancer. J. Natl Cancer Inst. 93, 1557–1562 (2001). References 148–150 provide compelling epidemiological evidence of a link between shift work and cancer.

    Article  CAS  PubMed  Google Scholar 

  151. Hastings, M. The brain, circadian rhythms, and clock genes. Br. Med. J. 317, 1704–1707 (1998).

    Article  CAS  Google Scholar 

  152. Yamaguchi, S. et al. View of a mouse clock gene ticking. Nature 409, 684 (2001). An innovative in vivo study of circadian Per::luc activity in mouse SCN that has potential applications to other areas of neuroscience where real-time analysis of local brain activity might be used to probe the molecular and neural bases of behaviour.

    Article  CAS  PubMed  Google Scholar 

  153. Rocco, M. B., Nabel, E. G. & Selwyn, A. P. Circadian rhythms and coronary artery disease. Am. J. Cardiol. 59, 13C–17C (1987).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors' work is supported by the Medical Research Council, UK. They are very grateful to M. Hansen and P. Redfern for providing the detail of J. Wren's Herbal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael H. Hastings.

Related links

Related links

DATABASES

FlyBase

Bmal1

Clock

Cry

Pai1

Per

Rev-erbα

slimb

VPAC2

OMIM

Alzheimer disease

FURTHER INFORMATION

Encyclopedia of Life Sciences

circadian rhythms

Glossary

CIRCADIAN DAY/CIRCADIAN NIGHT

A notation of biological time, applied when organisms are in temporal isolation, devoid of external timing cues. The full circadian cycle is divided into 24 circadian hours, with circadian time (CT) 0 corresponding to subjective dawn, and CT12 subjective dusk. For nocturnal rodents, therefore, the onset of locomotor activity at CT12 marks the start of circadian night.

bHLH-PAS PROTEINS

Transcription factors characterized by a basic helix–loop–helix (bHLH) motif that facilitates DNA-binding and dimerization, and PAS protein–protein interaction domains that facilitate formation of heterodimeric complexes. They are characteristically involved in developmental events and adaptation to the environment.

RORE DNA SEQUENCES

Regulatory DNA sequences that are a target for retinoic acid receptor-related orphan receptors (ROR) — nuclear proteins with homology to retinoic acid receptors. The typical ROR element in the circadian system has the nucleotide sequence AGGTCA.

DNA E-BOX SEQUENCES

Regulatory DNA sequences that enhance transcription by providing a target for transcription factors, including bHLH-PAS proteins. They are involved in cell division, differentiation and apoptosis. The typical E-box in the circadian system has the nucleotide sequence CACGTG.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hastings, M., Reddy, A. & Maywood, E. A clockwork web: circadian timing in brain and periphery, in health and disease. Nat Rev Neurosci 4, 649–661 (2003). https://doi.org/10.1038/nrn1177

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1177

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing