Key Points
-
Colour vision is an integral part of the human visual system. It relies on the presence of three types of cone photoreceptor in the retina, which have different but overlapping wavelength tuning curves.
-
Colour information is sent in three colour-opponent channels from they eye to the brain. These 'cardinal' mechanisms, which are usually termed black–white, red–green and blue–yellow, have been characterized psychophysically, physiologically and computationally to be independent and efficient.
-
In the primary visual cortex (area V1), a large proportion of neurons respond selectively to colour information. Most of these neurons also respond to variations in the brightness of visual stimuli. The colour combinations that are preferred by these neurons are no longer constrained to the three cardinal directions. In higher visual areas, neurons become more selective in their colour tuning and respond only to a small range of colours. About a third of neurons in area V2 combine their inputs in such a nonlinear manner.
-
Colour is processed jointly with other visual attributes, such as orientation, depth and motion. Neurons in different anatomically defined compartments of the second visual area, for example, show joint selectivity for these different attributes. For most psychophysical tasks, the visual system works just as well for coloured stimuli as it does for black and white stimuli, once the magnitude of the different stimuli is made comparable.
-
Colour constancy describes the ability of the visual system to discount large changes in illumination, so that objects look the same colour even under different illuminations. Both retinal and cortical factors contribute to colour constancy. Cells in V1 with both spatial and chromatic opponency ('double-opponent' cells) might be important for this achievement.
-
People with an acquired colour vision deficiency (achromatopsia) often have damage to a small region in the lateral occipital cortex. The same region is typically highly active in neuroimaging experiments when subjects view coloured scenes. The residual abilities of achromatopsic patients show that their main deficit seems to be the assignment of colours to objects, rather than the perception of colours per se.
-
Our understanding of the cortical processing of colour is still far from complete. A better understanding of the relationships between areas of monkey visual cortex and apparently homologous areas in the human brain will help us to address remaining questions, such as the degree to which colour information is segregated from other visual attributes. In the long run, more emphasis has to be given to the computations that are performed on the colour signals (and visual signals in general), rather than to the localization of regions that are important for the analysis of colour.
Abstract
The perception of colour is a central component of primate vision. Colour facilitates object perception and recognition, and has an important role in scene segmentation and visual memory. Moreover, it provides an aesthetic component to visual experiences that is fundamental to our perception of the world. Despite the long history of colour vision studies, much has still to be learned about the physiological basis of colour perception. Recent advances in our understanding of the early processing in the retina and thalamus have enabled us to take a fresh look at cortical processing of colour. These studies are beginning to indicate that colour is processed not in isolation, but together with information about luminance and visual form, by the same neural circuits, to achieve a unitary and robust representation of the visual world.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Towards intelligent illumination systems: from the basics of light science to its application
Zeitschrift für Arbeitswissenschaft Open Access 02 December 2022
-
Processing of visual statistics of naturalistic videos in macaque visual areas V1 and V4
Brain Structure and Function Open Access 14 March 2022
-
Temporal dynamics of the neural representation of hue and luminance polarity
Nature Communications Open Access 03 February 2022
Access options
Subscribe to this journal
Receive 12 print issues and online access
$189.00 per year
only $15.75 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout






References
Young, T. The Bakerian lecture: on the theory of light and colours. Phil. Trans. R. Soc. Lond. 92, 12–48 (1802).
Helmholtz, H. L. F. Über die Theorie der zusammengesetzten Farben. Ann. Phys. Leipzig 887, 45–66 (1852).
Stockman, A. & Sharpe, L. T. The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype. Vision Res. 40, 1711–1737 (2000).
Nathans, J. The evolution and physiology of human color vision: insights from molecular genetic studies of visual pigments. Neuron 24, 299–312 (1999).
Mollon, J. D. & Jordan, G. “Tho' she kneel'd in that place where they grew...” — the uses and origins of primate colour vision. J. Exp. Biol. 146, 21–38 (1988).
Rushton, W. A. H. in Handbook of Sensory Physiology Vol VII/1. Photochemistry of Vision (ed. Dartnall, H. J. A.) 364–394 (Springer, New York, 1972).
DeValois, R. L., Abramov, I. & Jacobs, G. H. Analysis of response patterns of LGN cells. J. Opt. Soc. Am. A 56, 966–977 (1966).
Derrington, A. M., Krauskopf, J. & Lennie, P. Chromatic mechanisms in the lateral geniculate nucleus of macaque. J. Physiol. (Lond.) 357, 241–265 (1984).
Krauskopf, J., Williams, D. R. & Heeley, D. W. Cardinal directions of color space. Vision Res. 22, 1123–1131 (1982).
Buchsbaum, G. & Gottschalk, A. Trichromacy, opponent colours coding and optimum colour information transmission in the retina. Proc. R. Soc. Lond. B 220, 89–113 (1983).
Zeki, S. M. Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey. J. Physiol. (Lond.) 236, 549–573 (1974).
Zeki, S. M. Colour coding in the superior temporal sulcus of rhesus monkey visual cortex. Proc. R. Soc. Lond. B 197, 195–223 (1977).
Liebmann, S. Über das Verhalten farbiger Formen bei Helligkeitsgleichheit von Figur und Grund. Psychol. Forschung 9, 300–353 (1927).
Ramachandran, V. S. & Gregory, R. L. Does colour provide an input to human motion perception? Nature 275, 55–56 (1978).
Livingstone, M. S. & Hubel, D. H. Psychophysical evidence for separate channels for the perception of form, color, movement, and depth. J. Neurosci. 7, 3416–3468 (1987).
Krauskopf, J. in Color Vision: From Genes to Perception (eds Gegenfurtner, K. R. & Sharpe, L. T.) 303–316 (Cambridge Univ. Press, New York, 1999).
Hawken, M. J. & Gegenfurtner, K. R. in Color Vision: From Genes to Perception (eds Gegenfurtner, K. R. & Sharpe, L. T.) 283–299 (Cambridge Univ. Press, New York, 1999).
Albrecht, D. G. & Hamilton, D. B. Striate cortex of monkey and cat: contrast response function. J. Neurophysiol. 48, 217–237 (1982).
Chaparro, A., Stromeyer, C. F., Huang, E. P., Kronauer, R. E. & Eskew, R. T. Jr. Colour is what the eye sees best. Nature 361, 348–350 (1993). A psychophysical study showing the extremely high sensitivity of the red–green colour vision system.
Gegenfurtner, K. R. & Hawken, M. J. Temporal and chromatic properties of motion mechanisms. Vision Res. 35, 1547–1563 (1995).
Gegenfurtner, K. R. & Rieger, J. Sensory and cognitive contributions of color to the recognition of natural scenes. Curr. Biol. 10, 805–808 (2000).
Wichmann, F. A., Sharpe, L. T. & Gegenfurtner, K. R. The contributions of color to recognition memory for natural scenes. J. Exp. Psychol. Learn. Mem. Cogn. 28, 509–520 (2002).
Kirschmann, A. Ueber die quantitativen Verhaeltnisse des simultanen Helligkeits- und Farben-Contrastes. Philos. Stud. 6, 417–491 (1891).
Hurlbert, A. in Perceptual Constancy: Why Things Look As They Do (eds Walsh, V. & Kulikowski, J.) 283–321 (Cambridge Univ. Press, Cambridge, 1998).
Hubel, D. H. & Wiesel, T. N. Receptive fields and functional architecture of monkey striate cortex. J. Physiol. (Lond.) 195, 215–243 (1968).
Conway, B. R., Hubel, D. H. & Livingstone, M. S. Color contrast in macaque V1. Cereb. Cortex 12, 915–925 (2002).
Lee, B. B., Martin, P. R. & Valberg, A. The physiological basis of heterochromatic flicker photometry demonstrated in the ganglion cells of the macaque retina. J. Physiol. (Lond.) 404, 323–347 (1988).
Shapley, R. Visual sensitivity and parallel retinocortical channels. Annu. Rev. Psychol. 41, 635–658 (1990).
Gegenfurtner, K. R. et al. Chromatic properties of neurons in macaque MT. Vis. Neurosci. 11, 455–466 (1994).
Dobkins, K. R. & Albright, T. D. Behavioral and neural effects of chromatic isoluminance in the primate visual motion system. Vis. Neurosci. 12, 321–332 (1995).
Dow, B. M. & Gouras, P. Color and spatial specificity of single units in Rhesus monkey foveal striate cortex. J. Neurophysiol. 36, 79–100 (1973).
Gouras, P. Opponent-colour cells in different layers of foveal striate cortex. J. Physiol. (Lond.) 199, 533–547 (1974).
Yates, J. T. Chromatic information processing in the foveal projection (area striata) of unanesthetized primate. Vision Res. 14, 163–173 (1974).
Thorell, L. G., DeValois, R. L. & Albrecht, D. G. Spatial mapping of monkey V1 cells with pure color and luminance stimuli. Vision Res. 24, 751–769 (1984). The first study to show that most cells in area V1 of macaques respond to luminance and colour stimuli. The authors also observed a large number of cells that show spatial tuning to isoluminant stimuli.
Johnson, E. N., Hawken, M. J. & Shapley, R. The spatial transformation of color in the primary visual cortex of the macaque monkey. Nature Neurosci. 4, 409–416 (2001). The authors present single unit recordings from area V1 of macaque monkeys showing that most neurons respond to colour and luminance, many of them with an oriented double-opponent receptive field organization.
Kiper, D. C., Fenstemaker, S. B. & Gegenfurtner, K. R. Chromatic properties of neurons in macaque area V2. Vis. Neurosci. 14, 1061–1072 (1997). An investigation into the chromatic tuning properties of neurons in area V2 of macaque monkeys. About a third of the neurons in this study show a highly selective response to particular colours.
Shipp, S. & Zeki, S. The functional organization of area V2, I: specialization across stripes and layers. Vis. Neurosci. 19, 187–210 (2002).
Friedmann, S., Zhou, H. & von der Heydt, R. The coding of uniform color figures in monkey visual cortex. J. Physiol. (Lond.) 548, 593–613 (2003). For the first time, the responses to colour and form are investigated in a large population of neurons in V1 and V2 of awake behaving monkeys. The authors find no correlation between colour and form responses.
Kleinschmidt, A., Lee, B. B., Requart, M. & Frahm, J. Functional mapping of color processing by magnetic resonance imaging of responses to selective p- and m-pathway stimulation. Exp. Brain Res. 110, 279–288 (1996).
Engel, S. A., Zhang, X. & Wandell, B. A. Color tuning in human visual cortex measured using functional magnetic resonance imaging. Nature 388, 68–71 (1997). These authors use functional neuroimaging to show that visual cortical areas V1 and V2 give a strong colour-opponent response.
Lennie, P., Krauskopf, J. & Sclar, G. Chromatic mechanisms in striate cortex of macaque. J. Neurosci. 10, 649–669 (1990). This was the first study to show that the chromatic tuning of neurons in area V1 of macaque monkeys is not restricted to the three colour-opponent mechanisms of the LGN.
Wachtler, T., Sejnowski, T. J. & Albright, T. D. Representation of color stimuli in awake macaque primary visual cortex. Neuron 37, 681–691 (2003).
Shapley, R. M. & Hawken, M. J. Neural mechanisms for color perception in the primary visual cortex. Curr. Opin. Neurobiol. (in the press).
Yoshioka, T., Dow, B. M. & Vautin, R. G. Neuronal mechanisms of color categorization in areas V1, V2 and V4 of macaque monkey visual cortex. Behav. Brain Res. 76, 51–70 (1996).
Levitt, J. B., Kiper, D. C. & Movshon, J. A. Receptive fields and functional architecture of macaque V2. J. Neurophysiol. 71, 2517–2542 (1994).
Cottaris, N. P. & DeValois, R. L. Temporal dynamics of chromatic tuning in macaque primary visual cortex. Nature 395, 896–900 (1998).
Gegenfurtner, K. R. & Kiper, D. C. Contrast detection in luminance and chromatic noise. J. Opt. Soc. Am. A 9, 1880–1888 (1992).
Healey, G. Using color for geometry-insensitive segmentation. J. Opt. Soc. Am. A 6, 920–937 (1989).
Kraft, J. M. & Brainard, D. H. Mechanisms of color constancy under nearly natural viewing. Proc. Natl Acad. Sci. USA 96, 307–312 (1999).
von Kries, J. Chromatic Adaptation. Selection translated and reprinted in Sources of Color Science (ed. MacAdam, D. L.) 109–119 (MIT Press, Cambridge, Massachusetts, 1970).
Foster, G. H. & Nascimento, S. M. Relational colour constancy from invariant cone-excitation ratios. Proc. R. Soc. Lond. B 257, 115–121 (1994).
Daw, N. W. Goldfish retina: organization for simultaneous color contrast. Science 158, 942–944 (1967).
Michael, C. R. Color vision mechanisms in monkey striate cortex: dual-opponent cells with concentric receptive fields. J. Neurophysiol. 41, 572–588 (1978).
Michael, C. R. Color vision mechanisms in monkey striate cortex: simple cells with dual opponent-color concentric receptive fields. J. Neurophysiol. 41, 1233–1249 (1978).
Michael, C. R. Color-sensitive complex cells in monkey striate cortex. J. Neurophysiol. 41, 1250–1266 (1978).
Conway, B. R. Spatial structure of cone inputs to color cells in alert macaque primary visual cortex (V-1). J. Neurosci. 21, 2768–2783 (2001).
Zeki, S. Color coding in the cerebral cortex: the reaction of cells in monkey visual cortex to wavelengths and colors. Neuroscience 9, 741–765 (1983).
Zeki, S. Color coding in the cerebral cortex: the responses of wavelength-selective and color-coded cells in monkey visual cortex to changes in wavelength composition. Neuroscience 9, 767–781 (1983).
Schein, S. J. & Desimone, R. Spectral properties of V4 neurons in the macaque. J. Neurosci. 10, 3369–3389 (1990).
Salzman, C. D., Britten, K. H. & Newsome, W. T. Cortical microstimulation influences perceptual judgements of motion direction. Nature 346, 174–177 (1990).
Xiao, Y., Wang, Y. & Felleman, D. J. A spatially organized representation of colour in macaque cortical area V2. Nature 421, 535–539 (2003).
Landisman, C. E. & Ts'o, D. Y. Color processing in macaque striate cortex: relationships to ocular dominance, cytochrome oxidase, and orientation. J. Neurophysiol. 87, 3126–3317 (2002).
Landisman, C. E. & Ts'o, D. Y. Color processing in macaque striate cortex: electrophysiological properties. J. Neurophysiol. 87, 3138–3151 (2002).
Roe, A. W. & Ts'o, D. Y. Visual topography in primate V2: multiple representation across functional stripes. J. Neurosci. 15, 3689–3715 (1995).
Ungerleider, L. G. & Mishkin, M. in Analysis of Visual Behavior (eds Ingle, D. J., Goodale, M. A. & Mansfeld, R. J. W.) 549–586 (MIT Press, Cambridge, Massachusetts, 1982).
Zeki, S. Functional specialisation in the visual cortex of the rhesus monkey. Nature 274, 423–428 (1978).
Livingstone, M. S. & Hubel, D. H. Anatomy and physiology of a color system in the primate visual cortex. J. Neurosci. 4, 309–356 (1984).
DeYoe, A. & Van Essen, D. C. Segregation of efferent connections and receptive field properties in visual area V2 of the macaque. Nature 317, 58–61 (1985).
Hubel, D. H. & Livingstone, M. S. Segregation of form, color, and stereopsis in primate area 18. J. Neurosci. 7, 3378–3415 (1987).
Livingstone, M. S. & Hubel, D. H. Segregation of form, color, movement, and depth: anatomy, physiology, and perception. Science 240, 740–749 (1988).
Shipp, S. & Zeki, S. Segregation of pathways leading from area V2 to areas V4 and V5 of macaque monkey visual cortex. Nature 315, 322–325 (1985).
Livingstone, M. S. & Hubel, D. H. Connections between layer 4B of area 17 and the thick cytochrome oxidase stripes of area 18 in the squirrel monkey. J. Neurosci. 7, 3371–3377 (1987).
Ts'o, D. Y. & Gilbert, C. D. The organization of chromatic and spatial interactions in the primate striate cortex. J. Neurosci. 8, 1712–1727 (1988).
Roe, A. W. & Ts'o, D. Y. Specificity of color connectivity between primate V1 and V2. J. Neurophysiol. 82, 2719–2730 (1999).
Peterhans, E. & von der Heydt, R. Functional organization of area V2 in the alert macaque. Eur. J. Neurosci. 5, 509–524 (1993).
Gegenfurtner, K. R., Kiper, D. C. & Fenstemaker, S. B. Processing of color, form, and motion in macaque area V2. Visual Neurosci. 13, 161–172 (1996).
Albright, T. D. & Stoner, G. R. Contextual influences on visual processing. Annu. Rev. Neurosci. 25, 339–379 (2002).
Spillmann, L. & Werner, S. Long-range interactions in visual perception. Trends Neurosci. 19, 428–434 (1996).
Rockland, K. S. A reticular pattern of intrinsic connections in primate area V2 (area 18). J. Comp. Neurol. 235, 467–478 (1985).
Levitt, J. B., Yoshioka, T. & Lund, J. S. Intrinsic cortical connections in macaque visual area V2: evidence for interaction between different functional streams. J. Comp. Neurol. 342, 551–570 (1994).
Levitt, J. B., Lund, J. S. & Yoshioka, T. Anatomical substrates for early stages in cortical processing of visual information in the macaque monkey. Behav Brain Res. 76, 5–19 (1996).
Leventhal, A. G., Thompson, K. G., Liu, D., Zhou, Y. & Ault, S. J. Concomitant sensitivity to orientation, direction, and color of cells in layers 2, 3, and 4 of monkey striate cortex. J. Neurosci. 15, 1808–1818 (1995). This study shows that colour and form processing are not correlated in area V1. The authors observe numerous cells that are selective for colour and orientation, even in the CO-blobs of V1.
Sincich, L. H. & Horton, J. C. Divided by cytochrome oxidase: a map of the projections from V1 to V2 in macaques. Science 295, 1734–1737 (2002).
Webster, M. A., DeValois, K. K. & Switkes, E. Orientation and spatial-frequency discrimination for luminance and chromatic gratings. J. Opt. Soc. Am. A 7, 1034–1049 (1990).
Hess, R. F., Sharpe, L. T. & Nordby, K. (eds) Night Vision (Cambridge Univ. Press, Cambridge, 1990).
Meadows, J. C. Disturbed perception of colours associated with localized cerebral lesions. Brain 97, 615–632 (1974).
Zeki, S. A century of cerebral achromatopsia. Brain 113, 1721–1777 (1990). A thorough and entertaining description of the history of the investigation of colour blindness.
Schiller, P. H., Logothetis, N. K. & Charles, E. R. Role of the color-opponent and broad-band channels in vision. Vis. Neurosci. 5, 321–346 (1990).
Page, W. K., King, W. M., Merigan, W. & Maunsell, J. Magnocellular or parvocellular lesions in the lateral geniculate nucleus of monkeys cause minor deficits of smooth pursuit eye movements. Vision Res. 34, 223–239 (1994).
Merigan, W. H. & Maunsell, J. H. How parallel are the primate visual pathways? Annu. Rev. Neurosci. 16, 369–402 (1993).
Lueck, C. J. et al. The colour centre in the cerebral cortex of man. Nature 340, 386–389 (1989).
McKeefry, D. & Zeki, S. The position and topography of the human colour centre as revealed by functional magnetic resonance imaging. Brain 120, 2229–2242 (1997). A detailed neuroimaging study of chromatic responses in the visual cortex of 12 human subjects.
Engel, S. A. & Furmanski, C. S. Selective adaptation to color contrast in human primary visual cortex. J. Neurosci. 21, 3949–3954 (2001). This study demonstrates selective adaptation of different populations of neurons in V1, in line with behavioural measurements.
Hadjikhani, N., Liu, A. K., Dale, A. M., Cavanagh, P. & Tootell, R. B. Retinotopy and color sensitivity in human visual cortical area V8. Nature Neurosci. 1, 235–241 (1998). In this highly controversial article, the authors present evidence that a visual area other than hV4 gives strong and selective responses to colour.
Wade, A. R., Brewer, A. A., Rieger, J. W. & Wandell, B. A. Functional measurements of human ventral occipital cortex: retinotopy and color. Philos. Trans. R. Soc. Lond. B. 357, 963–973 (2002). An extensive neuroimaging investigation into the representation of visual stimuli in different cortical areas.
Chelazzi, L., Miller, E. K., Duncan, J. & Desimone, R. Responses of neurons in macaque area V4 during memory-guided visual search. Cereb. Cortex 11, 761–772 (2001).
Sacks, O. & Wasserman, R. The case of the colorblind painter. NY Rev. Books 34, November 19 (1987).
Zihl, J. & von Cramon, D. Zerebrale Sehstörungen (Kohlhammer, Stuttgart, 1986).
Victor, J. D., Maiese, K., Shapley, R., Sidtis, J. & Gazzaniga, M. S. Acquired central dyschromatopsia: analysis of a case with preservation of color discrimination. Clin. Vision Sci. 4, 183–196 (1989).
Heywood, C. A., Kentridge, R. W. & Cowey, A. Form and motion from colour in cerebral achromatopsia. Exp. Brain Res. 123, 145–153 (1998).
Cowey, A. & Heywood, C. A. Cerebral achromatopsia: colour blindness despite wavelength processing. Trends Cogn. Sci. 1, 133–139 (1997). A review article that presents evidence for intact processing of colour stimuli at the early stages of the visual system in cerebral achromatopsia.
Heywood, C. A., Cowey, A. & Newcombe, F. Chromatic discrimination in a cortically colour blind observer. Eur. J. Neurosci. 3, 802–812 (1991).
Heywood, C. A., Nicholas, J. J. & Cowey, A. Behavioural and electrophysiological chromatic and achromatic contrast sensitivity in an achromatopsic patient. J. Neurol. Neurosurg. Psychiatry 60, 638–643 (1996).
Troscianko, T. et al. Human colour discrimination based on a non-parvocellular pathway. Curr. Biol. 6, 200–210 (1996).
Cavanagh, P. et al. Complete sparing of high-contrast color input to motion perception in cortical color blindness. Nature Neurosci. 1, 242–247 (1998).
Heywood, C. A. & Cowey, A. On the role of cortical area V4 in the discrimination of hue and pattern in macaque monkeys. J. Neurosci. 7, 2601–2617 (1987).
Walsh, V., Kulikowski, J. J., Butler, S. R. & Carden, D. The effects of lesions of area V4 on the visual abilities of macaques: colour categorization. Behav. Brain Res. 52, 81–89 (1992).
Schiller, P. H. The effects of V4 and middle temporal (MT) area lesions on visual performance in the rhesus monkey. Vis. Neurosci. 10, 717–746 (1993).
Cowey, A., Heywood, C. A. & Irving-Bell, L. The regional cortical basis of achromatopsia: a study on macaque monkeys and an achromatopsic patient. Eur. J. Neurosci. 14, 1555–1566 (2001).
Merigan, W. H. Human V4? Curr. Biol. 3, 226–229 (1993).
Heywood, C. A., Kentridge, R. W. & Cowey, A. Cortical color blindness is not 'blindsight for color'. Conscious. Cogn. 7, 410–423 (1998).
Heywood, C. A. & Cowey, A. With color in mind. Nature Neurosci. 1, 171–173 (1998).
Zeki, S., McKeefry, D. J., Bartels, A. & Frackowiak, R. S. J. Has a new color area been discovered? Nature Neurosci. 1, 335 (1998).
Tootell, R. B. & Hadjikhani, N. Where is 'dorsal V4' in human visual cortex? Retinotopic, topographic and functional evidence. Cereb. Cortex 11, 298–311 (2001).
Zeki, S. Improbable areas in the visual brain. Trends Neurosci. 26, 23–26 (2003).
Allison, T. et al. Electrophysiological studies of color processing in human visual cortex. Electroencephalogr. Clin. Neurophysiol. 88, 343–355 (1993).
Clarke, S., Walsh, V., Schoppig, A., Assal, G. & Cowey, A. Colour constancy impairments in patients with lesions of the prestriate cortex. Exp. Brain Res. 123, 154–158 (1998).
Rüttiger, L. et al. Selective color constancy deficits after circumscribed unilateral brain lesions. J. Neurosci. 19, 3094–3106 (1999).
Schoppig, A. et al. Short-term memory for colour following posterior hemispheric lesions in man. Neuroreport 10, 1379–1384 (1999).
Reid, R. C. & Shapley, R. M. Spatial structure of cone inputs to receptive fields in primate lateral geniculate nucleus. Nature 356, 716–718 (1992).
Brewer, A. A., Press, W. A., Logothetis, N. K. & Wandell, B. A. Visual areas in macaque cortex measured using functional magnetic resonance imaging. J. Neurosci. 22, 10416–10426 (2002).
Logothetis, N. K., Pauls, J., Augath, M., Trinath, T. & Oeltermann, A. Neurophysiological investigation of the basis of the fMRI signal. Nature 412, 150–157 (2001).
Acknowledgements
I am grateful to D. Braun, M. Hawken and D. Kiper for valuable comments on a previous version of this manuscript. This work was supported by the Deutsche Forschungsgemeinschaft.
Author information
Authors and Affiliations
Related links
Related links
FURTHER INFORMATION
MIT Encyclopedia of Cognitive Science
Glossary
- METAMERIC
-
Two stimuli with different spectral light distributions are called metameric if they lead to the same activation patterns in the three cones.
- V λ
-
The human luminous efficiency function Vλ specifies the effectiveness with which stimuli of different wavelength activate the visual system.
- LATERAL INHIBITION
-
Neurons in the retina receive inhibitory input from neighbouring neurons. This reduces the response to slowly changing image intensities and increases the response to sharp edges.
Rights and permissions
About this article
Cite this article
Gegenfurtner, K. Cortical mechanisms of colour vision. Nat Rev Neurosci 4, 563–572 (2003). https://doi.org/10.1038/nrn1138
Issue Date:
DOI: https://doi.org/10.1038/nrn1138
This article is cited by
-
Towards intelligent illumination systems: from the basics of light science to its application
Zeitschrift für Arbeitswissenschaft (2023)
-
Temporal dynamics of the neural representation of hue and luminance polarity
Nature Communications (2022)
-
Function-specific projections from V2 to V4 in macaques
Brain Structure and Function (2022)
-
Processing of visual statistics of naturalistic videos in macaque visual areas V1 and V4
Brain Structure and Function (2022)
-
Image motion with color contrast suffices to elicit an optokinetic reflex in Xenopus laevis tadpoles
Scientific Reports (2021)