Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cortical mechanisms of colour vision

Key Points

  • Colour vision is an integral part of the human visual system. It relies on the presence of three types of cone photoreceptor in the retina, which have different but overlapping wavelength tuning curves.

  • Colour information is sent in three colour-opponent channels from they eye to the brain. These 'cardinal' mechanisms, which are usually termed black–white, red–green and blue–yellow, have been characterized psychophysically, physiologically and computationally to be independent and efficient.

  • In the primary visual cortex (area V1), a large proportion of neurons respond selectively to colour information. Most of these neurons also respond to variations in the brightness of visual stimuli. The colour combinations that are preferred by these neurons are no longer constrained to the three cardinal directions. In higher visual areas, neurons become more selective in their colour tuning and respond only to a small range of colours. About a third of neurons in area V2 combine their inputs in such a nonlinear manner.

  • Colour is processed jointly with other visual attributes, such as orientation, depth and motion. Neurons in different anatomically defined compartments of the second visual area, for example, show joint selectivity for these different attributes. For most psychophysical tasks, the visual system works just as well for coloured stimuli as it does for black and white stimuli, once the magnitude of the different stimuli is made comparable.

  • Colour constancy describes the ability of the visual system to discount large changes in illumination, so that objects look the same colour even under different illuminations. Both retinal and cortical factors contribute to colour constancy. Cells in V1 with both spatial and chromatic opponency ('double-opponent' cells) might be important for this achievement.

  • People with an acquired colour vision deficiency (achromatopsia) often have damage to a small region in the lateral occipital cortex. The same region is typically highly active in neuroimaging experiments when subjects view coloured scenes. The residual abilities of achromatopsic patients show that their main deficit seems to be the assignment of colours to objects, rather than the perception of colours per se.

  • Our understanding of the cortical processing of colour is still far from complete. A better understanding of the relationships between areas of monkey visual cortex and apparently homologous areas in the human brain will help us to address remaining questions, such as the degree to which colour information is segregated from other visual attributes. In the long run, more emphasis has to be given to the computations that are performed on the colour signals (and visual signals in general), rather than to the localization of regions that are important for the analysis of colour.

Abstract

The perception of colour is a central component of primate vision. Colour facilitates object perception and recognition, and has an important role in scene segmentation and visual memory. Moreover, it provides an aesthetic component to visual experiences that is fundamental to our perception of the world. Despite the long history of colour vision studies, much has still to be learned about the physiological basis of colour perception. Recent advances in our understanding of the early processing in the retina and thalamus have enabled us to take a fresh look at cortical processing of colour. These studies are beginning to indicate that colour is processed not in isolation, but together with information about luminance and visual form, by the same neural circuits, to achieve a unitary and robust representation of the visual world.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Early stages of colour processing.
Figure 2: High sensitivity of the colour vision system.
Figure 3: Colour constancy and induction.
Figure 4: Colour tuning in lateral genciulate nucleus (LGN) and cortex.
Figure 5: Segregation and integration in V2.
Figure 6: Joint neuronal selectivity for colour and orientation.

Similar content being viewed by others

References

  1. Young, T. The Bakerian lecture: on the theory of light and colours. Phil. Trans. R. Soc. Lond. 92, 12–48 (1802).

    Article  Google Scholar 

  2. Helmholtz, H. L. F. Über die Theorie der zusammengesetzten Farben. Ann. Phys. Leipzig 887, 45–66 (1852).

    Article  Google Scholar 

  3. Stockman, A. & Sharpe, L. T. The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype. Vision Res. 40, 1711–1737 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Nathans, J. The evolution and physiology of human color vision: insights from molecular genetic studies of visual pigments. Neuron 24, 299–312 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Mollon, J. D. & Jordan, G. “Tho' she kneel'd in that place where they grew...” — the uses and origins of primate colour vision. J. Exp. Biol. 146, 21–38 (1988).

    Google Scholar 

  6. Rushton, W. A. H. in Handbook of Sensory Physiology Vol VII/1. Photochemistry of Vision (ed. Dartnall, H. J. A.) 364–394 (Springer, New York, 1972).

    Google Scholar 

  7. DeValois, R. L., Abramov, I. & Jacobs, G. H. Analysis of response patterns of LGN cells. J. Opt. Soc. Am. A 56, 966–977 (1966).

    Article  CAS  Google Scholar 

  8. Derrington, A. M., Krauskopf, J. & Lennie, P. Chromatic mechanisms in the lateral geniculate nucleus of macaque. J. Physiol. (Lond.) 357, 241–265 (1984).

    Article  CAS  Google Scholar 

  9. Krauskopf, J., Williams, D. R. & Heeley, D. W. Cardinal directions of color space. Vision Res. 22, 1123–1131 (1982).

    Article  CAS  PubMed  Google Scholar 

  10. Buchsbaum, G. & Gottschalk, A. Trichromacy, opponent colours coding and optimum colour information transmission in the retina. Proc. R. Soc. Lond. B 220, 89–113 (1983).

    Article  CAS  PubMed  Google Scholar 

  11. Zeki, S. M. Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey. J. Physiol. (Lond.) 236, 549–573 (1974).

    Article  CAS  Google Scholar 

  12. Zeki, S. M. Colour coding in the superior temporal sulcus of rhesus monkey visual cortex. Proc. R. Soc. Lond. B 197, 195–223 (1977).

    Article  CAS  PubMed  Google Scholar 

  13. Liebmann, S. Über das Verhalten farbiger Formen bei Helligkeitsgleichheit von Figur und Grund. Psychol. Forschung 9, 300–353 (1927).

    Article  Google Scholar 

  14. Ramachandran, V. S. & Gregory, R. L. Does colour provide an input to human motion perception? Nature 275, 55–56 (1978).

    Article  CAS  PubMed  Google Scholar 

  15. Livingstone, M. S. & Hubel, D. H. Psychophysical evidence for separate channels for the perception of form, color, movement, and depth. J. Neurosci. 7, 3416–3468 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Krauskopf, J. in Color Vision: From Genes to Perception (eds Gegenfurtner, K. R. & Sharpe, L. T.) 303–316 (Cambridge Univ. Press, New York, 1999).

    Google Scholar 

  17. Hawken, M. J. & Gegenfurtner, K. R. in Color Vision: From Genes to Perception (eds Gegenfurtner, K. R. & Sharpe, L. T.) 283–299 (Cambridge Univ. Press, New York, 1999).

    Google Scholar 

  18. Albrecht, D. G. & Hamilton, D. B. Striate cortex of monkey and cat: contrast response function. J. Neurophysiol. 48, 217–237 (1982).

    Article  CAS  PubMed  Google Scholar 

  19. Chaparro, A., Stromeyer, C. F., Huang, E. P., Kronauer, R. E. & Eskew, R. T. Jr. Colour is what the eye sees best. Nature 361, 348–350 (1993). A psychophysical study showing the extremely high sensitivity of the red–green colour vision system.

    Article  CAS  PubMed  Google Scholar 

  20. Gegenfurtner, K. R. & Hawken, M. J. Temporal and chromatic properties of motion mechanisms. Vision Res. 35, 1547–1563 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Gegenfurtner, K. R. & Rieger, J. Sensory and cognitive contributions of color to the recognition of natural scenes. Curr. Biol. 10, 805–808 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Wichmann, F. A., Sharpe, L. T. & Gegenfurtner, K. R. The contributions of color to recognition memory for natural scenes. J. Exp. Psychol. Learn. Mem. Cogn. 28, 509–520 (2002).

    Article  PubMed  Google Scholar 

  23. Kirschmann, A. Ueber die quantitativen Verhaeltnisse des simultanen Helligkeits- und Farben-Contrastes. Philos. Stud. 6, 417–491 (1891).

    Google Scholar 

  24. Hurlbert, A. in Perceptual Constancy: Why Things Look As They Do (eds Walsh, V. & Kulikowski, J.) 283–321 (Cambridge Univ. Press, Cambridge, 1998).

    Google Scholar 

  25. Hubel, D. H. & Wiesel, T. N. Receptive fields and functional architecture of monkey striate cortex. J. Physiol. (Lond.) 195, 215–243 (1968).

    Article  CAS  Google Scholar 

  26. Conway, B. R., Hubel, D. H. & Livingstone, M. S. Color contrast in macaque V1. Cereb. Cortex 12, 915–925 (2002).

    Article  PubMed  Google Scholar 

  27. Lee, B. B., Martin, P. R. & Valberg, A. The physiological basis of heterochromatic flicker photometry demonstrated in the ganglion cells of the macaque retina. J. Physiol. (Lond.) 404, 323–347 (1988).

    Article  CAS  Google Scholar 

  28. Shapley, R. Visual sensitivity and parallel retinocortical channels. Annu. Rev. Psychol. 41, 635–658 (1990).

    Article  CAS  PubMed  Google Scholar 

  29. Gegenfurtner, K. R. et al. Chromatic properties of neurons in macaque MT. Vis. Neurosci. 11, 455–466 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. Dobkins, K. R. & Albright, T. D. Behavioral and neural effects of chromatic isoluminance in the primate visual motion system. Vis. Neurosci. 12, 321–332 (1995).

    Article  CAS  PubMed  Google Scholar 

  31. Dow, B. M. & Gouras, P. Color and spatial specificity of single units in Rhesus monkey foveal striate cortex. J. Neurophysiol. 36, 79–100 (1973).

    Article  CAS  PubMed  Google Scholar 

  32. Gouras, P. Opponent-colour cells in different layers of foveal striate cortex. J. Physiol. (Lond.) 199, 533–547 (1974).

    Article  Google Scholar 

  33. Yates, J. T. Chromatic information processing in the foveal projection (area striata) of unanesthetized primate. Vision Res. 14, 163–173 (1974).

    Article  CAS  PubMed  Google Scholar 

  34. Thorell, L. G., DeValois, R. L. & Albrecht, D. G. Spatial mapping of monkey V1 cells with pure color and luminance stimuli. Vision Res. 24, 751–769 (1984). The first study to show that most cells in area V1 of macaques respond to luminance and colour stimuli. The authors also observed a large number of cells that show spatial tuning to isoluminant stimuli.

    Article  CAS  PubMed  Google Scholar 

  35. Johnson, E. N., Hawken, M. J. & Shapley, R. The spatial transformation of color in the primary visual cortex of the macaque monkey. Nature Neurosci. 4, 409–416 (2001). The authors present single unit recordings from area V1 of macaque monkeys showing that most neurons respond to colour and luminance, many of them with an oriented double-opponent receptive field organization.

    Article  CAS  PubMed  Google Scholar 

  36. Kiper, D. C., Fenstemaker, S. B. & Gegenfurtner, K. R. Chromatic properties of neurons in macaque area V2. Vis. Neurosci. 14, 1061–1072 (1997). An investigation into the chromatic tuning properties of neurons in area V2 of macaque monkeys. About a third of the neurons in this study show a highly selective response to particular colours.

    Article  CAS  PubMed  Google Scholar 

  37. Shipp, S. & Zeki, S. The functional organization of area V2, I: specialization across stripes and layers. Vis. Neurosci. 19, 187–210 (2002).

    Article  PubMed  Google Scholar 

  38. Friedmann, S., Zhou, H. & von der Heydt, R. The coding of uniform color figures in monkey visual cortex. J. Physiol. (Lond.) 548, 593–613 (2003). For the first time, the responses to colour and form are investigated in a large population of neurons in V1 and V2 of awake behaving monkeys. The authors find no correlation between colour and form responses.

    Article  CAS  Google Scholar 

  39. Kleinschmidt, A., Lee, B. B., Requart, M. & Frahm, J. Functional mapping of color processing by magnetic resonance imaging of responses to selective p- and m-pathway stimulation. Exp. Brain Res. 110, 279–288 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. Engel, S. A., Zhang, X. & Wandell, B. A. Color tuning in human visual cortex measured using functional magnetic resonance imaging. Nature 388, 68–71 (1997). These authors use functional neuroimaging to show that visual cortical areas V1 and V2 give a strong colour-opponent response.

    Article  CAS  PubMed  Google Scholar 

  41. Lennie, P., Krauskopf, J. & Sclar, G. Chromatic mechanisms in striate cortex of macaque. J. Neurosci. 10, 649–669 (1990). This was the first study to show that the chromatic tuning of neurons in area V1 of macaque monkeys is not restricted to the three colour-opponent mechanisms of the LGN.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wachtler, T., Sejnowski, T. J. & Albright, T. D. Representation of color stimuli in awake macaque primary visual cortex. Neuron 37, 681–691 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shapley, R. M. & Hawken, M. J. Neural mechanisms for color perception in the primary visual cortex. Curr. Opin. Neurobiol. (in the press).

  44. Yoshioka, T., Dow, B. M. & Vautin, R. G. Neuronal mechanisms of color categorization in areas V1, V2 and V4 of macaque monkey visual cortex. Behav. Brain Res. 76, 51–70 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. Levitt, J. B., Kiper, D. C. & Movshon, J. A. Receptive fields and functional architecture of macaque V2. J. Neurophysiol. 71, 2517–2542 (1994).

    Article  CAS  PubMed  Google Scholar 

  46. Cottaris, N. P. & DeValois, R. L. Temporal dynamics of chromatic tuning in macaque primary visual cortex. Nature 395, 896–900 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Gegenfurtner, K. R. & Kiper, D. C. Contrast detection in luminance and chromatic noise. J. Opt. Soc. Am. A 9, 1880–1888 (1992).

    Article  CAS  PubMed  Google Scholar 

  48. Healey, G. Using color for geometry-insensitive segmentation. J. Opt. Soc. Am. A 6, 920–937 (1989).

    Article  Google Scholar 

  49. Kraft, J. M. & Brainard, D. H. Mechanisms of color constancy under nearly natural viewing. Proc. Natl Acad. Sci. USA 96, 307–312 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. von Kries, J. Chromatic Adaptation. Selection translated and reprinted in Sources of Color Science (ed. MacAdam, D. L.) 109–119 (MIT Press, Cambridge, Massachusetts, 1970).

    Google Scholar 

  51. Foster, G. H. & Nascimento, S. M. Relational colour constancy from invariant cone-excitation ratios. Proc. R. Soc. Lond. B 257, 115–121 (1994).

    Article  CAS  Google Scholar 

  52. Daw, N. W. Goldfish retina: organization for simultaneous color contrast. Science 158, 942–944 (1967).

    Article  CAS  PubMed  Google Scholar 

  53. Michael, C. R. Color vision mechanisms in monkey striate cortex: dual-opponent cells with concentric receptive fields. J. Neurophysiol. 41, 572–588 (1978).

    Article  CAS  PubMed  Google Scholar 

  54. Michael, C. R. Color vision mechanisms in monkey striate cortex: simple cells with dual opponent-color concentric receptive fields. J. Neurophysiol. 41, 1233–1249 (1978).

    Article  CAS  PubMed  Google Scholar 

  55. Michael, C. R. Color-sensitive complex cells in monkey striate cortex. J. Neurophysiol. 41, 1250–1266 (1978).

    Article  CAS  PubMed  Google Scholar 

  56. Conway, B. R. Spatial structure of cone inputs to color cells in alert macaque primary visual cortex (V-1). J. Neurosci. 21, 2768–2783 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zeki, S. Color coding in the cerebral cortex: the reaction of cells in monkey visual cortex to wavelengths and colors. Neuroscience 9, 741–765 (1983).

    Article  CAS  PubMed  Google Scholar 

  58. Zeki, S. Color coding in the cerebral cortex: the responses of wavelength-selective and color-coded cells in monkey visual cortex to changes in wavelength composition. Neuroscience 9, 767–781 (1983).

    Article  CAS  PubMed  Google Scholar 

  59. Schein, S. J. & Desimone, R. Spectral properties of V4 neurons in the macaque. J. Neurosci. 10, 3369–3389 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Salzman, C. D., Britten, K. H. & Newsome, W. T. Cortical microstimulation influences perceptual judgements of motion direction. Nature 346, 174–177 (1990).

    Article  CAS  PubMed  Google Scholar 

  61. Xiao, Y., Wang, Y. & Felleman, D. J. A spatially organized representation of colour in macaque cortical area V2. Nature 421, 535–539 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Landisman, C. E. & Ts'o, D. Y. Color processing in macaque striate cortex: relationships to ocular dominance, cytochrome oxidase, and orientation. J. Neurophysiol. 87, 3126–3317 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Landisman, C. E. & Ts'o, D. Y. Color processing in macaque striate cortex: electrophysiological properties. J. Neurophysiol. 87, 3138–3151 (2002).

    Article  PubMed  Google Scholar 

  64. Roe, A. W. & Ts'o, D. Y. Visual topography in primate V2: multiple representation across functional stripes. J. Neurosci. 15, 3689–3715 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ungerleider, L. G. & Mishkin, M. in Analysis of Visual Behavior (eds Ingle, D. J., Goodale, M. A. & Mansfeld, R. J. W.) 549–586 (MIT Press, Cambridge, Massachusetts, 1982).

    Google Scholar 

  66. Zeki, S. Functional specialisation in the visual cortex of the rhesus monkey. Nature 274, 423–428 (1978).

    Article  CAS  PubMed  Google Scholar 

  67. Livingstone, M. S. & Hubel, D. H. Anatomy and physiology of a color system in the primate visual cortex. J. Neurosci. 4, 309–356 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. DeYoe, A. & Van Essen, D. C. Segregation of efferent connections and receptive field properties in visual area V2 of the macaque. Nature 317, 58–61 (1985).

    Article  CAS  PubMed  Google Scholar 

  69. Hubel, D. H. & Livingstone, M. S. Segregation of form, color, and stereopsis in primate area 18. J. Neurosci. 7, 3378–3415 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Livingstone, M. S. & Hubel, D. H. Segregation of form, color, movement, and depth: anatomy, physiology, and perception. Science 240, 740–749 (1988).

    Article  CAS  PubMed  Google Scholar 

  71. Shipp, S. & Zeki, S. Segregation of pathways leading from area V2 to areas V4 and V5 of macaque monkey visual cortex. Nature 315, 322–325 (1985).

    Article  CAS  PubMed  Google Scholar 

  72. Livingstone, M. S. & Hubel, D. H. Connections between layer 4B of area 17 and the thick cytochrome oxidase stripes of area 18 in the squirrel monkey. J. Neurosci. 7, 3371–3377 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ts'o, D. Y. & Gilbert, C. D. The organization of chromatic and spatial interactions in the primate striate cortex. J. Neurosci. 8, 1712–1727 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Roe, A. W. & Ts'o, D. Y. Specificity of color connectivity between primate V1 and V2. J. Neurophysiol. 82, 2719–2730 (1999).

    Article  CAS  PubMed  Google Scholar 

  75. Peterhans, E. & von der Heydt, R. Functional organization of area V2 in the alert macaque. Eur. J. Neurosci. 5, 509–524 (1993).

    Article  CAS  PubMed  Google Scholar 

  76. Gegenfurtner, K. R., Kiper, D. C. & Fenstemaker, S. B. Processing of color, form, and motion in macaque area V2. Visual Neurosci. 13, 161–172 (1996).

    Article  CAS  Google Scholar 

  77. Albright, T. D. & Stoner, G. R. Contextual influences on visual processing. Annu. Rev. Neurosci. 25, 339–379 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Spillmann, L. & Werner, S. Long-range interactions in visual perception. Trends Neurosci. 19, 428–434 (1996).

    Article  CAS  PubMed  Google Scholar 

  79. Rockland, K. S. A reticular pattern of intrinsic connections in primate area V2 (area 18). J. Comp. Neurol. 235, 467–478 (1985).

    Article  CAS  PubMed  Google Scholar 

  80. Levitt, J. B., Yoshioka, T. & Lund, J. S. Intrinsic cortical connections in macaque visual area V2: evidence for interaction between different functional streams. J. Comp. Neurol. 342, 551–570 (1994).

    Article  CAS  PubMed  Google Scholar 

  81. Levitt, J. B., Lund, J. S. & Yoshioka, T. Anatomical substrates for early stages in cortical processing of visual information in the macaque monkey. Behav Brain Res. 76, 5–19 (1996).

    Article  CAS  PubMed  Google Scholar 

  82. Leventhal, A. G., Thompson, K. G., Liu, D., Zhou, Y. & Ault, S. J. Concomitant sensitivity to orientation, direction, and color of cells in layers 2, 3, and 4 of monkey striate cortex. J. Neurosci. 15, 1808–1818 (1995). This study shows that colour and form processing are not correlated in area V1. The authors observe numerous cells that are selective for colour and orientation, even in the CO-blobs of V1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sincich, L. H. & Horton, J. C. Divided by cytochrome oxidase: a map of the projections from V1 to V2 in macaques. Science 295, 1734–1737 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Webster, M. A., DeValois, K. K. & Switkes, E. Orientation and spatial-frequency discrimination for luminance and chromatic gratings. J. Opt. Soc. Am. A 7, 1034–1049 (1990).

    Article  CAS  PubMed  Google Scholar 

  85. Hess, R. F., Sharpe, L. T. & Nordby, K. (eds) Night Vision (Cambridge Univ. Press, Cambridge, 1990).

    Google Scholar 

  86. Meadows, J. C. Disturbed perception of colours associated with localized cerebral lesions. Brain 97, 615–632 (1974).

    Article  CAS  PubMed  Google Scholar 

  87. Zeki, S. A century of cerebral achromatopsia. Brain 113, 1721–1777 (1990). A thorough and entertaining description of the history of the investigation of colour blindness.

    Article  PubMed  Google Scholar 

  88. Schiller, P. H., Logothetis, N. K. & Charles, E. R. Role of the color-opponent and broad-band channels in vision. Vis. Neurosci. 5, 321–346 (1990).

    Article  CAS  PubMed  Google Scholar 

  89. Page, W. K., King, W. M., Merigan, W. & Maunsell, J. Magnocellular or parvocellular lesions in the lateral geniculate nucleus of monkeys cause minor deficits of smooth pursuit eye movements. Vision Res. 34, 223–239 (1994).

    Article  CAS  PubMed  Google Scholar 

  90. Merigan, W. H. & Maunsell, J. H. How parallel are the primate visual pathways? Annu. Rev. Neurosci. 16, 369–402 (1993).

    Article  CAS  PubMed  Google Scholar 

  91. Lueck, C. J. et al. The colour centre in the cerebral cortex of man. Nature 340, 386–389 (1989).

    Article  CAS  PubMed  Google Scholar 

  92. McKeefry, D. & Zeki, S. The position and topography of the human colour centre as revealed by functional magnetic resonance imaging. Brain 120, 2229–2242 (1997). A detailed neuroimaging study of chromatic responses in the visual cortex of 12 human subjects.

    Article  PubMed  Google Scholar 

  93. Engel, S. A. & Furmanski, C. S. Selective adaptation to color contrast in human primary visual cortex. J. Neurosci. 21, 3949–3954 (2001). This study demonstrates selective adaptation of different populations of neurons in V1, in line with behavioural measurements.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hadjikhani, N., Liu, A. K., Dale, A. M., Cavanagh, P. & Tootell, R. B. Retinotopy and color sensitivity in human visual cortical area V8. Nature Neurosci. 1, 235–241 (1998). In this highly controversial article, the authors present evidence that a visual area other than hV4 gives strong and selective responses to colour.

    Article  CAS  PubMed  Google Scholar 

  95. Wade, A. R., Brewer, A. A., Rieger, J. W. & Wandell, B. A. Functional measurements of human ventral occipital cortex: retinotopy and color. Philos. Trans. R. Soc. Lond. B. 357, 963–973 (2002). An extensive neuroimaging investigation into the representation of visual stimuli in different cortical areas.

    Article  Google Scholar 

  96. Chelazzi, L., Miller, E. K., Duncan, J. & Desimone, R. Responses of neurons in macaque area V4 during memory-guided visual search. Cereb. Cortex 11, 761–772 (2001).

    Article  CAS  PubMed  Google Scholar 

  97. Sacks, O. & Wasserman, R. The case of the colorblind painter. NY Rev. Books 34, November 19 (1987).

  98. Zihl, J. & von Cramon, D. Zerebrale Sehstörungen (Kohlhammer, Stuttgart, 1986).

    Google Scholar 

  99. Victor, J. D., Maiese, K., Shapley, R., Sidtis, J. & Gazzaniga, M. S. Acquired central dyschromatopsia: analysis of a case with preservation of color discrimination. Clin. Vision Sci. 4, 183–196 (1989).

    Google Scholar 

  100. Heywood, C. A., Kentridge, R. W. & Cowey, A. Form and motion from colour in cerebral achromatopsia. Exp. Brain Res. 123, 145–153 (1998).

    Article  CAS  PubMed  Google Scholar 

  101. Cowey, A. & Heywood, C. A. Cerebral achromatopsia: colour blindness despite wavelength processing. Trends Cogn. Sci. 1, 133–139 (1997). A review article that presents evidence for intact processing of colour stimuli at the early stages of the visual system in cerebral achromatopsia.

    Article  CAS  PubMed  Google Scholar 

  102. Heywood, C. A., Cowey, A. & Newcombe, F. Chromatic discrimination in a cortically colour blind observer. Eur. J. Neurosci. 3, 802–812 (1991).

    Article  PubMed  Google Scholar 

  103. Heywood, C. A., Nicholas, J. J. & Cowey, A. Behavioural and electrophysiological chromatic and achromatic contrast sensitivity in an achromatopsic patient. J. Neurol. Neurosurg. Psychiatry 60, 638–643 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Troscianko, T. et al. Human colour discrimination based on a non-parvocellular pathway. Curr. Biol. 6, 200–210 (1996).

    Article  CAS  PubMed  Google Scholar 

  105. Cavanagh, P. et al. Complete sparing of high-contrast color input to motion perception in cortical color blindness. Nature Neurosci. 1, 242–247 (1998).

    Article  CAS  PubMed  Google Scholar 

  106. Heywood, C. A. & Cowey, A. On the role of cortical area V4 in the discrimination of hue and pattern in macaque monkeys. J. Neurosci. 7, 2601–2617 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Walsh, V., Kulikowski, J. J., Butler, S. R. & Carden, D. The effects of lesions of area V4 on the visual abilities of macaques: colour categorization. Behav. Brain Res. 52, 81–89 (1992).

    Article  CAS  PubMed  Google Scholar 

  108. Schiller, P. H. The effects of V4 and middle temporal (MT) area lesions on visual performance in the rhesus monkey. Vis. Neurosci. 10, 717–746 (1993).

    Article  CAS  PubMed  Google Scholar 

  109. Cowey, A., Heywood, C. A. & Irving-Bell, L. The regional cortical basis of achromatopsia: a study on macaque monkeys and an achromatopsic patient. Eur. J. Neurosci. 14, 1555–1566 (2001).

    Article  CAS  PubMed  Google Scholar 

  110. Merigan, W. H. Human V4? Curr. Biol. 3, 226–229 (1993).

    Article  CAS  PubMed  Google Scholar 

  111. Heywood, C. A., Kentridge, R. W. & Cowey, A. Cortical color blindness is not 'blindsight for color'. Conscious. Cogn. 7, 410–423 (1998).

    Article  CAS  PubMed  Google Scholar 

  112. Heywood, C. A. & Cowey, A. With color in mind. Nature Neurosci. 1, 171–173 (1998).

    Article  CAS  PubMed  Google Scholar 

  113. Zeki, S., McKeefry, D. J., Bartels, A. & Frackowiak, R. S. J. Has a new color area been discovered? Nature Neurosci. 1, 335 (1998).

    Article  CAS  PubMed  Google Scholar 

  114. Tootell, R. B. & Hadjikhani, N. Where is 'dorsal V4' in human visual cortex? Retinotopic, topographic and functional evidence. Cereb. Cortex 11, 298–311 (2001).

    Article  CAS  PubMed  Google Scholar 

  115. Zeki, S. Improbable areas in the visual brain. Trends Neurosci. 26, 23–26 (2003).

    Article  CAS  PubMed  Google Scholar 

  116. Allison, T. et al. Electrophysiological studies of color processing in human visual cortex. Electroencephalogr. Clin. Neurophysiol. 88, 343–355 (1993).

    Article  CAS  PubMed  Google Scholar 

  117. Clarke, S., Walsh, V., Schoppig, A., Assal, G. & Cowey, A. Colour constancy impairments in patients with lesions of the prestriate cortex. Exp. Brain Res. 123, 154–158 (1998).

    Article  CAS  PubMed  Google Scholar 

  118. Rüttiger, L. et al. Selective color constancy deficits after circumscribed unilateral brain lesions. J. Neurosci. 19, 3094–3106 (1999).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Schoppig, A. et al. Short-term memory for colour following posterior hemispheric lesions in man. Neuroreport 10, 1379–1384 (1999).

    Article  CAS  PubMed  Google Scholar 

  120. Reid, R. C. & Shapley, R. M. Spatial structure of cone inputs to receptive fields in primate lateral geniculate nucleus. Nature 356, 716–718 (1992).

    Article  CAS  PubMed  Google Scholar 

  121. Brewer, A. A., Press, W. A., Logothetis, N. K. & Wandell, B. A. Visual areas in macaque cortex measured using functional magnetic resonance imaging. J. Neurosci. 22, 10416–10426 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Logothetis, N. K., Pauls, J., Augath, M., Trinath, T. & Oeltermann, A. Neurophysiological investigation of the basis of the fMRI signal. Nature 412, 150–157 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I am grateful to D. Braun, M. Hawken and D. Kiper for valuable comments on a previous version of this manuscript. This work was supported by the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Related links

Related links

FURTHER INFORMATION

MIT Encyclopedia of Cognitive Science

neurophysiology of color

Color matters

Gegenfurtner's personal page

Hans Irtel's colour vision demonstrations

Glossary

METAMERIC

Two stimuli with different spectral light distributions are called metameric if they lead to the same activation patterns in the three cones.

V λ

The human luminous efficiency function Vλ specifies the effectiveness with which stimuli of different wavelength activate the visual system.

LATERAL INHIBITION

Neurons in the retina receive inhibitory input from neighbouring neurons. This reduces the response to slowly changing image intensities and increases the response to sharp edges.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gegenfurtner, K. Cortical mechanisms of colour vision. Nat Rev Neurosci 4, 563–572 (2003). https://doi.org/10.1038/nrn1138

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1138

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing