Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Half a century of neural prepatterning: the story of a few bristles and many genes

Key Points

  • Almost 50 years ago, Curt Stern asked why the sensory bristles on the Drosophila notum appeared at stereotyped positions. He found that the achaeate (ac) gene permitted bristles to develop only in places where there was a predetermined invisible pattern — the neural prepattern.

  • The genes of the achaete–scute complex (ASC) code for basic helix–loop–helix (bHLH) transcription factors. Their ability to enable cells to become neural precursors gave rise to the generic name 'proneural' factors. Their function is tightly controlled, both spatially and temporally, during development. The ASC contains cis-regulatory elements (enhancers), which drive ac and scute (sc) expression at specific sites.

  • The dorsocentral (DC) enhancer drives ac/sc expression in the proneural cluster that gives rise to two large DC bristles. The transcription factor Pannier (Pnr) seems to be a direct activator of as/sc in the DC cluster, and the Apterous cofactor Chip also seems to participate in the regulation of ac/sc by the DC enhancer. The signalling molecule Decapentaplegic (Dpp) helps to establish and position the DC cluster.

  • The genes araucan, caupolican and mirror — three related homeobox genes of the Iroquois complex (Iro-C) — are constituents of the prepattern that directs ac/sc expression in the lateral proneural clusters of the notum.

  • In the Drosophila embryo, neural prepatterning has been studied mostly in the developing ventral cord. A gradient of the transcription factor Dorsal (Dl) determines the position and extent of the neuroectoderm by activating neural prepattern genes and antagonizing Dpp.

  • In the neuroectoderm, anteroposterior and dorsoventral prepatterning genes make up a checkerboard pattern that defines the position of the proneural clusters. Along the anterior/posterior axis, genes such as wingless, hedgehog, patched and engrailed are expressed in defined rows of cells. Three homeobox genes — ventral nervous system defective, intermediate neuroblasts defective and muscle segment homeobox — establish the basic dorsal/ventral subdivisions.

  • Some of the signalling molecules and prepattern factors that participate in neuronal specification and differentiation are the same in flies and vertebrates. Unlike their Drosophila counterparts, vertebrate proneural genes do not participate in the choice between neural and epidermal fate.

  • In the vertebrate spinal cord, opposing gradients of Sonic Hedgehog, which emanate from the floor plate and notochord, and bone morphogenetic proteins and Wnts, which originate in the roof plate and adjacent nonneural tissue, activate several prepattern factors in partially overlapping domains.

  • The spinal cord is subdivided dorsoventrally into regions that are defined by the expression domains of the homeobox genes Nkx2.2, Nkx6.1, Nkx6.2, Dbx1, Dbx2, Msx1, Pax6, Pax7 and Irx3, and the bHLH gene Olig2. The ventral and dorsal limits of the domains are defined and maintained by mutual repression between pairs of dorsally and ventrally expressed genes.

  • Stern's prepattern concept has been extended, from a collection of genes whose products activate proneural genes, to genes that subdivide a territory and combinatorially promote different neuronal identities.

Abstract

In 1954, Curt Stern proposed the concept of the neural prepattern, meaning the underlying positional information in an undifferentiated epithelium that determined where neural differentiation could take place. Subsequent work gave a molecular basis to this concept, which was equated to a combination of transcription factors deployed in partially overlapping spatial domains that regulated proneural genes and, thereby, neural differentiation. Here, we review the work that, in the past few years, has identified many prepattern genes and has disclosed that their function is not limited to the regulation of proneural genes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genesis of a Drosophila notum macrochaeta.
Figure 2: Prepattern factors and signalling molecules in the notum territory of the third instar wing disc.
Figure 3: Neural patterning along the dorsoventral axis of the Drosophila embryo.
Figure 4: Expression of proneural and dorsoventral prepatterning genes in the vertebrate spinal cord.
Figure 5: Expression of Gli2, Gli3 and Sonic Hedgehog (Shh), and spinal cord progenitor domains, in wild-type and mutant mice.
Figure 6: Expression of anteroposterior prepattern genes in the developing vertebrate nervous system.

Similar content being viewed by others

References

  1. Stern, C. Two or three bristles. American Scientist 42, 213–247 (1954). A seminal genetic study of the pattern of bristles on the notum of Drosophila, which revealed the existence of positional information in a growing epithelium.

    Google Scholar 

  2. García-Bellido, A. & Santamaría, P. Developmental analysis of the achaete–scute system of Drosophila melanogaster. Genetics 88, 469–486 (1978).

    PubMed  PubMed Central  Google Scholar 

  3. García-Bellido, A. Genetic analysis of the achaete–scute system of Drosophila melanogaster. Genetics 91, 491–520 (1979).

    PubMed  PubMed Central  Google Scholar 

  4. Ghysen, A. & Dambly-Chaudière, C. From DNA to form: the achaete–scute complex. Genes Dev. 2, 495–501 (1988). This paper proposes that positional information is embodied in spatially restricted combinations of factors that are interpreted by ASC enhancers.

    Article  CAS  PubMed  Google Scholar 

  5. Ghysen, A. & Dambly-Chaudière, C. Genesis of the Drosophila peripheral nervous system. Trends Genet. 5, 251–255 (1989).

    Article  CAS  PubMed  Google Scholar 

  6. Campuzano, S. & Modolell, J. Patterning of the Drosophila nervous system: the achaete–scute gene complex. Trends Genet. 8, 202–207 (1992).

    Article  CAS  PubMed  Google Scholar 

  7. Romani, S., Campuzano, S., Macagno, E. & Modolell, J. Expression of achaete and scute genes in Drosophila imaginal discs and their function in sensory organ development. Genes Dev. 3, 997–1007 (1989).

    Article  CAS  PubMed  Google Scholar 

  8. Caudy, M. et al. daughterless, a Drosophila gene essential for both neurogenesis and sex determination, has sequence similarities to myc and the achaete–scute complex. Cell 55, 1061–1067 (1988).

    Article  CAS  PubMed  Google Scholar 

  9. Bertrand, N., Castro, D. S. & Guillemot, F. Proneural genes and the specification of neural cell types. Nature Rev. Neurosci. 3, 517–530 (2002).

    Article  CAS  Google Scholar 

  10. Campuzano, S. et al. Molecular genetics of the achaete–scute gene complex of D. melanogaster. Cell 40, 327–338 (1985).

    Article  CAS  PubMed  Google Scholar 

  11. Ruiz-Gómez, M. & Modolell, J. Deletion analysis of the achaete–scute locus of D. melanogaster. Genes Dev. 1, 1238–1246 (1987). Comparison of DNA lesions and the associated patterns of bristle suppression in sc mutations implied the presence of enhancers that would activate this gene in specific regions of the wing disc.

    Article  PubMed  Google Scholar 

  12. Leyns, L., Dambly-Chaudière, C. & Ghysen, A. Two different sets of cis elements regulate scute to establish two different sensory patterns. Roux's Arch. Dev. Biol. 198, 227–232 (1989).

    Article  Google Scholar 

  13. Cubas, P., de Celis, J. F., Campuzano, S. & Modolell, J. Proneural clusters of achaete–scute expression and the generation of sensory organs in the Drosophila imaginal wing disc. Genes Dev. 5, 996–1008 (1991).

    Article  CAS  PubMed  Google Scholar 

  14. Skeath, J. B. & Carroll, S. B. Regulation of achaete–scute gene expression and sensory organ pattern formation in the Drosophila wing. Genes Dev. 5, 984–995 (1991). References 13 and 14 reveal, at the level of single-cell resolution, the relationship between proneural clusters and the emergence of SOPs.

    Article  CAS  PubMed  Google Scholar 

  15. Cabrera, C. V., Martinez-Arias, A. & Bate, M. The expression of three members of the achaete–scute gene complex correlates with neuroblast segregation in Drosophila. Cell 50, 425–433 (1987).

    Article  CAS  PubMed  Google Scholar 

  16. Romani, S., Campuzano, S. & Modolell, J. The achaete–scute complex is expressed in neurogenic regions of Drosophila embryos. EMBO J. 6, 2085–2092 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Skeath, J. B. & Carroll, S. B. Regulation of proneural gene expression and cell fate during neuroblast segregation in the Drosophila embryo. Development 114, 939–946 (1992).

    CAS  PubMed  Google Scholar 

  18. Ruiz-Gómez, M. & Ghysen, A. The expression and role of a proneural gene, achaete, in the development of the larval nervous system of Drosophila. EMBO J. 12, 1121–1130 (1993).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Martínez, C. & Modolell, J. Cross-regulatory interactions between the proneural achaete and scute genes of Drosophila. Science 251, 1485–1487 (1991).

    Article  PubMed  Google Scholar 

  20. Skeath, J. B., Panganiban, G., Selegue, J. & Carroll, S. B. Gene regulation on two dimensions: the proneural genes achaete and scute are controlled by combination of axis-patterning genes through a common intergenic control region. Genes Dev. 6, 2606–2619 (1992).

    Article  CAS  PubMed  Google Scholar 

  21. Gómez-Skarmeta, J. L. et al. Cis-regulation of achaete and scute: shared enhancer-like elements drive their coexpression in proneural clusters of the imaginal discs. Genes Dev. 9, 1869–1882 (1995). Isolation of ASC prepattern responsive enhancers and demonstration of their ability to activate both the ac and sc genes in proneural clusters.

    Article  PubMed  Google Scholar 

  22. García-García, M. J., Ramain, P., Simpson, P. & Modolell, J. Different contributions of pannier and wingless to the patterning of the dorsal mesothorax of Drosophila. Development 126, 3523–3532 (1999). Pnr is established as a direct activator of the proneural genes ac and sc by binding to the notum DC enhancer.

    PubMed  Google Scholar 

  23. Sato, A. & Saigo, K. Involvement of pannier and u-shaped in regulating Decapentaplegic-dependent wingless expression in developing Drosophila notum. Mech. Dev. 93, 127–138 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Tomoyasu, Y., Ueno, N. & Nakamura, M. The Decapentaplegic morphogen gradient regulates the notal wingless expression through induction of pannier and u-shaped in Drosophila. Mech. Dev. 96, 37–49 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Cubadda, Y. et al. u-shaped encodes a zinc finger protein that regulates the proneural genes achaete and scute during formation of bristles in Drosophila. Genes Dev. 11, 3083–3095 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Haenlin, M. et al. Transcriptional activity of Pannier is regulated negatively by heterodimerization of the GATA DNA-binding domain with a cofactor encoded by the u-shaped gene of Drosophila. Genes Dev. 11, 3096–3108 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Phillips, R. G. & Whittle, J. R. S. wingless expression mediates determination of peripheral nervous system elements in late stages of Drosophila wing disc development. Development 118, 427–438 (1993). References 26 and 27 characterized Ush as a prepattern gene whose product controls by heterodimerization the activity of the transcription factor Pnr.

    CAS  PubMed  Google Scholar 

  28. Tomoyasu, Y., Nakamura, M. & Ueno, N. Role of Dpp signalling in prepattern formation of the dorsocentral mechanosensory organ in Drosophila melanogaster. Development 125, 4215–4224 (1998).

    CAS  PubMed  Google Scholar 

  29. Ramain, P. et al. Interactions between Chip and the Achaete/Scute-Daughterless heterodimers are required for Pannier-driven proneural patterning. Mol. Cell 6, 781–790 (2000). A molecular mechanism involving the cofactor Chip is proposed to facilitate the interaction between the DC enhancer-bound Pnr and the promoter of the ac gene.

    Article  CAS  PubMed  Google Scholar 

  30. Gómez-Skarmeta, J. L., Diez del Corral, R., de la Calle-Mustienes, E., Ferrés-Marcó, D. & Modolell, J. araucan and caupolican, two members of the novel Iroquois complex, encode homeoproteins that control proneural and vein forming genes. Cell 85, 95–105 (1996).

    Article  PubMed  Google Scholar 

  31. Leyns, L., Gómez-Skarmeta, J. L. & Dambly-Chaudière, C. iroquois: a prepattern gene that controls the formation of bristles on the thorax of Drosophila. Mech. Dev. 59, 63–72 (1996). References 30 and 31 show that the iroquois genes are required for proneural gene expression. Direct interaction of Iroquois proteins with an ASC enhancer is necessary for enhancer function.

    Article  CAS  PubMed  Google Scholar 

  32. Gómez-Skarmeta, J. L., de la Calle-Mustienes, E. & Modolell, J. The Wnt-activated Xiro1 gene encodes a repressor that is essential for neural development and dowregulates BMP4. Development 128, 551–560 (2001).

    PubMed  Google Scholar 

  33. Diez del Corral, R., Aroca, P., Gómez-Skarmeta, J. L., Cavodeassi, F. & Modolell, J. The Iroquois homeodomain proteins are required to specify body wall identity in Drosophila. Genes Dev. 13, 1754–1761 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Grillenzoni, N., van Helden, J., Dambly-Chaudière, C. & Ghysen, A. The iroquois complex controls the somatotopy of Drosophila notum mechanosensory projections. Development 125, 3563–3569 (1998).

    CAS  PubMed  Google Scholar 

  35. Sato, M., Kojima, T., Michiue, T. & Saigo, K. Bar homeobox genes are latitudinal prepattern genes in the developing Drosophila notum whose expression is regulated by the concerted functions of decapentaplegic and wingless. Development 126, 1457–1466 (1999).

    CAS  PubMed  Google Scholar 

  36. de Celis, J. F., Barrio, R. & Kafatos, F. Regulation of the spalt/spalt-related gene complex and its function during sensory organ development in the Drosophila thorax. Development 126, 2653–2662 (1999).

    CAS  PubMed  Google Scholar 

  37. Rushlow, C. A. et al. The Drosophila hairy protein acts in both segmentation and bristle patterning and shows homology to N-myc. EMBO J. 8, 3095–3103 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Moscoso del Prado, J. & García-Bellido, A. Genetic regulation of the achaete–scute complex of Drosophila melanogaster. Roux's Arch. Dev. Biol. 193, 242–245 (1984).

    Article  CAS  Google Scholar 

  39. Carroll, S. B. & Whyte, J. S. The role of the hairy gene during Drosophila morphogenesis: stripes in imaginal discs. Genes Dev. 3, 905–916 (1989).

    Article  CAS  Google Scholar 

  40. Orenic, T. V., Held, L. I., Paddock, S. W. & Carroll, S. B. The spatial organization of epidermal structures: hairy establishes the geometrical pattern of Drosophila leg bristles by delimiting the domains of achaete expression. Development 118, 9–20 (1993).

    CAS  PubMed  Google Scholar 

  41. Ohsako, S., Hyer, J., Panganiban, G., Oliver, I. & Caudy, M. Hairy function as a DNA-binding helix-loop-helix repressor of Drosophila sensory organ formation. Genes Dev. 8, 2743–2755 (1994).

    Article  CAS  PubMed  Google Scholar 

  42. Van Doren M., Bailey, A. M., Esnayra, J., Ede, K. & Posakony, J. W. Negative regulation of proneural gene activity: hairy is a direct transcriptional repressor of achaete. Genes Dev. 8, 2729–2742 (1994).

    Article  CAS  PubMed  Google Scholar 

  43. Rodríguez, I., Hernández, R., Modolell, J. & Ruiz-Gómez, M. Competence to develop sensory organs is temporally and spatially regulated in Drosophila epidermal primordia. EMBO J. 9, 3583–3592 (1990).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Botas, J., Moscoso del Prado, J. & García-Bellido, A. Gene-dose titration analysis in the search of trans-regulatory genes in Drosophila. EMBO J. 1, 307–310 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Campuzano, S. EMC, a negative HLH regulator with multiple functions in Drosophila development. Oncogene 20, 8299–8307 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Cubas, P. & Modolell, J. The extramacrochaetae gene provides information for sensory organ patterning. EMBO J. 11, 3385–3393 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Van Doren, M., Powell, P. A., Pasternak, D., Singson, A. & Posakony, J. W. Spatial regulation of proneural gene activity: auto- and cross-activation of achaete is antagonized by extramacrochaetae. Genes Dev. 6, 2592–2605 (1992). References 46 and 47 show that emc, an antagonist of proneural function, refines the position of the SOP cells. These cells emerge within sites of minimal expression of emc.

    Article  CAS  PubMed  Google Scholar 

  48. Rusch, J. & Levine, M. Threshold responses to the dorsal regulatory gradient and subdivision of primary tissue territories in the Drosophila embryo. Curr. Opin. Genet. Dev. 6, 416–423 (1996).

    Article  CAS  PubMed  Google Scholar 

  49. Artavanis-Tsakonas, S., Rand, M. D. & Lake, R. J. Notch signaling: cell fate control and signal integration in development. Science 284, 770–776 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Bhat, K. M. Segment polarity genes in neuroblast formation and identity specification during Drosophila neurogenesis. Bioessays 21, 472–485 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Jiménez, F. et al. vnd, a gene required for early neurogenesis of Drosophila, encodes a homeodomain protein. EMBO J. 14, 3487–3495 (1995).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Chu, H., Parras, C., White, K. & Jiménez, F. Formation and specification of ventral neuroblasts is controlled by vnd in Drosophila neurogenesis. Genes Dev. 12, 3613–3624 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. McDonald, J. A. et al. Dorsoventral patterning in the Drosophila central nervous system: the vnd homeobox gene specifies ventral column identity. Genes Dev. 12, 3603–3612 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yagi, Y., Suzuki, T. & Hayashi, S. Interaction between Drosophila EGF receptor and vnd determines three dorsoventral domains of the neuroectoderm. Development 125, 3625–3633 (1998). References 52–54 demonstrate the activity of vnd as a prepattern and neural identity gene.

    CAS  PubMed  Google Scholar 

  55. Isshiki, T., Takeichi, M. & Nose, A. The role of the msh homeobox gene during Drosophila neurogenesis: implication for the dorsoventral specification of the neuroectoderm. Development 124, 3099–3109 (1997).

    CAS  PubMed  Google Scholar 

  56. Weiss, J. B. et al. Dorsoventral patterning in the Drosophila central nervous system: the intermediate neuroblasts defective homeobox gene specifies intermediate column identity. Genes Dev. 12, 3591–3602 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Skeath, J. B. At the nexus between pattern formation and cell-type specification: the generation of individual neuroblast fates in the Drosophila embryonic central nervous system. Bioessays 21, 922–931 (1999).

    Article  CAS  PubMed  Google Scholar 

  58. Cornell, R. A. & Ohlen, T. V. Vnd/nkx, ind/gsh, and msh/msx: conserved regulators of dorsoventral neural patterning? Curr. Opin. Neurobiol. 10, 63–71 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Skeath, J. B., Panganiban, G. F. & Carroll, S. B. The ventral nervous system defective gene controls proneural gene expression at two distinct steps during neuroblast formation in Drosophila. Development 120, 1517–1524 (1994).

    CAS  PubMed  Google Scholar 

  60. Skeath, J. B. The Drosophila EGF receptor controls the formation and specification of neuroblasts along the dorsal–ventral axis of the Drosophila embryo. Development 125, 3301–3312 (1998).

    CAS  PubMed  Google Scholar 

  61. Zhao, G. & Skeath, J. B. The Sox-domain containing gene Dichaete/fish-hook acts in concert with vnd and ind to regulate cell fate in the Drosophila neuroectoderm. Development 129, 1165–1174 (2002).

    CAS  PubMed  Google Scholar 

  62. Buescher, M., Hing, F. S. & Chia, W. Formation of neuroblasts in the embryonic central nervous system of Drosophila melanogaster is controlled by SoxNeuro. Development 129, 4193–4203 (2002).

    CAS  PubMed  Google Scholar 

  63. Overton, P. M., Meadows, L. A., Urban, J. & Russell, S. Evidence for differential and redundant function of the Sox genes Dichaete and SoxN during CNS development in Drosophila. Development 129, 4219–4228 (2002).

    CAS  PubMed  Google Scholar 

  64. Cremazy, F., Berta, P. & Girard, F. Sox Neuro, a new Drosophila Sox gene expressed in the developing central nervous system. Mech. Dev. 93, 215–219 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Skeath, J. B. & Carroll, S. B. The achaete–scute complex: generation of cellular pattern and fate within the Drosophila nervous system. FASEB J. 8, 714–721 (1994).

    Article  CAS  PubMed  Google Scholar 

  66. Martín-Bermudo, M. D. et al. Molecular characterization of the lethal of scute genetic function. Development 118, 1003–1012 (1993).

    PubMed  Google Scholar 

  67. Zhao, C. et al. The activity of the Drosophila morphogenetic protein Bicoid is inhibited by a domain located outside its homeodomain. Development 129, 1669–1680 (2002).

    CAS  PubMed  Google Scholar 

  68. Von Ohlen, T. & Doe, C. Q. Convergence of Dorsal, Dpp, and Egfr signaling pathways subdivides the Drosophila neuroectoderm into three dorsal–ventral columns. Dev. Biol. 224, 362–372 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. Jazwinska, A., Rushlow, C. & Roth, S. The role of brinker in mediating the graded response to Dpp in early Drosophila embryos. Development 126, 3323–3334 (1999).

    CAS  PubMed  Google Scholar 

  70. Biehs, B., François, V. & Bier, E. The Drosophila short gastrulation gene prevents Dpp from autoactivating and suppressing neurogenesis in the neuroectoderm. Genes Dev. 10, 2922–2934 (1996).

    Article  CAS  PubMed  Google Scholar 

  71. Jessell, T. M. Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nature Rev. Genet. 1, 20–29 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Lee, S. K. & Pfaff, S. L. Transcriptional networks regulating neuronal identity in the developing spinal cord. Nature Neurosci. 4, 1183–1191 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Briscoe, J., Pierani, A., Jessell, T. M. & Ericson, J. A homeodomain protein code specifies progenitor cell identity and neuronal fate in the ventral neural tube. Cell 101, 435–445 (2000). This study shows that the ventral spinal cord is subdivided into different progenitor domains by the combination of different genes that code for homeoproteins.

    Article  CAS  PubMed  Google Scholar 

  74. Vallstedt, A. et al. Different levels of repressor activity assign redundant and specific roles to Nkx6 genes in motor neuron and interneuron specification. Neuron 31, 743–755 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Timmer, J. R., Wang, C. & Niswander, L. BMP signaling patterns the dorsal and intermediate neural tube via regulation of homeobox and helix–loop–helix transcription factors. Development 129, 2459–2474 (2002). This paper shows that different prepattern and proneural genes that are expressed at dorsal or at intermediate levels of the neural tube are activated, repressed or both by different concentration thresholds of BMP.

    CAS  PubMed  Google Scholar 

  76. Novitch, B. G., Chen, A. I. & Jessell, T. M. Coordinate regulation of motor neuron subtype identity and pan-neuronal properties by the bHLH repressor Olig2. Neuron 31, 773–789 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Mizuguchi, R. et al. Combinatorial roles of Olig2 and Neurogenin2 in the coordinated induction of pan-neuronal and subtype-specific properties of motoneurons. Neuron 31, 757–771 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Briscoe, J. & Ericson, J. Specification of neuronal fates in the ventral neural tube. Curr. Opin. Neurobiol. 11, 43–49 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Muhr, J., Andersson, E., Persson, M., Jessell, T. M. & Ericson, J. Groucho-mediated transcriptional repression established progenitor cell pattern and neuronal fate in the ventral neural tube. Cell 104, 861–873 (2001). This study showed that most of the prepattern factors that subdivide the ventral spinal cord act as repressors through their interaction with the co-repressor Groucho.

    Article  CAS  PubMed  Google Scholar 

  80. Courey, A. J. & Jia, S. Transcriptional repression: the long and the short of it. Genes Dev. 15, 2786–2796 (2001).

    CAS  PubMed  Google Scholar 

  81. Marquardt, T. & Pfaff, S. L. Cracking the transcriptional code for cell specification in the neural tube. Cell 106, 651–654 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Qiu, M., Shimamura, K., Sussel, L., Chen, S. & Rubenstein, J. L. Control of anteroposterior and dorsoventral domains of Nkx-6.1 gene expression relative to other Nkx genes during vertebrate CNS development. Mech. Dev. 72, 77–88 (1998).

    Article  CAS  PubMed  Google Scholar 

  83. Briscoe, J. et al. Homeobox gene Nkx2.2 and specification of neuronal identity by graded Sonic hedgehog signalling. Nature 398, 622–627 (1999).

    Article  CAS  PubMed  Google Scholar 

  84. Pabst, O., Herbrand, H., Takuma, N. & Arnold, H. H. NKX2 gene expression in neuroectoderm but not in mesendodermally derived structures depends on sonic hedgehog in mouse embryos. Dev. Genes Evol. 210, 47–50 (2000).

    Article  CAS  PubMed  Google Scholar 

  85. Ericson, J. et al. Pax6 controls progenitor cell identity and neuronal fate in response to graded Shh signaling. Cell 90, 169–180 (1997).

    Article  CAS  PubMed  Google Scholar 

  86. Lu, Q. R. et al. Sonic hedgehog-regulated oligodendrocyte lineage genes encoding bHLH proteins in the mammalian central nervous system. Neuron 25, 317–329 (2000).

    Article  CAS  PubMed  Google Scholar 

  87. Wijgerde, M., McMahon, J. A., Rule, M. & McMahon, A. P. A direct requirement for Hedgehog signaling for normal specification of all ventral progenitor domains in the presumptive mammalian spinal cord. Genes Dev. 16, 2849–2864 (2002). Clones of smo mutant cells demonstrate that Shh signalling is essential for the expression of ventral prepattern genes, and is also required for the expression of some intermediate genes. The main function of Hedgehog is to counteract Gli3 activity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ingham, P. W. & McMahon, A. P. Hedgehog signaling in animal development: paradigms and principles. Genes Dev. 15, 3059–3087 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Park, H. L. et al. Mouse Gli1 mutants are viable but have defects in SHH signaling in combination with a Gli2 mutation. Development 127, 1593–1605 (2000).

    CAS  PubMed  Google Scholar 

  90. Persson, M. et al. Dorsal–ventral patterning of the spinal cord requires Gli3 transcriptional repressor activity. Genes Dev. 16, 2865–2878 (2002). This study showed that Gli3 is required as a repressor for the correct expression of prepattern genes that are expressed at intermediate levels of the spinal cord.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Litingtung, Y. & Chiang, C. Specification of ventral neuron types is mediated by an antagonistic interaction between Shh and Gli3. Nature Neurosci. 3, 979–985 (2000).

    Article  CAS  PubMed  Google Scholar 

  92. Caspary, T. & Anderson, K. V. Patterning cell types in the dorsal spinal cord: what the mouse mutants say. Nature Rev. Neurosci. 4, 289–297 (2003).

    Article  CAS  Google Scholar 

  93. Liem, K. F., Tremml, G. & Jessell, T. M. A role for the roof plate and its resident TGFβ-related proteins in neuronal patterning in the dorsal spinal cord. Cell 91, 127–138 (1997).

    Article  CAS  PubMed  Google Scholar 

  94. Lee, K. J., Mendelsohn, M. & Jessell, T. M. Neuronal patterning by BMPs: a requirement for GDF7 in the generation of a discrete class of commissural interneurons in the mouse spinal cord. Genes Dev. 12, 3394–3407 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Pierani, A., Brenner-Morton, S., Chiang, C. & Jessell, T. M. A sonic hedgehog-independent, retinoic-activated pathway of neurogenesis in the ventral spinal cord. Cell 97, 903–915 (1999).

    Article  CAS  PubMed  Google Scholar 

  96. Mekki-Dauriac, S., Agius, E., Kan, P. & Cochard, P. Bone morphogenetic proteins negatively control oligodendrocyte precursor specification in the chick spinal cord. Development 129, 5117–5130 (2002).

    CAS  PubMed  Google Scholar 

  97. Liem, K. F., Jessell, T. M. & Briscoe, J. Regulation of the neural patterning activity of sonic hedgehog by secreted BMP inhibitors expressed by notochord and somites. Development 127, 4855–4866 (2000).

    CAS  PubMed  Google Scholar 

  98. Patten, I. & Placzek, M. Opponent activities of Shh and BMP signaling during floor plate induction in vivo. Curr. Biol. 12, 47–52 (2002). The authors of this paper suggest that, in the spinal cord, BMP signalling from the dorsal ectoderm and roof plate exerts long-range effects and inhibits the expression of Shh-dependent ventral genes. BMP antagonists, secreted from the notochord, interfere with BMP at ventral regions and generate a permissive environment for Shh-mediated induction of ventral identities.

    Article  CAS  PubMed  Google Scholar 

  99. Muroyama, Y., Fujihara, M., Ikeya, M., Kondoh, H. & Takada, S. Wnt signaling plays an essential role in neuronal specification of the dorsal spinal cord. Genes Dev. 16, 548–553 (2002). This study showed that Wnt signalling from the dorsal roof plate is required, without altering BMP signalling expression, for correct proneural gene expression at the dorsal spinal cord and for the generation of dorsal neurons.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Gowan, K. et al. Crossinhibitory activities of Ngn1 and Math1 allow specification of distinct dorsal interneurons. Neuron 31, 219–232 (2001). This work showed that the non-overlapping domains of expression of Ngn1, Math1 and Mash1 in the dorsal spinal cord are defined by cross-repression by these bHLH factors.

    Article  CAS  PubMed  Google Scholar 

  101. Scardigli, R., Schuurmans, C., Gradwohl, G. & Guillemot, F. Crossregulation between Neurogenin2 and pathways specifying neuronal identity in the spinal cord. Neuron 31, 203–217 (2001). This paper shows that Ngn2 expression in the neural tube results from the activity of different enhancers that drive expression in distinct progenitor domains. Pax6 is required for the activation of some of these enhancers.

    Article  CAS  PubMed  Google Scholar 

  102. Blader, P., Plessy, C. & Strähle, U. Multiple regulatory elements with spatially and temporally distinct activities control neurogenin1 expression in primary neurons of the zebrafish embryo. Mech. Dev. 120, 211–218 (2003).

    Article  CAS  PubMed  Google Scholar 

  103. Liu, A. & Joyner, A. L. Early anterior/posterior patterning of the midbrain and cerebellum. Annu. Rev. Neurosci. 24, 869–896 (2001).

    Article  CAS  PubMed  Google Scholar 

  104. Araki, I. & Nakamura, H. Engrailed defines the position of dorsal di-mesencephalic boundary by repressing diencephalic fates. Development 126, 5127–5135 (1999).

    CAS  PubMed  Google Scholar 

  105. Schwartz, M. et al. Pax2/5 and Pax6 subdivide the early neural tube into three domains. Mech. Dev. 82, 29–39 (1999).

    Article  Google Scholar 

  106. Matsunaga, E., Araki, I. & Nakamura, H. Pax6 defines the dimesencephalic boundary by repressing En1 and Pax2. Development 127, 2357–2365 (2000).

    CAS  PubMed  Google Scholar 

  107. Kobayashi, D. et al. Early subdivisions in the neural plate define distinct competence for inductive signals. Development 129, 83–93 (2002). The authors of this paper propose that the different brain territories are defined by the mutual repression of Six3 and Irx3, Pax6 and Pax2/En1, and Otx2 and Gbx2.

    CAS  PubMed  Google Scholar 

  108. Tao, W. & Lai, E. Telencephalon-restricted expression of BF-1, a new member of the HNF-3/fork head gene family, in the developing rat brain. Neuron 8, 957–966 (1992).

    Article  CAS  PubMed  Google Scholar 

  109. Yuasa, J., Hirano, S., Yamagata, M. & Noda, M. Visual projection map specified by topographic expression of transcription factors in the retina. Nature 382, 632–635 (1996).

    Article  CAS  PubMed  Google Scholar 

  110. Gómez-Skarmeta, J. L., de la Calle-Mustienes, E., Modolell, J. & Mayor, R. Xenopus brain factor-2 controls mesoderm, forebrain and neural crest development. Mech. Dev. 80, 15–27 (1999).

    Article  PubMed  Google Scholar 

  111. Landmesser, L. T. The acquisition of motoneuron subtype identity and motor circuit formation. Int. J. Dev. Neurosci. 19, 175–182 (2001).

    Article  CAS  PubMed  Google Scholar 

  112. Krumlauf, R. Hox genes in vertebrate development. Cell 78, 191–201 (1994).

    Article  CAS  PubMed  Google Scholar 

  113. Liu, J. P., Laufer, E. & Jessell, T. M. Assigning the positional identity of spinal motor neurons: rostrocaudal patterning of Hox-c expression by FGFs, Gdf11, and retinoids. Neuron 32, 997–1012 (2001). This study showed that graded FGF signal, originating in Hensen's node, initiates the expression of most Hox genes in the spinal cord motor neurons, and that Gdf11 and retinoid signals from the paraxial mesoderm later refine the expression domains of these genes.

    Article  CAS  PubMed  Google Scholar 

  114. Carpenter, E. M., Goddard, J. M., Davis, A. P., Nguyen, T. P. & Capecchi, M. R. Targeted disruption of Hoxd-10 affects mouse hindlimb development. Development 124, 4505–4514 (1997).

    CAS  PubMed  Google Scholar 

  115. de la Cruz, C. C., Der-Avakian, A., Spyropoulos, D. D., Tieu, D. D. & Carpenter, E. M. Targeted disruption of Hoxd9 and Hoxd10 alters locomotor behavior, vertebral identity, and peripheral nervous system development. Dev. Biol. 216, 595–610 (1999).

    Article  CAS  PubMed  Google Scholar 

  116. Tiret, L., Le Mouellic, H., Maury, M. & Brulet, P. Increased apoptosis of motoneurons and altered somatotopic maps in the brachial spinal cord of Hoxc-8-deficient mice. Development 125, 279–291 (1998).

    CAS  PubMed  Google Scholar 

  117. Bell, E., Wingate, R. J. & Lumsden, A. Homeotic transformation of rhombomere identity after localized Hoxb1 misexpression. Science 284, 2168–2171 (1999).

    Article  CAS  PubMed  Google Scholar 

  118. Gavalas, A., Davenne, M., Lumsden, A., Chambon, P. & Rijli, F. M. Role of Hoxa-2 in axon pathfinding and rostral hindbrain patterning. Development 124, 3693–3702 (1997).

    CAS  PubMed  Google Scholar 

  119. Jungbluth, S., Bell, E. & Lumsden, A. Specification of distinct motor neuron identities by the singular activities of individual Hox genes. Development 126, 2751–2758 (1999).

    CAS  PubMed  Google Scholar 

  120. Studer, M., Lumsden, A., Ariza-McNaughton, L., Bradley, A. & Krumlauf, R. Altered segmental identity and abnormal migration of motor neurons in mice lacking Hoxb-1. Nature 384, 630–634 (1996).

    Article  CAS  PubMed  Google Scholar 

  121. Stern, C. D. Initial patterning of the central nervous system: how many organizers? Nature Rev. Neurosci. 2, 92–98 (2001).

    Article  CAS  Google Scholar 

  122. Nieuwkoop, P. D. & Nigtevecht, G. V. Neural activation and transformation in explants of competent ectoderm under the influence of fragments of anterior notochord in Urodeles. J. Embryol. Exp. Morph. 2, 175–193 (1954).

    Google Scholar 

  123. Pownall, M. E., Tucker, A. S., Slack, J. M. & Isaacs, H. V. eFGF, Xcad3 and Hox genes form a molecular pathway that establishes the anteroposterior axis in Xenopus. Development 122, 3881–3892 (1996).

    CAS  PubMed  Google Scholar 

  124. Bel-Vialar, S., Itasaki, N. & Krumlauf, R. Initiating Hox gene expression: in the early chick neural tube differential sensitivity to FGF and RA signaling subdivides the HoxB genes in two distinct groups. Development 129, 5103–5115 (2002).

    CAS  PubMed  Google Scholar 

  125. Gavalas, A. & Krumlauf, R. Retinoid signalling and hindbrain patterning. Curr. Opin. Genet. Dev. 10, 380–386 (2000).

    Article  CAS  PubMed  Google Scholar 

  126. Gould, A., Itasaki, N. & Krumlauf, R. Initiation of rhombomeric Hoxb4 expression requires induction by somites and a retinoid pathway. Neuron 21, 39–51 (1998).

    Article  CAS  PubMed  Google Scholar 

  127. McGrew, L. L., Hoppler, S. & Moon, R. T. Wnt and FGF pathways cooperatively pattern anteroposterior neural ectoderm in Xenopus. Mech. Dev. 69, 105–114 (1997).

    Article  CAS  PubMed  Google Scholar 

  128. Domingos, P. M. et al. The Wnt/β-catenin pathway posteriorizes neural tissue in Xenopus by an indirect mechanism requiring FGF signalling. Dev. Biol. 239, 148–160 (2001).

    Article  CAS  PubMed  Google Scholar 

  129. Nordström, U., Jessell, T. M. & Edlund, T. Progressive induction of caudal neural character by graded Wnt signaling. Nature Neurosci. 5, 525–532 (2002). The authors of this paper show that graded Wnt signals, in combination with FGF, act directly on anterior neural cells to promote their progressive differentiation into caudal forebrain, midbrain and hindbrain identities.

    Article  PubMed  Google Scholar 

  130. Kiecker, C. & Niehrs, C. A morphogen gradient of Wnt/β-catenin signalling regulates anteroposterior neural patterning in Xenopus. Development 128, 4189–4201 (2001).

    CAS  PubMed  Google Scholar 

  131. Isaacs, H. V., Pownall, M. E. & Slack, J. M. Regulation of Hox gene expression and posterior development by the Xenopus caudal homologue Xcad3. EMBO J. 17, 3413–3427 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Ehrman, L. A. & Yutzey, K. E. Anterior expression of the caudal homologue cCdx-B activates a posterior genetic program in avian embryos. Dev. Dyn. 221, 412–421 (2001).

    Article  CAS  PubMed  Google Scholar 

  133. Prinos, P. et al. Multiple pathways governing Cdx1 expression during murine development. Dev. Biol. 239, 257–269 (2001).

    Article  CAS  PubMed  Google Scholar 

  134. Houle, M., Prinos, P., Iulianella, A., Bouchard, N. & Lohnes, D. Retinoic acid regulation of Cdx1: an indirect mechanism for retinoids and vertebral specification. Mol. Cell. Biol. 20, 6579–6586 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Allan, D. et al. RARγ and Cdx1 interactions in vertebral patterning. Dev. Biol. 240, 46–60 (2001).

    Article  CAS  PubMed  Google Scholar 

  136. Yamaguchi, T. P. Heads or tails: Wnts and anterior–posterior patterning. Curr. Biol. 11, R713–R724 (2001).

    Article  CAS  PubMed  Google Scholar 

  137. Niehrs, C. Head in the WNT: the molecular nature of Spemann's head organizer. Trends Genet. 15, 314–319 (1999).

    Article  CAS  PubMed  Google Scholar 

  138. Foley, A. C., Skromne, I. & Stern, C. D. Reconciling different models of forebrain induction and patterning: a dual role for the hypoblast. Development 127, 3839–3854 (2000).

    CAS  PubMed  Google Scholar 

  139. Kudoh, T., Wilson, S. W. & Dawid, I. B. Distinct roles for Fgf, Wnt and retinoic acid in posteriorizing the neural ectoderm. Development 129, 4335–4346 (2002).

    CAS  PubMed  Google Scholar 

  140. de Roos, K. et al. Expression of retinoic acid 4-hydroxylase (CYP26) during mouse and Xenopus laevis embryogenesis. Mech. Dev. 82, 205–211 (1999).

    Article  CAS  PubMed  Google Scholar 

  141. Fujii, H. et al. Metabolic inactivation of retinoic acid by a novel P450 differentially expressed in developing mouse embryos. EMBO J. 16, 4163–4173 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Hollemann, T., Chen, Y., Grunz, H. & Pieler, T. Regionalized metabolic activity establishes boundaries of retinoic acid signalling. EMBO J. 17, 7361–7372 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Strigini, M. & Cohen, S. M. Formation of morphogen gradients in the Drosophila wing. Semin. Cell Dev. Biol. 10, 335–344 (1999).

    Article  CAS  PubMed  Google Scholar 

  144. Klein, T. Wing disc development in the fly: the early stages. Curr. Opin. Genet. Dev. 11, 470–475 (2001).

    Article  CAS  PubMed  Google Scholar 

  145. Couso, J. P., Bate, M. & Martínez-Arias, A. A wingless-dependent polar coordinate system in Drosophila imaginal discs. Science 259, 484–489 (1993).

    Article  CAS  PubMed  Google Scholar 

  146. Ng, M., Díaz-Benjumea, F. J., Vincent, J. P., Wu, J. & Cohen, S. M. Specification of the wing by localized expression of the wingless protein. Nature 381, 316–318 (1996).

    Article  CAS  PubMed  Google Scholar 

  147. Wu, J. & Cohen, S. M. Repression of Teashirt marks the initiation of wing development. Development 129, 2411–2418 (2002).

    CAS  PubMed  Google Scholar 

  148. Wang, S. H., Simcox, A. & Campbell, G. Dual role for epidermal growth factor receptor signaling in early wing disc development. Genes Dev. 14, 2271–2276 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Zecca, M. & Struhl, G. Subdivision of the Drosophila wing imaginal disc by EGFR-mediated signaling. Development 129, 1357–1368 (2002).

    CAS  PubMed  Google Scholar 

  150. Zecca, M. & Struhl, G. Control of growth and patterning of the Drosophila wing imaginal disc by EGFR-mediated signaling. Development 129, 1369–1376 (2002).

    CAS  PubMed  Google Scholar 

  151. Cavodeassi, F., Rodríguez, I. & Modolell, J. Dpp signalling is a key effector of the wing–body wall subdivision of the Drosophila mesothorax. Development 129, 3815–3823 (2002).

    CAS  PubMed  Google Scholar 

  152. Calleja, M. et al. Generation of medial and lateral dorsal body domains by the pannier gene of Drosophila. Development 127, 3971–3980 (2000).

    CAS  PubMed  Google Scholar 

  153. Calleja, M. et al. How to pattern an epithelium: lessons from achaete–scute regulation on the notum of Drosophila. Gene 292, 1–12 (2002).

    Article  CAS  PubMed  Google Scholar 

  154. Gradwohl, G., Fode, C. & Guillemot, F. Restricted expression of a novel murine atonal-related bHLH protein in undifferentiated neural precursors. Dev. Biol. 180, 227–241 (1996).

    Article  CAS  PubMed  Google Scholar 

  155. Sommer, L., Ma, Q. & Anderson, D. J. neurogenins, a novel family of atonal-related bHLH transcription factors, are putative mammalian neuronal determination genes that reveal progenitor cell heterogeneity in the developing CNS and PNS. Mol. Cell. Neurosci. 8, 221–241 (1996).

    Article  CAS  PubMed  Google Scholar 

  156. Tanabe, Y. & Jessell, T. M. Diversity and pattern in the developing spinal cord. Science 274, 1115–1123 (1996).

    Article  CAS  PubMed  Google Scholar 

  157. Helms, A. W., Abney, A. L., Ben-Arie, N., Zoghbi, H. Y. & Johnson, J. E. Autoregulation and multiple enhancers control Math1 expression in the developing nervous system. Development 127, 1185–1196 (2000).

    CAS  PubMed  Google Scholar 

  158. Bermingham, N. A. et al. Proprioceptor pathway development is dependent on Math1. Neuron 30, 411–422 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to J. F. de Celis, R. Diez del Corral, M. Ruiz-Gómez, K. Storey and colleagues of our laboratory for constructive criticism of the manuscript. We apologize to investigators whose work has not been mentioned due to space limitations. Grants from Dirección General de Investigación Científica y Técnica, Comunidad Autónoma de Madrid, and an institutional grant from Fundación Ramón Areces to the Centro de Biología Molecular Severo Ochoa are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Modolell.

Related links

Related links

DATABASES

FlyBase

ac

araucan

asense

BarH1

BarH2

brinker

caupolican

Chip

D

da

Dpp

EGFR

emc

engrailed

gooseberry

Hairy

hedgehog

ind

invected

l'sc

mirror

msh

patched

Pnr

rho

sal

sal-r

sc

short gastrulation

snail

SoxN

Ush

vnd

Wg

LocusLink

Bf1

Cdx1

Dbx1

Dbx2

En1

Fgf8

Gbx2

Gli

Irx3

Mash1

Math1

Msx1

Ngn1

Ngn2

Nkx2.2

Nkx6.1

Nkx6.2

Olig2

Otx2

Pax2

Pax6

Pax7

Shh

Six3

Wnt1

Wnt3a

Glossary

BASIC HELIX–LOOP–HELIX

(bHLH). A structural motif present in many transcription factors that is characterized by two α-helices separated by a loop. The helices mediate dimerization, and the adjacent basic region is required for DNA binding.

GATA TRANSCRIPTION FACTOR

Refers to a family of zinc-finger domain containing factors that recognize the DNA sequence (A/T)GATA(A/G).

WNT PROTEINS

A family of highly conserved secreted signalling molecules that regulate cell–cell interactions during embryogenesis. Wnt proteins bind on the cell surface to receptors of the Frizzled family.

FOG (FRIEND OF GATA) FACTORS

A family of multiple zinc-finger proteins that interact with GATA factors and modulate their activity as transcriptional regulators.

HOMEODOMAIN

A 60-amino-acid DNA-binding domain that comprises three α-helices and is found in many transcription factors.

ZINC-FINGER

A protein module in which cysteine or cysteine–histidine residues coordinate a zinc ion. Zinc-fingers are often used in DNA recognition and in protein–protein interactions.

SOX DOMAIN

A DNA-binding domain of the high mobility group (HMG) class, which is closely related to the DNA-binding domain of the testis-determining gene Sry. Binding of the Sox domain induces a sharp bend in its target DNA, which might serve to bring together other regulatory proteins that are bound to different regions of the DNA molecule.

NOTOCHORD

A rod-like structure of mesodermal origin that is found in vertebrate embryos. It participates in the differentiation of the ventral neural tube and in the specification of motor neurons.

BONE MORPHOGENETIC PROTEIN

(BMP). Molecules of the transforming growth factor-α (TGFα)-family that can induce bone formation and ventralize the vertebrate embryo.

WD REPEAT

A protein sequence motif with a characteristic tryptophan–aspartate repeat.

DOMINANT NEGATIVE

A mutant molecule that blocks or antagonizes the normal function of the unmodified molecule by diverse mechanisms such as heteromerization and competition for partners or for binding sites.

PRIMITIVE STREAK

An elongated depression of reptile, bird and mammalian embryos, through which mesodermal and endodermal cells migrate into the interior of the embryo. The most anterior tip of the primitive streak forms a signalling centre known as the node (Hensen's node in the chick). The streak is functionally homologous to the amphibian blastopore.

PARAXIAL MESODERM

A region of the mesoderm adjacent to the notochord, which becomes segmented rostrocaudally to give rise to the somites early in development.

LYMPHOID-ENHANCER FACTOR/T-CELL FACTOR

(LEF/TCF). Transcription factors of the LEF/TCF family bind to DNA HMG boxes and constitute the most downstream components of the Wnt pathway. Mammals possess four LEF/TCF genes, whereas worms and flies each carry one Tcf gene in their genome.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gómez-Skarmeta, J., Campuzano, S. & Modolell, J. Half a century of neural prepatterning: the story of a few bristles and many genes. Nat Rev Neurosci 4, 587–598 (2003). https://doi.org/10.1038/nrn1142

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1142

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing