Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Viral vectors for gene delivery to the nervous system

Key Points

  • The use of viral vectors to deliver genes to the nervous system shows great promise for both basic research and therapeutic applications. However, the brain presents a challenging target for gene delivery, because of its complex structure, compartmentalized functions and high sensitivity to insult. This review describes the properties of the vector types that are currently in use, to aid in their selection for specific applications.

  • The spectrum of vectors used in basic research applications surpasses the few being used in clinical trials. It comprises viruses with simple capsid virions — such as recombinant adenovirus and adeno-associated virus — and others such as retrovirus/lentivirus, alphavirus and herpes virus, in which the capsid is surrounded by a lipid bilayer envelope.

  • Delivery modalities can be grouped into those that attempt to achieve widespread gene delivery throughout the brain (global) and those that target specific cell populations (focal). Gene delivery can be achieved by direct injection of the vector or implantation of transduced cells into the brain parenchyma.

  • Visualization of gene expression is crucial for the optimization of vector design and delivery. This has been achieved using histochemical reporter enzymes, such as Escherichia coli lacZ and human alkaline phosphatase, or fluorescent proteins, such as green fluorescent protein and red fluorescent protein.

  • With a few exceptions, most virus vectors deliver genes into the nucleus of the target cell. Within the nucleus, the viral DNA can be maintained as a non-replicating extrachromosomal element, become integrated into the host-cell genome, or replicate as an extrachromosomal element.

  • Neurons have proven to be resistant to most non-viral means of transduction, and viral vectors provide an efficient means of delivering nucleic acids to allow the expression of normal or mutant proteins within cells, or to inhibit the expression of a particular protein.

  • At present, gene therapy for disorders of the central nervous system is focused on life-threatening or severely debilitating diseases, owing in part to unknown risk factors associated with virus vectors. Neurological conditions where these vectors might prove to be effective include stroke, spinal cord injury, neurodegenerative diseases, lysosomal storage diseases, brain tumours and pain.

Abstract

Our ability to manipulate the genetic constitution of the nervous system has come of age with various technologies, including virus vectors that can efficiently deliver genes to neurons and other neural cells in vitro and in vivo. These vectors allow us to monitor neurobiological functions, replace, correct, express or block expression of target genes, tag cells for fate determination, and change the physiological state of specific cell populations. The available vectors differ in their suitability for different applications, which depends on factors such as the size of the transgene, route of delivery, tropism, duration and regulation of gene expression, and side effects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Virus entry into cells.
Figure 2: Modes of gene delivery to the brain.
Figure 3: Gene transfer to the rodent nervous system using recombinant lentivirus (feline immunodeficiency virus, FIV), adeno-associated virus serotype 5 (AAV5) and herpes simplex virus (HSV) amplicon vectors.
Figure 4: Chimaeric expression of transgenes in specific cell types.

Similar content being viewed by others

References

  1. Bohn, M. A. Parkinson's disease: A neurodegenerative disease particularly amenable to gene therapy. Mol. Ther. 1, 494–496 (2000).

    CAS  PubMed  Google Scholar 

  2. Sly, W. S. & Vogler, C. Brain-directed gene therapy for lysosomal storage disease: going well beyond the blood–brain barrier. Proc. Natl Acad. Sci. USA 99, 5760–5762 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Kay, M. A., Glorioso, J. & Naldini, L. Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nature 7, 33–40 (2001).

    CAS  Google Scholar 

  4. Bartlett, J. S., Samulski, R. J. & McCown, T. J. Selective and rapid uptake of adeno-associated virus type 2 in brain. Hum. Gene Ther. 9, 1181–1186 (1998). Showed the uptake of pre-labelled viral particles into specific cells in the brain, confirming the selective tropism of AAV2 for neurons.

    CAS  PubMed  Google Scholar 

  5. Haberman, R. et al. Therapeutic liabilities of in vivo viral vector tropism: adeno-associated virus vectors, NMDAR1 antisense, and focal seizure sensitivity. Mol. Ther. 6, 495–500 (2002).

    CAS  PubMed  Google Scholar 

  6. Yang, G. S. et al. Virus-mediated transduction of murine retina with adeno-associated virus: effects of viral capsid and genome size. J. Virol. 76, 7651–7660 (2002). Demonstrated the specific tropism of AAV serotypes for neural and epithelial layers in the eye.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Auricchio, A. et al. Exchange of surface proteins impacts on viral vector cellular specificity and transduction characteristics: the retina as a model. Hum. Mol. Genet. 10, 3075–3081 (2001).

    CAS  PubMed  Google Scholar 

  8. Mohajeri, M. J., Figlewicz, D. A. & Bohn, M. C. Intramuscular grafts of myoblasts genetically modified to secrete glial cell line-derived neurotrophic factor prevent motoneuron loss and disease progression in a mouse model of familial amyotrophic lateral sclerosis. Hum. Gene Ther. 10, 1853–1866 (1999).

    CAS  PubMed  Google Scholar 

  9. Davidson, B. L. et al. Recombinant adeno-associated virus type 2, 4, and 5 vectors: transduction of variant cell types and regions in the mammalian central nervous system. Proc. Natl Acad. Sci. USA 97, 3428–3432 (2000). This study showed that not all AAVs are created equal, and that non-AAV2 serotypes exhibit distinct and various tropisms when injected into the brain.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Alisky, J. M. et al. Transduction of murine cerebellar neurons with recombinant FIV and AAV5 vectors. Neuroreport 11, 2669–2673 (2000). Showed that lentivirus and AAV5 vectors efficiently transduce cerebellar neurons.

    CAS  PubMed  Google Scholar 

  11. Duan, D., Yue, Y. & Engelhardt, J. F. Dual vector expansion of the recombinant AAV packaging capacity. Methods Mol. Biol. 219, 29–51 (2003).

    CAS  PubMed  Google Scholar 

  12. Chen, Z. Y. et al. Linear DNAs concatemerize in vivo and result in sustained transgene expression in mouse liver. Mol. Ther. 3, 403–410 (2001).

    CAS  PubMed  Google Scholar 

  13. Akli, S. et al. Transfer of a foreign gene into the brain using adenovirus vectors. Nature Genet. 3, 224–228 (1993).

    CAS  PubMed  Google Scholar 

  14. Davidson, B. L., Allen, E. D., Kozarksy, K. F., Wilson, J. M. & Roessler, B. J. A model system for in vivo gene transfer into the central nervous system using an adenoviral vector. Nature Genet. 3, 219–223 (1993).

    CAS  PubMed  Google Scholar 

  15. Dubensky, T. W. J. (Re-)Engineering tumor cell-selective replicating adenoviruses: a step in the right direction toward systemic therapy for metastatic disease. Cancer Cell 1, 307–309 (2002).

    CAS  PubMed  Google Scholar 

  16. Tibbles, L. A. et al. Activation of p38 and ERK signaling during adenovirus vector cell entry lead to expression of the C-X-C chemokine IP-10. J. Virol. 76, 1559–1568 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Bowen, G. P. et al. Adenovirus vector-induced inflammation: capsid-dependent induction of the C-C chemokine RANTES requires NF-κB. Hum. Gene Ther. 13, 367–379 (2002).

    CAS  PubMed  Google Scholar 

  18. Hartigan-O'Connor, D., Barjot, C., Salvatori, G. & Chamberlain, J. S. Generation and growth of gutted adenoviral vectors. Methods Enzymol. 346, 224–246 (2002).

    CAS  PubMed  Google Scholar 

  19. Thomas, C. E., Schiedner, G., Kochanek, S., Castro, M. G. & Loewenstein, P. R. Peripheral infection with adenovirus causes unexpected long-term brain inflammation in animals injected intracranially with first-generation, but not with high-capacity, adenovirus vectors: toward realistic long-term neurological gene therapy for chronic diseases. Proc. Natl Acad. Sci. USA 97, 7482–7487 (2000). This study showed that 'gutless' adenovirus vectors produced less inflammation in the brain, even in the presence of previous peripheral inoculation.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Morral, N. et al. High doses of a helper-dependent adenoviral vector yield supraphysiological levels of α1-antitrypsin with negligible toxicity. Hum. Gene Ther. 9, 2709–2716 (1998).

    CAS  PubMed  Google Scholar 

  21. Chiocca, E. A. et al. Transfer and expression of the lacZ gene in rat brain neurons mediated by herpes simplex virus mutants. New Biol. 2, 739–746 (1990). The first example of HSV recombinant virus vectors being used to deliver genes to neurons in the brain.

    CAS  PubMed  Google Scholar 

  22. Glorioso, J. C., Bender, M. A., Goins, W. F., Fink, D. J. & DeLuca, N. in Viral Vectors (eds Kaplitt, M. G. & Loewy, A. D.) 1–23 (Academic, New York, 1995).

    Google Scholar 

  23. Norgren, R. B. J. & Lehman, M. N. Herpes simplex virus as a transneuronal tracer. Neurosci. Biobehav. Rev. 22, 695–708 (1998).

    PubMed  Google Scholar 

  24. Coffin, R. S., Thomas, S. K., Thomas, D. P. & Latchman, D. S. The herpes simplex virus 2 kb latency associated transcript (LAT) leader sequence allows efficient expression of downstream proteins which is enhanced in neuronal cells: possible function of LAT ORFs. J. Gen. Virol. 79, 3019–3026 (1998).

    CAS  PubMed  Google Scholar 

  25. Chen, X., Schmidt, M. C., Goins, W. F. & Glorioso, J. C. Two herpes simplex virus type 1 latency-active promoters differ in their contributions to latency-associated transcript expression during lytic and latent infections. J. Virol. 69, 7899–7908 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Spaete, R. & Frenkel, N. The herpes virus amplicon: A new eucaryotic defective-virus cloning-amplifying vector. Cell 30, 295–304 (1982).

    CAS  PubMed  Google Scholar 

  27. Wade-Martins, R., Smith, E. R., Tyminski, E., Chiocca, E. A. & Saeki, Y. An infectious transfer and expression system for genomic DNA loci in human and mouse cells. Nature Biotechnol. 19, 1067–1070 (2001). Showed that HSV amplicon vectors have a 150 kb capacity and can carry genomic fragments.

    CAS  Google Scholar 

  28. Sena-Esteves, M., Saeki, Y., Fraefel, C. & Breakefield, X. O. HSV-1 amplicon vectors — simplicity and versatility. Mol. Ther. 2, 9–15 (2000).

    CAS  PubMed  Google Scholar 

  29. Lam, Y. P. & Breakefield, X. O. Potential of gene therapy for brain tumors. Hum. Mol. Genet. 10, 777–787 (2001).

    CAS  PubMed  Google Scholar 

  30. Turner, D. L., Snyder, E. Y. & Cepko, C. L. Lineage-independent determination of cell type in the embryonic mouse retina. Neuron 4, 833–845 (1990).

    CAS  PubMed  Google Scholar 

  31. Fields-Berry, S. C., Halliday, A. L. & Cepko, C. L. A recombinant retrovirus encoding alkaline phosphatase confirms clonal boundary assignment in lineage analysis of murine retina. Proc. Natl Acad. Sci. USA 89, 693–697 (1992). References 30 and 31 demonstrated the utility of retroviruses in lineage analysis in the developing nervous system.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Blömer, U. et al. Highly efficient and sustained gene transfer in adult neurons with lentivirus vector. J. Virol. 71, 6641–6649 (1997). The first demonstration of the utility of lentivirus vectors for gene delivery to the brain.

    PubMed  PubMed Central  Google Scholar 

  33. Brooks, A. I. et al. Functional correction of established central nervous system deficits in an animal model of lysosomal storage disease with feline immunodeficiency virus-based vectors. Proc. Natl Acad. Sci. USA 99, 6216–6221 (2002). Functional recovery of a behavioural phenotype after gene therapy in an animal model of progressive CNS disease caused by a lysosomal enzyme deficiency.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Schröder, A. R. et al. HIV-1 integration in the human genome favors active genes and local hotspots. Cell 110, 521–529 (2002).

    PubMed  Google Scholar 

  35. Schmidt, M. et al. Clonality analysis after retroviral-mediated gene transfer to CD34+ cells from the cord blood of ADA-deficient SCID neonates. Nature Med. 9, 463–468 (2003).

    CAS  PubMed  Google Scholar 

  36. Cordelier, P., Van Bockstaele, E., Calarota, S. A. & Strayer, D. S. Inhibiting AIDS in the central nervous system: gene delivery to protect neurons from HIV. Mol. Ther. (in the press).

  37. Kimchi-Sarfaty, C., Ben-Nun-Shaul, O., Rund, D., Oppenheim, A. & Gottesman, M. M. In vitro-packaged SV40 pseudovirions as highly efficient vectors for gene transfer. Hum. Gene Ther. 13, 299–310 (2002).

    CAS  PubMed  Google Scholar 

  38. Bledsoe, A. W., Jackson, C. A., McPherson, S. & Morrow, C. D. Cytokine production in motor neurons by poliovirus replicon vector gene delivery. Nature Biotechnol. 18, 964–969 (2000).

    CAS  Google Scholar 

  39. Jackson, C. A., Cobbs, C., Peduzzi, J. D., Novak, M. & Morrow, C. D. Repetitive intrathecal injections of poliovirus replicons result in gene expression in neurons of the central nervous system without pathogenesis. Hum. Gene Ther. 12, 1827–1841 (2001). References 38 and 39 demonstrated the potential utility of poliovirus replicon vectors for gene delivery to the CNS and motor neurons, including repetitive delivery.

    CAS  PubMed  Google Scholar 

  40. Ehrengruber, M. U. Alphaviral vectors for gene transfer into neurons. Mol. Neurobiol. 26, 183–201 (2002).

    CAS  PubMed  Google Scholar 

  41. Enquist, L. W. Exploiting circuit-specific spread of pseudorabies virus in the central nervous system: insights to pathogenesis and circuit tracers. J. Infect. Dis. 186 (Suppl. 2) S209–S214 (2002). A review of uses of alphaherpes viruses for tracing synaptic pathways in the brain.

    PubMed  Google Scholar 

  42. Turunen, M. et al. Peptide-retargeted adenovirus encoding a tissue inhibitor of metalloproteinase-1 decreases restenosis after intravascular gene transfer. Mol. Ther. 6, 306–312 (2002).

    CAS  PubMed  Google Scholar 

  43. Mack, C. A. et al. Circumvention of anti-adenovirus neutralizing immunity by administration of an adenoviral vector of an alternate serotype. Hum. Gene Ther. 8, 99–109 (1997).

    CAS  PubMed  Google Scholar 

  44. Miller, C. R. et al. Differential susceptibility of primary and established human glioma cells to adenovirus infection: targeting via the epidermal growth factor receptor achieves fiber receptor-independent gene transfer. Cancer Res. 58, 5738–5748 (1998). An early demonstration of the ability to target adenovirus vectors to specific cells by modification of the capsid.

    CAS  PubMed  Google Scholar 

  45. Nicklin, S. A. & Baker, A. H. Tropism-modified adenoviral and adeno-associated viral vectors for gene therapy. Curr. Gene Ther. 2, 273–293 (2002).

    CAS  PubMed  Google Scholar 

  46. Wickman, T. J. Targeting adenovirus. Gene Ther. 7, 110–114 (2000).

    Google Scholar 

  47. Xia, H., Anderson, B., Mao, Q. & Davidson, B. L. Recombinant human adenovirus: targeting to the human transferrin receptor improves gene transfer to brain microcapillary endothelium. J. Virol. 74, 11359–11366 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Ried, M. U., Girod, A., Leike, K., Buning, H. & Hallek, M. Adeno-associated virus capsids displaying immunoglobulin-binding domains permit antibody-mediated vector retargeting to specific cell surface receptors. J. Virol. 76, 4559–4566 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Grifman, M. et al. Incorporation of tumor-targeting peptides into recombinant adeno-associated virus capsids. Mol. Ther. 3, 964–975 (2001). References 48 and 49 show the capacity of modified AAV capsids for targeted delivery.

    CAS  PubMed  Google Scholar 

  50. Laquerre, S., Anderson, D. B., Stolz, D. B. & Glorioso, J. C. Recombinant herpes simplex virus type 1 engineered for targeted binding to erythropoietin receptor-bearing cells. J. Virol. 72, 9683–9697 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Mazarakis, N. D. et al. Rabies virus glycoprotein pseudotyping of lentiviral vectors enables retrograde axonal transport and access to the nervous system after peripheral delivery. Hum. Mol. Genet. 10, 2109–2121 (2001).

    CAS  PubMed  Google Scholar 

  52. Kang, Y. et al. In vivo gene transfer using a nonprimate lentiviral vector pseudotyped with Ross River Virus glycoproteins. J. Virol. 76, 9378–9388 (2002). References 51 and 52 show the importance of components of the envelope of lentivirus vectors with regard to the types of cells that can be transduced and the ability of the vector to be transported within neurons.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Watson, D. J., Kobinger, G. P., Passini, M. A., Wilson, J. M. & Wolfe, J. H. Targeted transduction patterns in the mouse brain by lentivirus vectors pseudotyped with VSV, Ebola, Mokola, LCMV, or MuLV envelope proteins. Mol. Ther. 5, 528–537 (2002).

    CAS  PubMed  Google Scholar 

  54. Costantini, L. C. et al. Gene transfer to the nigrostriatal system by hybrid herpes simplex virus/adeno-associated virus amplicon vectors. Hum. Gene Ther. 10, 2481–2494 (1999).

    CAS  PubMed  Google Scholar 

  55. Spencer, B., Agarwala, S., Miskulin, M., Smith, M. & Brandt, C. R. Herpes simplex virus-mediated gene delivery to the rodent visual system. Invest. Ophthalmol. Vis. Sci. 41, 1392–1401 (2000).

    CAS  PubMed  Google Scholar 

  56. Kaspar, B. K. et al. Targeted retrograde gene delivery for neuronal protection. Mol. Ther. 5, 50–56 (2002).

    CAS  PubMed  Google Scholar 

  57. Peltekian, E., Garcia, L. & Danos, O. Neurotropism and retrograde axonal transport of a canine adenoviral vector: a tool for targeting key structures undergoing neurodegenerative processes. Mol. Ther. 5, 25–32 (2002).

    CAS  PubMed  Google Scholar 

  58. Bankiewicz, K. S. et al. Convection-enhanced delivery of AAV vector in parkinsonian monkeys; in vivo detection of gene expression and restoration of dopaminergic function using pro-drug approach. Exp. Neurol. 164, 2–14 (2000). Demonstration of convection-enhanced delivery to improve the distribution of AAV vectors in brains of non-human primates.

    CAS  PubMed  Google Scholar 

  59. Neuwelt, E. A., Barnett, P. A., McCormick, C. L., Frenkel, E. P. & Minna, J. D. Osmotic blood–brain barrier modification: monoclonal antibody, albumin, and methotrexate delivery to cerebrospinal fluid and brain. Neurosurgery 17, 419–423 (1985).

    CAS  PubMed  Google Scholar 

  60. Rainov, N. G. et al. Selective uptake of viral and monocrystalline particles delivered intra-arterially to experimental brain neoplasms. Hum. Gene Ther. 6, 1543–1552 (1995).

    CAS  PubMed  Google Scholar 

  61. Passini, M. A. & Wolfe, J. H. Widespread gene delivery and structure-specific patterns of expression in the brain after intraventricular injections of neonatal mice with an adeno-associated virus vector. J. Virol. 75, 12382–12392 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Ghodsi, A. et al. Systemic hyperosmolality improves β-glucuronidase distribution and pathology in murine MPS VII brain following intraventricular gene transfer. Exp. Neurol. 160, 109–116 (1999).

    CAS  PubMed  Google Scholar 

  63. Elliger, S. S., Elliger, C. A., Auilar, C. P., Raju, N. R. & Watson, G. L. Elimination of lysosomal storage in brains of MPS VII mice treated by intrathecal administration of an adeno-associated virus vector. Gene Ther. 6, 1175–1178 (1999).

    CAS  PubMed  Google Scholar 

  64. Mordelet, E. et al. Brain engraftment of autologous macrophages transduced with a lentiviral flap vector: an approach to complement brain dysfunctions. Gene Ther. 9, 46–52 (2002).

    CAS  PubMed  Google Scholar 

  65. Rosenberg, M. B. et al. Grafting genetically modified cells to the damaged brain: restorative effects of NGF expression. Science 242, 1575–1578 (1988). The first example of grafting of genetically modified cells into the brain to achieve delivery of a growth factor.

    CAS  PubMed  Google Scholar 

  66. Alvarez-Buylla, A., Herrera, D. G. & Wichterle, H. The subventricular zone: source of neuronal precursors for brain repair. Prog. Brain Res. 127, 1–11 (2000).

    CAS  PubMed  Google Scholar 

  67. Park, K. I., Teng, Y. D. & Snyder, E. Y. The injured brain interacts reciprocally with neural stem cells supported by scaffolds to reconstitute lost tissue. Nature Biotechnol. 20, 1111–1117 (2002). Showed the ability of neural stem cells to repair tissue loss after experimental stroke.

    CAS  Google Scholar 

  68. Aboody, K. S. et al. Neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas. Proc. Natl Acad. Sci. USA 97, 12846–12851 (2000). Showed that neural precursor cells can migrate to tumours within the brain.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Gage, F. H. Mammalian neural stem cells. Science 287, 1433–1438 (2000).

    CAS  PubMed  Google Scholar 

  70. McKay, R. Stem cells in the central nervous system. Science 276, 66–71 (1997).

    CAS  PubMed  Google Scholar 

  71. Hughes, S. M., Moussavi-Harami, F., Sauter, S. L. & Davidson, B. L. Viral-mediated gene transfer to mouse primary neural progenitor cells. Mol. Ther. 5, 16–24 (2002).

    CAS  PubMed  Google Scholar 

  72. Corti, O. et al. A single adenovirus vector mediates doxycycline-controlled expression of tyrosine hydroxylase in brain grafts of human neural progenitors. Nature Biotechnol. 17, 349–354 (1999).

    CAS  Google Scholar 

  73. Martinez-Serrano, A. & Bjorklund, A. Ex vivo nerve growth factor gene transfer to the basal forebrain in presymptomatic middle-aged rats prevents the development of cholinergic neuron atrophy and cognitive impairment during aging. Proc. Natl Acad. Sci. USA 95, 1858–1863 (1998). This study showed the effects of NGF on protection from age-related neurodegeneration.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Lynch, W. P., Sharpe, A. H. & Snyder, E. Y. Neural stem cells as engraftable packaging lines optimize viral vector-mediated gene delivery to the CNS: evidence from studying retroviral env-related neurodegeneration. J. Virol. 73, 6841–6851 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Herrlinger, U. et al. Neural precursor cells for delivery of replication-conditional HSV-1 vectors to intracerebral gliomas. Mol. Ther. 1, 347–357 (2000).

    CAS  PubMed  Google Scholar 

  76. Hampl, J. A. et al. Potentiated gene delivery to tumor using HSV/EBV/RV tribrid amplicon vectors. Hum. Gene Ther. (in the press).

  77. Snyder, E. Y., Taylor, R. M. & Wolfe, J. H. Neural progenitor cell engraftment corrects lysosomal storage throughout the MPS VII mouse brain. Nature 374, 367–370 (1995). Showed that neural progenitor cells delivered to the neonatal brain lead to widespread protection from lysosomal storage disease.

    CAS  PubMed  Google Scholar 

  78. van Roessel, P. & Brand, A. H. Imaging into the future: visualizing gene expression and protein interactions with fluorescent proteins. Nature Cell Biol. 4, E15–E20 (2002).

    CAS  PubMed  Google Scholar 

  79. Knop, M., Barr, F., Riedel, C. G., Heckel, T. & Reichel, C. Improved version of the red fluorescent protein (drFP583/DsRed/RFP). Biotechniques 33, 592–598 (2002).

    CAS  PubMed  Google Scholar 

  80. Kajiwara, K. et al. Humoral immune responses to adenovirus vectors in the brain. J. Neuroimmunol. 103, 8–15 (2000).

    CAS  PubMed  Google Scholar 

  81. Detrait, E. R. et al. Reporter gene transfer induces apoptosis in primary cortical neurons. Mol. Ther. 5, 723–730 (2002).

    CAS  PubMed  Google Scholar 

  82. Hoffman, R. Green fluorescent protein imaging of tumour growth, metastasis, and angiogenesis in mouse models. Lancet Oncol. 3, 546–556 (2002).

    CAS  PubMed  Google Scholar 

  83. Tung, C. H., Mahmood, U., Bredow, S. & Weissleder, R. In vivo imaging of proteolytic enzyme activity using a novel molecular reporter. Cancer Res. 60, 4953–4958 (2000).

    CAS  PubMed  Google Scholar 

  84. Shi, N., Zhang, Y., Zhu, C., Boado, R. J. & Pardridge, W. M. Brain-specific expression of an exogenous gene after i.v. administration. Proc. Natl Acad. Sci. USA 98, 12754–12759 (2001). The use of luciferase in imaging of gene transfer in live mice.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Luker, G. D., Bardill, J. P., Prior, C. M., Piwnica-Worms, D. & Leib, D. A. Noninvasive bioluminescence imaging of herpes simplex virus type 1 infection and therapy in living mice. J. Virol. 76, 12149–12161 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Weissleder, R. et al. In vivo magnetic resonance imaging of transgene expression. Nature Med. 6, 351–355 (2000).

    CAS  PubMed  Google Scholar 

  87. Liang, Q. et al. Noninvasive, repetitive, quantitative measurement of gene expression from a bicistronic message positron emission tomography, following gene transfer with adenovirus. Mol. Ther. 6, 73–82 (2002).

    CAS  PubMed  Google Scholar 

  88. Hemminki, A. et al. In vivo molecular chemotherapy and noninvasive imaging with an infectivity-enhanced adenovirus. J. Natl Cancer Inst. 94, 741–749 (2002).

    CAS  PubMed  Google Scholar 

  89. Bearer, E. L., Breakefield, X. O., Schuback, D., Reese, T. S. & LaVail, J. H. Retrograde axonal transport of herpes simplex virus: evidence for a single mechanism and a role for tegument. Proc. Natl Acad. Sci. USA 97, 8146–8150 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Leopold, P. L. et al. Fluorescent virions: dynamic tracking of the pathway of adenoviral gene transfer vectors in living cells. Hum. Gene Ther. 9, 367–378 (1998).

    CAS  PubMed  Google Scholar 

  91. Mabit, H. et al. Intact microtubules support adenovirus and herpes simplex virus infections. J. Virol. 76, 9962–9971 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Schellingerhout, D. et al. Mapping the in vivo distribution of herpes simplex virions. Hum. Gene Ther. 9, 1543–1549 (1998).

    CAS  PubMed  Google Scholar 

  93. Short, M. P. et al. Gene delivery to glioma cells in rat brain by grafting of a retrovirus packaging cell line. J. Neurosci. Res. 27, 427–439 (1990).

    CAS  PubMed  Google Scholar 

  94. Halliday, A. L. & Cepko, C. L. Generation and migration of cells in the developing striatum. Neuron 9, 15–26 (1992).

    CAS  PubMed  Google Scholar 

  95. Samulski, R. J., Chang, L. S. & Shenk, T. Helper-free stocks of recombinant adeno-associated viruses: normal integration does not require viral gene expression. J. Virol. 63, 3822–3825 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Wang, Y. et al. Herpes simplex virus type 1/adeno-associated virus rep+ hybrid amplicon vector improves the stability of transgene expression in human cells by site-specific integration. J. Virol. 76, 7150–7162 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Heister, T., Heid, I., Ackermann, M. & Fraefel, C. Herpes simplex virus type 1/adeno-associated virus hybrid vectors mediate site-specific integration at the adeno-associated virus preintegration site, AAVS1, on human chromosome 19. J. Virol. 76, 7163–7173 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Owens, R. A. Second generation adeno-associated virus type 2-based gene therapy systems with the potential for preferential integration into AAVS1. Curr. Gene Ther. 2, 145–159 (2002).

    CAS  PubMed  Google Scholar 

  99. Kotin, R. M. et al. Site-specific integration of adeno-associated virus. Proc. Natl Acad. Sci. USA 87, 2211–2215 (1990). Showed that AAV integrates into a specific chromosomal site in the human genome.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Yant, S. R. et al. Somatic integration and long-term transgene expression in normal and haemophilic mice using a DNA transposon system. Nature Genet. 25, 35–41 (2000).

    CAS  PubMed  Google Scholar 

  101. Thyagarajan, B., Guimaraes, M. J., Groth, A. C. & Calos, M. P. Mammalian genomes contain active recombinase recognition sites. Gene 244, 47–54 (2000).

    CAS  PubMed  Google Scholar 

  102. Olivares, E. C. et al. Site-specific genomic integration produces therapeutic Factor IX levels in mice. Nature Biotechnol. 20, 1124–1128 (2002). A non-viral vector system that integrates site-specifically and leads to phenotypic improvement in an animal model of disease.

    CAS  Google Scholar 

  103. Wang, S. & Vos, J. -M. A hybrid herpes virus infectious vector based on Epstein–Barr virus and herpes simplex virus type 1 for gene transfer into human cells in vitro and in vivo. J. Virol. 70, 8422–8430 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Calos, M. P. The potential of extrachromosomal replicating vectors for gene therapy. Trends Genet. 12, 463–466 (1996).

    CAS  PubMed  Google Scholar 

  105. Shimizu, N., Miura, Y., Sakamoto, Y. & Tsutsui, K. Plasmids with a mammalian replication origin and a matrix attachment region initiate the event similar to gene amplification. Cancer Res. 61, 6987–6990 (2001).

    CAS  PubMed  Google Scholar 

  106. Klein, R. L. et al. Dose and promoter effects of adeno-associated viral vector for green fluorescent protein expression in the rat brain. Exp. Neurol. 176, 66–74 (2002).

    CAS  PubMed  Google Scholar 

  107. Glover, C. P., Bienemann, A. S., Heywood, D. J., Cosgrave, A. S. & Uney, J. B. Adenoviral-mediated, high-level, cell-specific transgene expression: a SYN1-WPRE cassette mediates increased transgene expression with no loss of neuron specificity. Mol. Ther. 5, 509–516 (2002).

    CAS  PubMed  Google Scholar 

  108. Klein, R. L. et al. Neuron-specific transduction in the rat septohippocampal or nigrostriatal pathway by recombinant adeno-associated virus vectors. Exp. Neurol. 150, 183–194 (1998).

    CAS  PubMed  Google Scholar 

  109. Zhang, G. R. et al. A tyrosine hydroxylase-neurofilament chimeric promoter enhances long-term expression in rat forebrain neurons from helper virus-free HSV-1 vectors. Brain Res. Mol. Brain Res. 84, 17–31 (2000).

    CAS  PubMed  Google Scholar 

  110. Loftus, S. K. et al. Rescue of neurodegeneration in Niemann–Pick C mice by a prion-promoter-driven Npc1 cDNA transgene. Hum. Mol. Genet. 11, 3107–3114 (2002).

    CAS  PubMed  Google Scholar 

  111. Labrador, M. & Corces, V. G. Setting the boundaries of chromatin domains and nuclear organization. Cell 111, 151–154 (2002).

    CAS  PubMed  Google Scholar 

  112. Vigna, E. et al. Robust and efficient regulation of transgene expression in vivo by improved tetracycline-dependent lentiviral vectors. Mol. Ther. 5, 252–261 (2002).

    CAS  PubMed  Google Scholar 

  113. Pollock, R. et al. Delivery of a stringent dimerizer-regulated gene expression system in a single retroviral vector. Proc. Natl Acad. Sci. USA 97, 13221–13226 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Oligino, T. et al. Drug inducible transgene expression in brain using a herpes simplex virus vector. Gene Ther. 5, 491–496 (1998).

    CAS  PubMed  Google Scholar 

  115. Sandler, V. et al. Modified herpes simplex virus delivery of enhanced GFP into the central nervous system. J. Neurosci. Methods 121, 211–219 (2002).

    CAS  PubMed  Google Scholar 

  116. Furuta, T. et al. In vivo transduction of central neurons using recombinant Sindbis virus: Golgi-like labeling of dendrites and axons with membrane-targeted fluorescent proteins. J. Histochem. Cytochem. 49, 1497–1508 (2001).

    CAS  PubMed  Google Scholar 

  117. Coen, L., Osta, R., Maury, M. & Brulet, P. Construction of hybrid proteins that migrate retrogradely and transynaptically into the central nervous system. Proc. Natl Acad. Sci. USA 94, 9400–9405 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Li, Z. & Murthy, V. N. Visualizing postendocytic traffic of synaptic vesicles at hippocampal synapses. Neuron 31, 593–605 (2001).

    CAS  PubMed  Google Scholar 

  119. Ahmari, S. E., Buchanan, J. & Smith, S. J. Assembly of presynaptic active zones from cytoplasmic transport packets. Nature Neurosci. 3, 445–451 (2000).

    CAS  PubMed  Google Scholar 

  120. Okubo, Y., Kakizawa, S., Hirose, K. & Iino, M. Visualization of IP3 dynamics reveals a novel AMPA receptor-triggered IP3 production pathway mediated by voltage-dependent Ca2+ influx in Purkinje cells. Neuron 32, 113–122 (2001).

    CAS  PubMed  Google Scholar 

  121. Poncer, J. C., Esteban, J. A. & Malinow, R. Multiple mechanisms for the potentiation of AMPA receptor-mediated transmission by α-Ca2+/calmodulin-dependent protein kinase II. J. Neurosci. 22, 4406–4411 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Khakh, B. S. et al. Activation-dependent changes in receptor distribution and dendritic morphology in hippocampal neurons expressing P2X2-green fluorescent protein receptors. Proc. Natl Acad. Sci. USA 98, 5288–5293 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Mandir, A. S. et al. NMDA but not non-NMDA excitotoxicity is mediated by poly(ADP-ribose) polymerase. J. Neurosci. 20, 8005–8011 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Pyner, S., Cleary, J., Buchan, P. M. & Coote, J. H. Tracing functionally identified neurones in a multisynaptic pathway in the hamster and rat using herpes simplex virus expressing green fluorescent protein. Exp. Physiol. 86, 695–702 (2001).

    CAS  PubMed  Google Scholar 

  125. Brooks, A. I., Muhkerjee, B., Panahian, N., Cory-Slechta, D. & Federoff, H. J. Nerve growth factor somatic mosaicism produced by herpes virus-directed expression of cre recombinase. Nature Biotechnol. 15, 57–62 (1997). A study describing the use of viral-expressed Cre recombinase to study NGF effects on learning and memory in mice.

    CAS  Google Scholar 

  126. Kalamarides, M. et al. Nf2 gene inactivation in arachnoidal cells is rate-limiting for meningioma development in the mouse. Genes Dev. 16, 1060–1065 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Lobe, C. G. et al. Z/AP, a double reporter for Cre-mediated recombination. Dev. Biol. 208, 281–292 (1999).

    CAS  PubMed  Google Scholar 

  128. Kaspar, B. K. et al. Adeno-associated virus effectively mediates conditional gene modification in the brain. Proc. Natl Acad. Sci. USA 99, 2320–2325 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Campsall, K. D., Mazerolle, C. J., De Repentingy, Y., Kothary, R. & Wallace, V. A. Characterization of transgene expression and Cre recombinase activity in a panel of Thy-1 promoter–Cre transgenic mice. Dev. Dyn. 224, 135–143 (2002).

    CAS  PubMed  Google Scholar 

  130. Eriksson, B., Bergqvist, I., Eriksson, M. & Holmberg, D. Functional expression of Cre recombinase in sub-regions of mouse CNS and retina. FEBS Lett. 479, 106–110 (2000).

    CAS  PubMed  Google Scholar 

  131. Auricchio, A. et al. Constitutive and regulated expression of processed insulin following in vivo hepatic gene transfer. Gene Ther. 9, 963–971 (2002).

    CAS  PubMed  Google Scholar 

  132. Bakowska, J. C. et al. Targeted transgene integration into transgenic mouse fibroblasts carrying the full length human AAVS1 locus mediated by HSV/AAV rep+ hybrid amplicon vector. Gene Ther. (in the press).

  133. Hewett, J. et al. Mutant torsinA, responsible for early onset torsion dystonia, forms membrane inclusions in cultured neural cells. Hum. Mol. Genet. 22, 1403–1413 (2000).

    Google Scholar 

  134. Bragg, D. C., Wilbur, J. D. & Breakefield, X. O. Expression of mutant and wild-type torsinA in human glioma cells by HSV-amplicon vector-mediated gene transfer. Proc. 32nd Annu. Meeting Soc. for Neurosci. (2002).

  135. Persichetti, F. et al. Mutant huntingtin forms in vivo complexes with distinct context-dependent conformations of the polyglutamine segment. Neurobiol. Dis. 6, 364–375 (1999).

    CAS  PubMed  Google Scholar 

  136. Kirik, D. et al. Parkinson-like neurodegeneration induced by targeted overexpression of α-synuclein in the nigrostriatal system. J. Neurosci. 22, 2780–2791 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Lo Bianco, C., Ridet, J. L., Schneider, B. L., Deglon, N. & Aebischer, P. α-Synucleinopathy and selective dopaminergic neuron loss in a rat lentiviral-based model of Parkinson's disease. Proc. Natl Acad. Sci. USA 99, 10813–10818 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Sapolsky, R. M. Neuroprotective gene therapy against acute neurological insults. Nature Rev. Neurosci. 4, 61–69 (2003).

    CAS  Google Scholar 

  139. Romero, M. I., Rangappa, N., Garry, M. G. & Smith, G. M. Functional regeneration of chronically injured sensory afferents into adult spinal cord after neurotrophin gene therapy. J. Neurosci. 21, 8408–8416 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Blesch, A., Lu, P. & Tuszynski, M. H. Neurotrophic factors, gene therapy, and neural stem cells for spinal cord repair. Brain Res. Bull. 57, 833–838 (2002).

    CAS  PubMed  Google Scholar 

  141. Jin, Y., Fischer, I., Tessler, A. & Houle, J. D. Transplants of fibroblasts genetically modified to express BDNF promote axonal regeneration from supraspinal neurons following chronic spinal cord injury. Exp. Neurol. 177, 265–275 (2002).

    CAS  PubMed  Google Scholar 

  142. Eaton, M. J., Blits, B., Ruitenberg, M. J., Verhaagen, J. & Oudega, M. Amelioration of chronic neuropathic pain after nerve injury by adeno-associated viral (AAV) vector-mediated over-expression of BDNF in the rat spinal cord. Gene Ther. 9, 1387–1395 (2002).

    CAS  PubMed  Google Scholar 

  143. Geddes, B. J., Harding, T. C., Lightman, S. L. & Uney, J. B. Long-term gene therapy in the CNS: reversal of hypothalamic diabetes insipidus in the Brattleboro rat by using an adenovirus expression arginine vasopressin. Nature Med. 3, 1402–1404 (1997). Showed that vector-mediated expression of a peptide hormone in the brain leads to recovery from a neuroendocrine deficiency state.

    CAS  PubMed  Google Scholar 

  144. Conner, J. M., Darracq, M. A., Roberts, J. & Tuszynski, M. H. Nontropic actions of neurotrophins: subcortical nerve growth factor gene delivery reverses age-related degeneration of primate cortical cholinergic innervation. Proc. Natl Acad. Sci. USA 98, 1941–1946 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Choi-Lundberg, D. L. et al. Dopaminergic neurons protected from degeneration by GDNF gene therapy. Science 275, 838–841 (1997). This study showed that GDNF gene therapy protects against dopaminergic neuron loss in an animal model of Parkinson's disease. It was followed up in primates with lentiviruses in Reference 146.

    CAS  PubMed  Google Scholar 

  146. Palfi, S. et al. Lentivirally delivered glial cell line-derived neurotrophic factor increases the number of striatal dopaminergic neurons in primate models of nigrostriatal degeneration. J. Neurosci. 22, 4942–4954 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Kordower, J. H. et al. Neurodegeneration prevented by lentiviral delivery of GDNF in primate models of Parkinson's disease. Science 290, 767–773 (2000).

    CAS  PubMed  Google Scholar 

  148. Georgievska, B., Kirik, D. & Bjorklund, A. Aberrant sprouting and downregulation of tyrosine hydroxylase in lesioned nigrostriatal dopamine neurons induced by long-lasting overexpression of glial cell line derived neurotrophic factor in the striatum by lentiviral gene transfer. Exp. Neurol. 177, 461–474 (2002).

    CAS  PubMed  Google Scholar 

  149. Azzouz, M. et al. Multicistronic lentiviral vector-mediated striatal gene transfer of aromatic L-amino acid decarboxylase, tyrosine hydroxylase, and GTP cyclohydrolase I induces sustained transgene expression, dopamine production, and functional improvement in a rat model of Parkinson's disease. J. Neurosci. 22, 10302–10312 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Costantini, L. C., Bakowska, J. C., Breakefield, X. O. & Isacson, O. Gene therapy in the CNS. Gene Ther. 7, 93–109 (2000).

    CAS  PubMed  Google Scholar 

  151. During, M. J., Kaplitt, M. G., Stern, M. B. & Eidelberg, D. Subthalamic GAD gene transfer in Parkinson disease patients who are candidates for deep brain stimulation. Hum. Gene Ther. 12, 1589–1591 (2001).

    CAS  PubMed  Google Scholar 

  152. Haque, N. & Isacson, O. Antisense gene therapy for neurodegenerative disease? Exp. Neurol. 144, 139–146 (1997).

    CAS  PubMed  Google Scholar 

  153. Phylactou, L. A., Darrah, C. & Wood, M. J. Ribozyme-mediated trans-splicing of a trinucleotide repeat. Nature Genet. 18, 378–381 (1998).

    CAS  PubMed  Google Scholar 

  154. Elbashir, S. M., Harborth, J., Weber, K. & Tuschl, T. Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods 26, 199–213 (2002).

    CAS  PubMed  Google Scholar 

  155. Caplen, N. J. et al. Rescue of polyglutamine-mediated cytotoxicity by double-stranded RNA-mediated RNA interference. Hum. Mol. Genet. 11, 175–184 (2002).

    CAS  PubMed  Google Scholar 

  156. Xia, H., Mao, Q., Paulson, H. L. & Davidson, B. L. siRNA-mediated gene silencing in vitro and in vivo. Nature Biotechnol. 20, 1006–1010 (2002). Vector-mediated delivery of small interfering RNAs to the brain in vivo and a reduction of aggregation in a model system of polyglutamine repeat disease.

    CAS  Google Scholar 

  157. Devroe, E. & Silver, P. A. Retrovirus-delivered siRNA. BMC Biotechnol. 2, 15 (2002).

    PubMed  PubMed Central  Google Scholar 

  158. Wang, L. J. et al. Neuroprotective effects of glial cell line-derived neurotrophic factor mediated by an adeno-associated virus vector in a transgenic animal model of amyotrophic lateral sclerosis. J. Neurosci. 22, 6920–6928 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Cleveland, D. W. & Rothstein, J. D. From Charcot to Lou Gehrig: deciphering selective motor neuron death in ALS. Nature Rev. Neurosci. 2, 806–819 (2001).

    CAS  Google Scholar 

  160. Haskell, R. E., Hughes, S. M., Chiorini, J. A., Aliksy, J. M. & Davidson, B. L. Viral-mediated delivery of the late-infantile neuronal ceroid lipofuscinosis gene, TPP–I to the mouse central nervous system. Gene Ther. 10, 34–42 (2003).

    CAS  PubMed  Google Scholar 

  161. Consiglio, A. et al. In vivo gene therapy of metachromatic leukodystrophy by lentivral vectors: correction of neuropathology and protection against learning impairments in affected mice. Nature Med. 7, 310–316 (2001).

    CAS  PubMed  Google Scholar 

  162. Xia, H., Mao, Q. & Davidson, B. L. The HIV Tat protein transduction domain improves the biodistribution of β-glucuronidase expressed from recombinant viral vectors. Nature Biotechnol. 19, 640–644 (2001).Showed that a protein transduction domain can improve access of secreted lysosomal enzyme proteins to the brain.

    CAS  Google Scholar 

  163. Chiocca, E. A. Guided genes for tumor warfare. Nature Biotechnol. 20, 235–236 (2002).

    CAS  Google Scholar 

  164. Neumunaitis, J. & Edelman, J. Selectively replicating viral vectors. Cancer Gene Ther. 9, 987–1000 (2002).

    Google Scholar 

  165. Goss, J. R. et al. Antinociceptive effect of a genomic herpes simplex virus-based vector expressing human proenkephalin in rat dorsal root ganglion. Gene Ther. 8, 551–556 (2001).

    CAS  PubMed  Google Scholar 

  166. Yu, J. S., Sena-Esteves, M., Paulus, W., Breakefield, X. O. & Reeves, S. Retroviral delivery and tetracycline-dependent expression of IL-1β-converting enzyme (ICE) in a rat glioma model provides controlled induction of apoptotic death in tumor cells. Cancer Res. 56, 5423–5427 (1996).

    CAS  PubMed  Google Scholar 

  167. Davar, G. et al. Comparative efficacy of expression of genes delivered to mouse sensory neurons with herpes virus vectors. J. Comp. Neurol. 339, 3–11 (1994).

    CAS  PubMed  Google Scholar 

  168. Wilson, S. P. et al. Antihyperalgesic effects of infection with a preproenkephalin-encoding herpes simplex virus. Proc. Natl Acad. Sci. USA 96, 3211–3216 (1999). HSV recombinant vectors can down-moderate pain responses by delivery of enkephalin to sensory neurons.

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Braz, J. et al. Therapeutic efficacy in experimental polyarthritis of viral-driven enkephalin overproduction in sensory neurons. J. Neurosci. 21, 7881–7888 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Cooke, H. Mammalian artificial chromosomes as vectors: progress and prospects. Cloning Stem Cells 3, 243–249 (2001).

    CAS  PubMed  Google Scholar 

  171. Hirata, R. K. & Russell, D. W. Design and packaging of adeno-associated virus gene targeting vectors. J. Virol. 74, 4612–4620 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Vossen, M. T., Westerhout, E. M., Soderberg-Naucler, C. & Wiertz, E. J. Viral immune evasion: a masterpiece of evolution. Immunogenetics 54, 527–542 (2002).

    CAS  PubMed  Google Scholar 

  173. Bauer, D. & Tampe, R. Herpes viral proteins blocking the transporter associated with antigen processing TAP — from genes to function and structure. Curr. Top. Microbiol. Immunol. 269, 87–99 (2002).

    CAS  PubMed  Google Scholar 

  174. Lotze, M. T. & Kost, T. A. Viruses as gene delivery vectors: application to gene function, target validation, and assay development. Cancer Gene Ther. 9, 692–699 (2002).

    CAS  PubMed  Google Scholar 

  175. Greber, U. F., Willetts, M., Webster, P. & Helenius, A. Stepwise dismantling of adenovirus 2 during entry into cells. Cell 75, 477–486 (1993).

    CAS  PubMed  Google Scholar 

  176. Breakefield, X. O., Pechan, P., Johnston, K. & Jacoby, D. in Stem Cell Biology and Gene Therapy (eds Quesenberry, P. J., Stein, G. J., Forget, B. & Weissman, S.) 201–233 (Wiley, Hoboken, New Jersey, 1998).

    Google Scholar 

Download references

Acknowledgements

This review is dedicated to M. Bohn, an inspiring scientist and friend. We thank H. Ismaeel for insights into uses of imaging vectors in neurobiological studies and the contribution of an image, M. L. Cortes for the contribution of an image, D. Schuback for graphical designs, C. Stein and I. Martins for assistance with tissue sections and photography, and S. McDavitt for skilled editorial preparation of this manuscript. Funding support is provided to X.O.B. by the National Institute of Neurological Disorders and Stroke, and the Ataxia Children's Project, and to B. L. D. by the National Institutes of Health and the Roy J. Carver Trust.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

OMIM

ALS

Alzheimer disease

Huntington disease

Parkinson disease

Swiss-Prot

EBNA1

enolase

GDNF

neurofilament

NGF

synapsin-1

α-synuclein

torsinA

tyrosine hydroxylase

Glossary

RETROVIRUS

An RNA virus that uses reverse transcriptase to convert its RNA into DNA.

GREEN FLUORESCENT PROTEIN

(GFP). Fluorescent protein cloned from the jellyfish Aequoria victoria. Enhanced GFP is excited at 488 nm and has an emission maximum at 510 nm.

SEROTYPE

A variety of a species (usually bacteria or virus) characterized by its antigenic properties.

HEPARAN SULPHATE

A glycosaminoglycan that consists of repeated units of hexuronic acid and glucosamine residues. It usually attaches to proteins through a xylose residue to form proteoglycans.

EPENDYMAL CELLS

A layer of cells that line the ventricles of the adult brain.

PURKINJE CELLS

Inhibitory neurons in the cerebellum that use GABA (γ-aminobutyric acid) as their neurotransmitter. Their cell bodies are situated beneath the molecular layer, and their dendrites branch extensively in this layer. Their axons project into the underlying white matter, and they provide the only output from the cerebellar cortex.

GRANULE CELLS

Small interneurons in the cerebellum that relay excitatory signals to Purkinje neurons.

MICROGLIA

Phagocytic immune cells in the brain that engulf and remove cells that have undergone apoptosis.

EPISOMAL

A term that refers to a genetic unit of replication that can exist extrachromosomally.

CONCATEMER

A linear array of identical molecules that are covalently linked in tandem.

EPITOPE

An immunological determinant of an antigen.

ANTISENSE

A single-stranded RNA molecule whose sequence is complementary to that of the messenger RNA (mRNA) for a given gene. It can bind to the mRNA, thereby preventing it from being translated.

SPINE

Specialized region of the dendrite that receives synaptic inputs from other neurons.

CRE RECOMBINASE

Part of a site-specific recombination system derived from Escherichia coli bacteriophage P1. Two short DNA sequences (loxP sites) are engineered to flank the target DNA. Activation of the Cre recombinase enzyme catalyses recombination between the loxP sites, leading to excision of the intervening sequence.

FLOXED

To be flanked by loxP sites.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davidson, B., Breakefield, X. Viral vectors for gene delivery to the nervous system. Nat Rev Neurosci 4, 353–364 (2003). https://doi.org/10.1038/nrn1104

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1104

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing