Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Early central nervous system evolution: an era of skin brains?

Key Points

  • In the late nineteenth century, there were numerous attempts to show how the central nervous system (CNS) evolved. However, no consensus was reached and the subject went out of style until around 20 years ago, when rapid progress in molecular biology began to impact ideas about animal evolution.

  • The nervous system is difficult to consider in a phylogenetic context, because many of its properties are emergent novelties. A CNS is defined as a place where neurons are more concentrated than elsewhere in the body, but this definition blurs the distinction between the CNS and the peripheral nervous system of basal invertebrates.

  • It is not known whether the common ancestor of the protostomes and deuterostomes — the two main groups of bilaterally symmetrical animals — had a biphasic life history, in which a swimming larva undergoes metamorphosis to become a benthic adult. However, when proposing homologies for CNS regions, it is better to consider adult rather than larval characters.

  • Most current phylogenetic analyses place the cnidarians, which comprise organisms like hydras and jellyfish, just basal to the bilateral animals. Cnidarian polyps have several relatively independent nerve nets. These nets tend to be especially condensed near the oral opening, where they are usually termed nerve rings.

  • There are half a dozen hypothetical evolutionary schemes for transforming an anthozoan-like creature (with a solid or hollowed-out endoderm) into a bilateral animal with a through gut. Most begin with an individual non-colonial ancestor, although one — the colonial scenario — proposes that an ancestral colony of polyps individuated into a single, bilaterally symmetrical animal.

  • Until recently, it was assumed that the ancestral nerve net became localized as all or part of the CNS in the basal groups of bilaterally symmetrical animals. However, in the enteropneust hemichordate Saccoglossus, expression of homologues of vertebrate CNS anteroposterior patterning genes is not limited to the nerve tracts, but extends widely throughout the ectoderm, implying that the CNS of this animal includes the entire basiepidermal nerve net.

Abstract

The central nervous system (CNS) in different animals develops under the control of genes that are often conserved both structurally and functionally. The question of whether such conservation means that the common ancestor of all bilateral animals had an anatomically complex CNS is controversial. Recently, a hemichordate was found to express homologues of many of these genes in a rostrocaudal order resembling that in Drosophila and vertebrates. Surprisingly, however, the hemichordate genes are expressed not in a localized CNS, but in widespread epidermal domains pervaded by a basiepidermal nerve net. Here, I discuss the implications of this discovery for CNS evolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Current ideas about central nervous system (CNS) evolution from a cnidarian-like ancestor.
Figure 2: Nervous systems in adult and developing enteropneust hemichordates, vertebrates and Drosophila.
Figure 3: Two alternative scenarios for central nervous system (CNS) evolution.

Similar content being viewed by others

References

  1. Roth, G. & Wullimann, M. F. in Neurowissenschaft: vom Molekül zur Kognition (eds Dudel, J., Menzel, R. & Schmidt, R. F.) 1–31 (Springer, Berlin, 1996). This is a well illustrated, balanced review of nervous system evolution throughout the animal kingdom (although the information is presented in the context of an out-of-date cladogram).

    Google Scholar 

  2. Allman, H. Evolving Brains (Scientific American Library, New York, 1999).

    Google Scholar 

  3. Wullimann, M. F. in Brain Evolution and Cognition (eds Roth, G. & Wulliman, M. F.) 11–40 (Wiley, New York, 2001).

    Google Scholar 

  4. Northcutt, R. G. Understanding vertebrate brain evolution. Integ. Comp. Biol. 42, 743–756 (2002).

    Google Scholar 

  5. Bullock, T. H. Grades in neural complexity: how large is the span? Integ. Comp. Biol. 42, 757–761 (2002).

    Google Scholar 

  6. Reichert, H. & Simeone, A. Developmental genetic evidence for a monophyletic origin of the bilaterian brain. Phil. Trans. R. Soc. Lond. B 356, 1533–1544 (2001).

    CAS  Google Scholar 

  7. Bullock, T. H. in The Nervous System of Invertebrates: an Evolutionary and Comparative Approach (eds Breidbach, O. & Kutsch. W.) 439–448 (Birkhäuser, Basel, 1995).

    Google Scholar 

  8. Nishikawa, K. C. Evolutionary convergence in nervous systems: insights from comparative phylogenetic studies. Brain Behav. Evol. 59, 240–249 (2002).

    PubMed  Google Scholar 

  9. Davidson, E. H., Peterson, K. J. & Cameron, R. A. Origin of bilaterian body plans: evolution of developmental regulatory mechanisms. Science 270, 1319–1325 (1995).

    CAS  PubMed  Google Scholar 

  10. Rieger, R. M., Haszprunar, G. & Suchert, P. in The Early Evolution of Metazoa and the Significance of Problematic Taxa (eds Simonetta, A. M. & Conway-Morris, S.) 107–112 (Cambridge Univ. Press, 1991).

    Google Scholar 

  11. Arendt, D., Technau, U. & Wittbrodt, J. Evolution of the bilaterian larval foregut. Nature 409, 81–85 (2001).

    CAS  PubMed  Google Scholar 

  12. Collins, A. G. & Valentine, J. W. Defining phyla: evolutionary pathways to metazoan body plans. Evol. Dev. 3, 432–442 (2001).

    CAS  PubMed  Google Scholar 

  13. Rouse, G. W. The epitome of hand waving? Larval feeding and hypotheses of metazoan phylogeny. Evol. Dev. 2, 222–233 (2000).

    CAS  PubMed  Google Scholar 

  14. Lowe, C. J. et al. Anteroposterior patterning in hemichordates and the origin of the chordate nervous system. Cell 113, 853–865 (2003). This data-rich article shows that enteropneust hemichordate genes homologous to CNS-patterning genes in vertebrates and Drosophila are expressed widely within epidermal zones encircling the entire animal.

    CAS  PubMed  Google Scholar 

  15. Nielsen, C. Animal phylogeny in the light of the trochaea theory. Biol. J. Linn. Soc. Lond. 25, 243–299 (1985).

    Google Scholar 

  16. Lacalli, T. C. Apical organs, epithelial domains, and the origin of the chordate central nervous system. Am. Zool. 34, 533–541 (1994).

    Google Scholar 

  17. Sharman, A. C. & Brand, M. Evolution and homology of the nervous system: cross-phylum rescues of otd/Otx genes. Trends Genet. 14, 211–214 (1998).

    CAS  PubMed  Google Scholar 

  18. De Robertis, E. M. & Sasai, Y. A common plan for dorso-ventral patterning in Bilateria. Nature 380, 37–40 (1996).

    CAS  PubMed  Google Scholar 

  19. Younossi-Hartenstein, A. et al. Control of early neurogenesis of the Drosophila brain by the head gap genes tll, otd, ems, and btd. Dev. Biol. 182, 270–283 (1997).

    CAS  PubMed  Google Scholar 

  20. Hirth, F. et al. An urbilaterian origin of the tripartite brain: developmental genetic insights from Drosophila. Development 130, 2365–2373 (2003).

    CAS  PubMed  Google Scholar 

  21. Skeath, J. B. & Thor, S. Genetic control of Drosophila nerve cord development. Curr. Opin. Neurobiol. 13, 8–15 (2003).

    CAS  PubMed  Google Scholar 

  22. Arendt, D. & Nübler-Jung, H. Comparison of early nerve cord development in insects and vertebrates. Development 126, 2309–2325 (1999).

    CAS  PubMed  Google Scholar 

  23. Page, D. T. Inductive patterning of the embryonic brain in Drosophila. Development 129, 2121–2128 (2002).

    CAS  PubMed  Google Scholar 

  24. Nielsen, C. Animal Evolution: Interrelationships of the Living Phyla 2nd edn (Oxford Univ. Press, 2001). Nielsen points out that his trochaea theory (in the form summarized in reference 15), which requires independent origins for protostomes and deuterostomes from a common radially symmetrical ancestor, needs to be abandoned in the light of accumulating molecular evidence for the monophyly of the bilaterally symmetrical animals.

    Google Scholar 

  25. Nederbragt, A. J., te Welscher, P., van den Driesche, S., van Loon, A. E. & Dictus, W. J. A. G. Novel and conserved roles for orthodenticle/otx and orthopedia/otp orthologs in the gastropod mollusc Patella vulgata. Dev. Genes Evol. 212, 330–337 (2002).

    CAS  PubMed  Google Scholar 

  26. Tagawa, K., Humphreys, T. & Satoh, N. T-Brain expression in the apical organ of hemichordate tornaria larvae suggests its evolutionary link to the vertebrate forebrain. J. Exp. Zool. 288, 23–31 (2000).

    CAS  PubMed  Google Scholar 

  27. Taguchi, S., Tagawa, K., Humphreys, T. & Satoh, N. Group B Sox genes that contribute to specification of the vertebrate brain are expressed in the apical organ and ciliary bands of hemichordate larvae. Zool. Sci. 19, 57–66 (2002).

    CAS  PubMed  Google Scholar 

  28. Takacs, C. M., Moy, V. N. & Peterson, K. J. Testing putative hemichordate homologues of the chordate dorsal nervous system and endostyle: expression of NK2.1 (TTF-1) in the acorn worm, Ptyhchodera flava (Hemichordata, Ptychoderidae). Evol. Dev. 4, 405–417 (2002).

    CAS  PubMed  Google Scholar 

  29. Morikawa, K., Tsuneki, K. & Ito, K. Expression pattern of HNK-1 carbohydrate and serotonin in sea urchin, amphioxus, and lamprey, with reference to the possible evolutionary origin of the neural crest. Zoology 104, 81–90 (2001).

    CAS  PubMed  Google Scholar 

  30. Hay-Schmidt, A. The evolution of the serotonergic nervous system. Proc. R. Soc. Lond. B 267, 1071–1079 (2000).

    CAS  Google Scholar 

  31. Garstang, W. Preliminary note on a new theory of the phylogeny of the Chordata. Zool. Anz. 17, 122–125 (1894).

    Google Scholar 

  32. Garstang, W. The morphology of the Tunicata, and its bearings on the phylogeny of the Chordata. Q. J. Microsc. Sci. 72, 51–187 (1928).

    Google Scholar 

  33. Harada, Y., Okai, N., Taguchi, S., Tagawa, K., Humphreys, T. & Satoh, N. Developmental expression of the hemichordate otx ortholog. Mech. Dev. 91, 337–339 (2000).

    CAS  PubMed  Google Scholar 

  34. Shoguchi, E., Harada, Y., Numakunai, T. & Satoh, N. Expression of the Otx gene in the ciliary bands during sea cucumber embryogenesis. Genesis 27, 58–63 (2000).

    CAS  PubMed  Google Scholar 

  35. Lowe, C. J., Issel-Tarver, L. & Wray, G. A. Gene expression and larval evolution: changing roles of distal-less and orthodenticle in echinoderm larvae. Evol. Dev. 4, 111–123 (2002).

    CAS  PubMed  Google Scholar 

  36. Martindale, M. Q. & Henry, J. Q. The development of radial and biradial symmetry: the evolution of bilaterality. Am. Zool. 38, 672–684 (1998).

    CAS  Google Scholar 

  37. Giribet, G., Distel, D. L., Polz, M., Sterrer, W. & Wheeler, W. C. Triploblastic relationships with emphasis on the acoelomates and the position of Gnathostomulida, Cycliophora, Platyhelminthes, and Chaetognatha: a combined approach of 18S rDNA sequences and morphology. Syst. Biol. 49, 539–562 (2000).

    CAS  PubMed  Google Scholar 

  38. Raikova, O. I., Reuter, M., Jondelius, U. & Gustafsson, M. K. S. An immunocytochemical and ultrastructural study of the nervous and muscular systems of Xenoturbella westbaldi (Bilateria inc. sed.). Zoomorphology 120, 107–118 (2000).

    Google Scholar 

  39. Meinhardt, H. The radial-symmetric hydra and the evolution of the bilateral body plan: an old body became a young brain. BioEssays 24, 185–191 (2002). This paper departs radically from traditional thinking about cnidarian nervous systems by equating the entire epidermal nerve net to the CNS.

    PubMed  Google Scholar 

  40. Hayward, D. C. et al. Localized expression of a dpp/BMP2/4 ortholog in a coral embryo. Proc. Natl Acad. Sci. USA 99, 8106–8111 (2002). In situ hybridization of histologically difficult material indicates that cnidarians might have a second (presumably dorsoventral) axis in addition to their oral/aboral axis.

    CAS  PubMed  Google Scholar 

  41. Martindale, M., Finnerty, J. R. & Henry, J. Q. The Radiata and the evolutionary origin of the bilaterian body plan. Mol. Phylogenet. Evol. 24, 358–365 (2002).

    PubMed  Google Scholar 

  42. Berntson, E. A., France, S. C. & Mullineaux, L. S. Phylogenetic relationships within the class Anthozoa (phylum Cnidaria) based on nuclear 18S rDNA sequences. Mol. Phylogenet. Evol. 13, 417–433 (1999).

    CAS  PubMed  Google Scholar 

  43. Spring, J. et al. Conservation of Brachyury, Mef2 and Snail in the myogenic lineage of jellyfish: a connection to the mesoderm of Bilateria. Dev. Biol. 244, 372–384 (2002).

    CAS  PubMed  Google Scholar 

  44. Satterlie, R. A. Neuronal control of swimming in jellyfish: a comparative study. Can. J. Zool. 80, 1654–1669 (2002).

    Google Scholar 

  45. Groger, H. & Schmid, V. Larval development in Cnidaria: a connection to Bilateria. Genesis 29, 110–114 (2001).

    CAS  PubMed  Google Scholar 

  46. Westfall, J. A. & Elliott, C. F. Ultrastructure of the tentacle nerve plexus and putative neural pathways in sea anemones. Invert. Biol. 121, 202–211 (2002).

    Google Scholar 

  47. Mackie, G. O. The elementary nervous system revisited. Am. Zool. 30, 907–920 (1990).

    Google Scholar 

  48. Westfall, J. A. Ultrastructure of synapses in the first-evolved nervous systems. J. Neurocytol. 25, 735–746 (1996).

    CAS  PubMed  Google Scholar 

  49. Dewel, R. A. Colonial origin for Eumetazoa: major morphological transitions and the origin of bilaterian complexity. J. Morphol. 243, 35–74 (2000).

    CAS  PubMed  Google Scholar 

  50. Hyman, L. H. The Invertebrates. Vol. 2: Platyhelminthes and Rhynchocoela (McGraw-Hill, New York, 1951).

    Google Scholar 

  51. Balavoine, G. Are Platyhelminthes coelomates without a coelom? An argument based on the evolution of Hox genes. Am. Zool. 38, 843–858 (1998).

    CAS  Google Scholar 

  52. Ruiz-Trillo, T., Riutort, M., Littlewood, D. J. T., Herniou, E. A. & Bagu–a, J. Acoel flatworms: earliest bilaterian metazoans not members of Platyhelminthes. Science 283, 1919–1923 (1999).

    CAS  PubMed  Google Scholar 

  53. Berney, C., Pawlowski, J. & Saninetti, L. Elongation factor 1-α sequences do not support an early divergence of the Acoela. Mol. Biol. Evol. 17, 1032–1039 (2000).

    CAS  PubMed  Google Scholar 

  54. Ruiz-Trillo, I. et al. A phylogenetic analysis of myosin heavy chain type II sequences corroborates that Acoela and Nemertodermatida are basal bilaterians. Proc. Natl Acad. Sci. USA 99, 11246–11251 (2002).

    CAS  PubMed  Google Scholar 

  55. Jondelius, U., Ruiz-Trillo, I, Bagu–a, J. & Ruitort, M. The Nemertodermatida are basal bilaterians and not members of the Platyhelminthes. Zool. Skr. 31, 201–215 (2002).

    Google Scholar 

  56. Rieger, R. M., Tyler, S., Smith, J. P. S. & Rieger, G. E. in Microscopic Anatomy of Invertebrates. Vol. 3: Platyhelminthes and Nemertinea (eds Harrison, F. W. & Bogitsch, B. J) 7–140 (Wiley-Liss, New York, 1991).

    Google Scholar 

  57. Tyler, S. in Interrelationships of the Platyhelminthes (eds Littlewood, D. T. J. & Bray, R. A.) 3–12 (Taylor & Francis, London, 2001).

    Google Scholar 

  58. Hanström, B. Some points on the phylogeny of nerve cells and the central nervous system of invertebrates. J. Comp. Neurol. 46, 475–491 (1928).

    Google Scholar 

  59. Gerhart, J. Inversion of the chordate body axis: are there alternatives? Proc. Natl Acad. Sci. USA 97, 4445–4448 (2000).

    CAS  PubMed  Google Scholar 

  60. Henry, J. Q., Martindale, M. & Boyer, B. C. The unique developmental program of the acoel flatworm Neochildia fusca. Dev. Biol. 220, 285–295 (2000).

    CAS  PubMed  Google Scholar 

  61. Ramachandra, N. B., Gates, R. D., Ladurner, P., Jacobs, D. K. & Hartenstein, V. Embryonic development in the primitive bilaterian Neochildia fusca: normal morphogenesis and isolation of POU genes Brn-1 and Brn-3. Dev. Genes Evol. 212, 55–69 (2002).

    CAS  PubMed  Google Scholar 

  62. Nakazawa, M. et al. Search for the evolutionary origin of a brain: planarian brain characterized by microassay. Mol. Biol. Evol. 20, 784–791 (2003).

    CAS  PubMed  Google Scholar 

  63. Sedgwick, W. On the origin of metameric segmentation and some other morphological questions. Q. J. Microsc. Sci. 24, 43–82 (1884).

    Google Scholar 

  64. Arendt, D. & Nübler-Jung, K. Dorsal or ventral: similarities in fate maps and gastrulation patterns in annelids, arthropods and chordates. Mech. Dev. 61, 7–21 (1997).

    CAS  PubMed  Google Scholar 

  65. Bruce, A. E. E. & Shankland, M. Expression of the head gene Lox22-Otx in the leech Helobdella and the origin of the bilaterian body plan. Dev. Biol. 201, 101–112 (1998).

    CAS  PubMed  Google Scholar 

  66. Lacalli, T. Dorsoventral axis inversion: a phylogenetic perspective. BioEssays 81, 251–254 (1996).

    Google Scholar 

  67. Bode, H. The role of Hox genes in axial patterning in hydra. Am. Zool. 41, 621–628 (2001).

    CAS  Google Scholar 

  68. Galliot, B. & Miller, D. Origin of anterior patterning: how old is the head? Trends Genet. 16, 1–5 (2000).

    CAS  PubMed  Google Scholar 

  69. Finnerty et al. cited in Yamada, A. & Martindale, M. Q. Expression of the ctenophore Brain Factor 1 forkhead gene ortholog (ctenoBF-1) mRNA is restricted to the presumptive mouth and feeding apparatus: implications for axial organization in the Metazoa. Dev. Genes Evol. 212, 338–348 (2002).

    Google Scholar 

  70. Ball, E. E. et al. Coral development: from classical embryology to molecular control. Int. J. Dev. Biol. 46, 671–678 (2002).

    CAS  PubMed  Google Scholar 

  71. Peterson, K. J., Cameron, R. A. & Davidson, E. H. Bilaterian origins: significance of new experimental observations. Dev. Biol. 219, 1–17 (2000).

    CAS  PubMed  Google Scholar 

  72. Wills, M. A. & Fortey, R. A. The shape of life: how much is written in stone? BioEssays 22, 1142–1152 (2000).

    CAS  PubMed  Google Scholar 

  73. Erwin, D. H. & Davidson, E. H. The last common bilaterian ancestor. Development 129, 3021–3032 (2002). This up-to-date review orchestrates findings from such disjunct fields as developmental genetics and Precambrian palaeontology to shed light on the evolutionary origin of the last common ancestor of the protostomes and deuterostomes.

    CAS  PubMed  Google Scholar 

  74. Bateson, W. The ancestry of the Chordata. Q. J. Microsc. Sci. 26, 535–571 (1886).

    Google Scholar 

  75. Halanych, K. M. & Passamaneck, Y. A brief review of metazoan phylogeny and future prospects in Hox-research. Am. Zool. 41, 629–639 (2001).

    CAS  Google Scholar 

  76. Heinzeller, T. & Welsch, U. in Brain Evolution and Cognition (eds Roth, G. & Wulliman, M. F.) 41–75 (Wiley, New York, 2001).

    Google Scholar 

  77. Lowe, C. J. & Wray, G. A. Radical alterations in the roles of homeobox genes during echinoderm evolution. Nature 389, 718–721 (1997).

    CAS  PubMed  Google Scholar 

  78. Cameron, C. B., Garey, J. R. & Swalla, B. J. Evolution of the chordate body plan: new insights from phylogenetic analysis of deuterostome phyla. Proc. Natl Acad. Sci. USA 97, 4469–4474 (2000).

    CAS  PubMed  Google Scholar 

  79. Bullock, T. H. in Structure and Function in the Nervous Systems of Invertebrates Vol. 2 (eds Bullock, T. H. & Horridge, G. A.) 1559–1592 (Freeman, San Francisco, 1965).

    Google Scholar 

  80. Salvini-Plawen, L. V. The urochordate larva and archichordate organization: chordate origin and anagenesis revisited. J. Zool. Syst. Evol. Res. 36, 129–145 (1998).

    Google Scholar 

  81. Nübler-Jung, K. & Arendt, D. Enteropneusts and chordate evolution. Curr. Biol. 6, 352–353 (1996).

    PubMed  Google Scholar 

  82. Bergström, J. Origin of high-rank groups of organisms. Paleontol. Res. 1, 1–14 (1997).

    Google Scholar 

  83. Nielsen, C. Origin of the chordate central nervous system — and the origin of chordates. Dev. Genes Evol. 209, 198–205 (1999).

    CAS  PubMed  Google Scholar 

  84. Nübler-Jung, K. & Arendt, D. Dorsoventral axis inversion: enteropneust anatomy links invertebrates to chordates turned upside down. J. Zool. Syst. Evol. Res. 37, 93–100 (1999).

    Google Scholar 

  85. Ruppert, E. E., Cameron, C. B. & Frick, J. E. Endostyle-like features of the dorsal epibranchial ridge of an enteropneust and the hypothesis of dorsal-ventral axis inversion in chordates. Invert. Biol. 118, 202–212 (1999).

    Google Scholar 

  86. Cameron, C. B. & Mackie, G. O. Conduction pathways in the nervous system of Saccoglossus sp. (Enteropneusta). Can. J. Zool. 74, 15–19 (1996).

    Google Scholar 

  87. Abouheif, E. et al. Homology and developmental genes. Trends Genet. 13, 432–433 (1997).

    CAS  PubMed  Google Scholar 

  88. Muñoz-Sanjuán, I. & Brivanlou, H. Neural induction, the default model and embryonic stem cells. Nature Rev. Neurosci. 3, 271–280 (2002).

    Google Scholar 

  89. Butler, A. B. & Hodos, W. Comparative Vertebrate Neuroanatomy: Evolution and Adaptation (Wiley-Liss, New York, 1996).

    Google Scholar 

  90. Gould, S. J. The Structure of Evolutionary Theory (Harvard Univ. Press, Cambridge, 2002). Parallel evolution falls in a grey zone between homology and analogy, where structural similarities do not derive from a common ancestral structure but result instead because their development is channelled toward similar outcomes by highly conserved gene networks that trace back to a common ancestral gene network (the relationships among the gene networks are 'deep homologies').

    Google Scholar 

  91. Nieuwenhuys, R. Deuterostome brains: synopsis and commentary. Brain Res. Bull. 57, 257–270 (2002).

    PubMed  Google Scholar 

  92. Jenner, R. A. Evolution of animal body plans: the role of metazoan phylogeny at the interface between pattern and process. Evol. Dev. 2, 208–221 (2000).

    CAS  PubMed  Google Scholar 

  93. Lang, B. F., O'Kelly, C., Nerad, T., Gray, M. W. & Burger, G. The closest unicellular relatives of animals. Curr. Biol. 12, 1771–1778 (2002).

    Google Scholar 

  94. Podar, M., Haddock, S. H. D., Sogin, M. L. & Harbison, R. A molecular phylogenetic framework for the phylum Ctenophora using 18S rRNA genes. Mol. Phylogenet. Evol. 21, 218–230 (2001).

    CAS  PubMed  Google Scholar 

  95. Mallatt, J. & Winchell, C. J. Testing the new animal phylogeny: the first use of combined large-subunit and small-subunit rRNA gene sequences to classify the protostomes. Mol. Biol. Evol. 19, 289–301 (2002).

    CAS  PubMed  Google Scholar 

  96. McHugh, D. The molecular phylogeny of the Annelida. Can. J. Zool. 78, 1873–1884 (2000).

    CAS  Google Scholar 

  97. Hessling, R. Metameric organization of the nervous system in developmental stages of Urechis caupo (Echiura) and its phylogenetic implications. Zoomorphology 121, 221–234 (2002).

    Google Scholar 

  98. Giribet, G., Edgecombe, G. D. & Wheeler, W. C. Arthropod phylogeny based on eight molecular loci and morphology. Nature 423, 157–161 (2002).

    Google Scholar 

  99. Winchell, C. J., Sullivan, J., Cameron, C. B., Swalla, B. J. & Mallatt, J. Evaluating hypotheses of deuterostome phylogeny and chordate evolution with new LSU and SSU ribosomal DNA data. Mol. Biol. Evol. 19, 762–776 (2002).

    CAS  PubMed  Google Scholar 

  100. Purschke, T. & Hessling, R. Analysis of the central nervous system and sense organs in Potamodrilus fluviatilis (Annelida: Potamodrilidae). Zool. Anz. 241, 19–35 (2002).

    Google Scholar 

  101. Pearse, V., Pearse, J., Buchsbaum, M. & Buchsbaum, R. Living Invertebrates (Blackwell, Palo Alto, 1987).

    Google Scholar 

Download references

Acknowledgements

I am deeply indebted to C. Lowe, J. Gerhart and D. Erwin for their constructive criticisms. Work in my laboratory is supported by grants from the US National Science Foundation.

Author information

Authors and Affiliations

Authors

Related links

Related links

FURTHER INFORMATION

Encyclopedia of Life Sciences

brain evolution and comparative neuroanatomy

The Holland Lab

Glossary

PROTOSTOMES

One of the two main groups of bilaterally symmetrical animals. The name derives from 'proto' (first) 'stome' (mouth), because the first opening (blastopore) of the embryo becomes the definitive mouth. Awkwardly, there are many exceptions to this rule within the group.

DEUTEROSTOMES

The second of the two main groups of bilaterally symmetrical animals. The name derives from 'deutero' (second) 'stome' (mouth), referring to the origin of the definitive mouth as an opening independent from the blastopore of the embryo.

HEMICHORDATES

A phylum of marine worms comprising the enteropneusts and pterobranchs.

PANARTHROPODS

A large monophyletic group including not only arthropods in the strict sense, but also two more basal phyla — the tardigrades (water bears) and the onycophorans (velvet worms).

CYCLOSTOMES

The most basal group of living vertebrates.

BENTHIC

Living on the bottom of a sea or lake.

PLANULA/PLANULOID

A planula is the swimming, slipper-shaped larva of cnidarians. Its ciliated epidermis covers either a solid or a hollowed-out mass of endoderm cells. The planuloid is a hypothetical ancestral animal with roughly the same morphology as a planula larva, but it is sexually mature.

LOPHOTROCHOZOANS

One of the two groups of protostomes, which includes molluscs and various worm-like phyla, none of which moult when they grow.

CLADE

A lineage of organisms that comprises an ancestor and all of its descendants.

POU FAMILY

A family of transcription factors, each of which contains two DNA binding domains — the POU homeodomain, which is homologous to domains that are found in other types of transcription factor, and the POU-specific domain, which is specific to the POU factors.

AMPHISTOME

A developmental term that is applied to the first embryonic opening in instances when it gives rise to both the mouth and the anus.

COELOM

The body cavity of an animal, such as a vertebrate or insect, which is completely lined with mesodermal cells.

DEFAULT MODEL OF NEURAL INDUCTION

A model in which it is proposed that in the absence of cell–cell signalling, ectodermal cells will adopt a neural fate.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holland, N. Early central nervous system evolution: an era of skin brains?. Nat Rev Neurosci 4, 617–627 (2003). https://doi.org/10.1038/nrn1175

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1175

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing