Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neurological diseases

Neurobiology of migraine

Key Points

  • Migraine — an episodic headache — is caused by the activation of the so-called trigeminovascular system (TGVS): trigeminal afferents lead to the activation of structures that are involved in the transmission and perception of pain, and to the release of vasoactive peptides (presumably causing neurogenic inflammation).

  • The two main open issues in the neurobiology of migraine headache are the primary cause of activation of the TGVS and the mechanism of pain generation after activation of the TGVS.

  • Two ideas have dominated the field regarding the primary cause of TGVS activation: cortical spreading depression (a slowly moving wave of cortical depolarization) and the existence of a brainstem generator (dysfunctional brainstem nuclei involved in antinociception as a primary cause of migraine). In any case, alterations in cortical excitability seem to be related to migraine attacks.

  • Regarding the pain mechanisms in migraine, two main ideas have been considered: neurogenic inflammation of the meninges, and sensitization of the trigeminal nerve and nucleus.

  • Migraine has a strong genetic component. So far, the only two genes that have been identified, both causing a rare form of migraine, are CACNA1A (which encodes a subunit of the voltage-gated Ca2+ channel CaV2.1) and ATP1A2 (which encodes a subunit of the Na+/K+ ATPase).

  • Migraine-linked mutations in CACNA1A alter the biophysical properties and density of CaV2.1, but how this phenotype translates into the neurological condition remains unclear. Similarly, the mutations in ATP1A2 lead to a loss of ATPase function, but it remains to be established how this phenotype leads to the onset of migraine.

  • The identification of the most probable primary cause of TGVS activation, the increased understanding of the pain mechanisms in migraine, and the discovery of migraine-linked mutations provide us with new targets for the development of anti-migraine compounds. This is an area of paramount importance owing to the prevalence of the condition and to the fact that currently available drugs are not always effective.

Abstract

Migraine — an episodic headache — affects more than 10% of the general population. Despite recent progress, drug therapy for preventing and treating migraine remains unsatisfactory for many patients. One problem that slows the development of new therapeutic approaches is our limited understanding of migraine neurobiology. Activation of the trigeminovascular system is a central step in the development of migraine. However, two main issues remain incompletely understood: the primary cause of migraine, leading to activation of the trigeminovascular system, and the mechanisms of pain generation after its activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Neuronal pathways involved in trigeminovascular activation and pain processing.
Figure 2: Spreading suppression of cortical activation during migraine aura.
Figure 3: Proposed pathophysiological mechanisms in the generation of migraine headache.
Figure 4: Functional effects of type 1 familial hemiplegic migraine (FHM1) mutations on neuronal Cav2.1 channels.

Similar content being viewed by others

References

  1. Wessman, M. et al. A susceptibility locus for migraine with aura, on chromosome 4q24. Am. J. Hum. Genet. 70, 652–662 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Moskowitz, M. A. & Macfarlane, R. Neurovascular and molecular mechanisms in migraine headaches. Cerebrovasc. Brain Metab. Rev. 5, 159–177 (1993).

    CAS  PubMed  Google Scholar 

  3. May, A. & Goadsby, P. J. The trigeminovascular system in humans: pathophysiologic implications for primary headache syndromes of the neural influences on the cerebral circulation. J. Cereb. Blood Flow Metab. 19, 115–127 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Goadsby, P. J., Lipton, R. B. & Ferrari, M. D. Migraine — current understanding and treatment. N. Engl. J. Med. 346, 257–270 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Knight, Y. E. & Goadsby, P. J. The periaqueductal grey matter modulates trigeminovascular input: a role in migraine? Neuroscience 106, 793–800 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Goadsby, P. J., Edvinsson, L. & Ekman, R. Vasoactive peptide release in the extracerebral circulation of humans during migraine headache. Ann. Neurol. 28, 183–187 (1990).

    Article  CAS  PubMed  Google Scholar 

  7. Sarchielli, P., Alberti, A., Codini, M., Floridi, A. & Gallai, V. Nitric oxide metabolites, prostaglandins and trigeminal vasoactive peptides in internal jugular vein blood during spontaneous migraine attacks. Cephalalgia 20, 907–918 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Goadsby, P. J. & Edvinsson, L. The trigeminovascular system and migraine: studies characterizing cerebrovascular and neuropeptide changes seen in humans and cats. Ann. Neurol. 33, 48–56 (1993).

    Article  CAS  PubMed  Google Scholar 

  9. Olesen, J., Larsen, B. & Lauritzen, M. Focal hyperemia followed by spreading oligemia and impaired activation of rCBF in classic migraine. Ann. Neurol. 9, 344–352 (1981).

    Article  CAS  PubMed  Google Scholar 

  10. Limmroth, V. et al. Changes in cerebral blood flow velocity after treatment with sumatriptan or placebo and implications for the pathophysiology of migraine. J. Neurol. Sci. 138, 60–65 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Kruuse, C., Thomsen, L. L., Birk, S. & Olesen, J. Migraine can be induced by sildenafil without changes in middle cerebral artery diameter. Brain 126, 241–247 (2003). This observation lent important support to findings from imaging studies and clinical trials with 5-HT 1F -selective triptans, indicating that initial vasodilation of extracerebral arteries is not required to trigger migraine attacks. It also indicated that vasodilation might not be as important for the induction of migraine attacks by other vasodilators as previously thought.

    Article  PubMed  Google Scholar 

  12. Leao, A. A. P. Spreading depression of activity in the cerebral cortex. J. Neurophysiol. 7, 359–390 (1944).

    Article  Google Scholar 

  13. Lauritzen, M. Pathophysiology of the migraine aura. The spreading depression theory. Brain 117, 199–210 (1994).

    Article  PubMed  Google Scholar 

  14. Mayevsky, A. et al. Cortical spreading depression recorded from the human brain using a multiparametric monitoring system. Brain Res. 740, 268–274 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Strong, A. J. et al. Spreading and synchronous depressions of cortical activity in acutely injured human brain. Stroke 33, 2738–2743 (2002).

    Article  PubMed  Google Scholar 

  16. Yokota, C. et al. Unique profile of spreading depression in a primate model. J. Cereb. Blood Flow Metab. 22, 835–842 (2002).

    Article  PubMed  Google Scholar 

  17. Hadjikhani, N. et al. Mechanisms of migraine aura revealed by functional MRI in human visual cortex. Proc. Natl Acad. Sci. USA 98, 4687–4692 (2001). The most thorough investigation of changes in neuronal activity during migraine aura. Signal changes showed a number of characteristics that were consistent with CSD during migriane aura in humans.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Welch, K. M., Cao, Y., Aurora, S., Wiggins, G. & Vikingstad, E. M. MRI of the occipital cortex, red nucleus, and substantia nigra during visual aura of migraine. Neurology 51, 1465–1469 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Bowyer, S. M., Aurora, K. S., Moran, J. E., Tepley, N. & Welch, K. M. Magnetoencephalographic fields from patients with spontaneous and induced migraine aura. Ann. Neurol. 50, 582–587 (2001). This study provided the important demonstration that CSD-typical changes of direct current neuromagnetic field measurements in animals also occur during spontaneous and visually triggered migraine auras in migraineurs.

    Article  CAS  PubMed  Google Scholar 

  20. Bowyer, S. M. et al. Analysis of MEG signals of spreading cortical depression with propagation constrained to a rectangular cortical strip. II. Gyrencephalic swine model. Brain Res. 843, 79–86 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Somjen, G. G. Mechanisms of spreading depression and hypoxic spreading depression- like depolarization. Physiol. Rev. 81, 1065–1096 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Strassman, A. M., Raymond, S. A. & Burstein, R. Sensitization of meningeal sensory neurons and the origin of headaches. Nature 384, 560–564 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Wei, E. P., Moskowitz, M. A., Boccalini, P. & Kontos, H. A. Calcitonin gene-related peptide mediates nitroglycerin and sodium nitroprusside-induced vasodilation in feline cerebral arterioles. Circ. Res. 70, 1313–1319 (1992).

    Article  CAS  PubMed  Google Scholar 

  24. Bolay, H. et al. Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model. Nature Med. 8, 136–142 (2002). This study convincingly showed that electrically and pinprick-induced CSD can activate the trigeminovascular afferents and can induce the pathophysiological features of migraine attacks.

    Article  CAS  PubMed  Google Scholar 

  25. Ebersberger, A., Schaible, H. G., Averbeck, B. & Richter, F. Is there a correlation between spreading depression, neurogenic inflammation, and nociception that might cause migraine headache? Ann. Neurol. 49, 7–13 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Lambert, G. A., Michalicek, J., Storer, R. J. & Zagami, A. S. Effect of cortical spreading depression on activity of trigeminovascular sensory neurons. Cephalalgia 19, 631–638 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Woods, R. P., Iacoboni, M. & Mazziotta, J. C. Brief report: bilateral spreading cerebral hypoperfusion during spontaneous migraine headache. N. Engl. J. Med. 331, 1689–1692 (1994).

    Article  CAS  PubMed  Google Scholar 

  28. Bednarczyk, E. M., Remler, B., Weikart, C., Nelson, A. D. & Reed, R. C. Global cerebral blood flow, blood volume, and oxygen metabolism in patients with migraine headache. Neurology 50, 1736–1740 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Sanchez del Rio, M. et al. Perfusion weighted imaging during migraine: spontaneous visual aura and headache. Cephalalgia 19, 701–707 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Cao, Y., Aurora, S. K., Nagesh, V., Patel, S. C. & Welch, K. M. Functional MRI-BOLD of brainstem structures during visually triggered migraine. Neurology 59, 72–78 (2002). Using BOLD-fMRI, this study showed activation of the red nucleus and substantia nigra during visually triggered migraine and hyperaemia in the occipital cortex, independently of whether the headache was preceded by visual symptoms.

    Article  CAS  PubMed  Google Scholar 

  31. Goadsby, P. J. Migraine, aura, and cortical spreading depression: why are we still talking about it? Ann. Neurol. 49, 4–6 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Raskin, N. H., Hosobuchi, Y. & Lamb, S. Headache may arise from perturbation of brain. Headache 27, 416–420 (1987).

    Article  CAS  PubMed  Google Scholar 

  33. Weiller, C. et al. Brain stem activation in spontaneous human migraine attacks. Nature Med. 1, 658–660 (1995). First report showing increased blood flow in the brainstem during spontaneous migraine attacks. This finding promoted the hypothesis of a brainstem generator of migraine.

    Article  CAS  PubMed  Google Scholar 

  34. Bahra, A., Matharu, M. S., Buchel, C., Frackowiak, R. S. & Goadsby, P. J. Brainstem activation specific to migraine headache. Lancet 357, 1016–1017 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Lima, D. & Almeida, A. The medullary dorsal reticular nucleus as a pronociceptive centre of the pain control system. Prog. Neurobiol. 66, 81–108 (2002).

    Article  PubMed  Google Scholar 

  36. Millan, M. J. Descending control of pain. Prog. Neurobiol. 66, 355–474 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. May, A., Bahra, A., Buchel, C., Frackowiak, R. S. & Goadsby, P. J. Hypothalamic activation in cluster headache attacks. Lancet 352, 275–278 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. May, A. et al. Experimental cranial pain elicited by capsaicin: a PET study. Pain 74, 61–66 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Strassman, A., Mason, P., Moskowitz, M. & Maciewicz, R. Response of brainstem trigeminal neurons to electrical stimulation of the dura. Brain Res. 379, 242–250 (1986).

    Article  CAS  PubMed  Google Scholar 

  40. Chronicle, E. P. & Mulleners, W. M. Visual system dysfunction in migraine: a review of clinical and psychophysical findings. Cephalalgia 16, 525–535 (1996).

    Article  CAS  PubMed  Google Scholar 

  41. Brighina, F., Piazza, A., Daniele, O. & Fierro, B. Modulation of visual cortical excitability in migraine with aura: effects of 1 Hz repetitive transcranial magnetic stimulation. Exp. Brain. Res. 145, 177–181 (2002).

    Article  PubMed  Google Scholar 

  42. Battelli, L., Black, K. R. & Wray, S. H. Transcranial magnetic stimulation of visual area V5 in migraine. Neurology 58, 1066–1069 (2002).

    Article  PubMed  Google Scholar 

  43. Giffin, N. J. & Kaube, H. The electrophysiology of migraine. Curr. Opin. Neurol. 15, 303–309 (2002).

    Article  PubMed  Google Scholar 

  44. Afra, J., Mascia, A., Gerard, P., Maertens de Noordhout, A. & Schoenen, J. Interictal cortical excitability in migraine: a study using transcranial magnetic stimulation of motor and visual cortices. Ann. Neuro. 44, 209–215 (1998).

    Article  CAS  Google Scholar 

  45. Werhahn, K. J. et al. Motor cortex excitability in patients with migraine with aura and hemiplegic migraine. Cephalalgia 20, 45–50 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Bocker, K. B., Timsit-Berthier, M., Schoenen, J. & Brunia, C. H. Contingent negative variation in migraine. Headache 30, 604–609 (1990).

    Article  CAS  PubMed  Google Scholar 

  47. Kropp, P., Siniatchkin, M., Stephani, U. & Gerber, W. D. Migraine — evidence for a disturbance of cerebral maturation in man? Neurosci. Lett. 276, 181–184 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Besken, E., Pothmann, R. & Sartory, G. Contingent negative variation in childhood migraine. Cephalalgia 13, 42–43 (1993).

    Article  CAS  PubMed  Google Scholar 

  49. Bender, S. et al. Lack of age-dependent development of the contingent negative variation (CNV) in migraine children? Cephalalgia 22, 132–136 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Kropp, P. & Gerber, W. D. Is increased amplitude of contingent negative variation in migraine due to cortical hyperactivity or to reduced habituation? Cephalalgia 13, 37–41 (1993).

    Article  CAS  PubMed  Google Scholar 

  51. Wang, W. & Schoenen, J. Interictal potentiation of passive 'oddball' auditory event-related potentials in migraine. Cephalalgia 18, 261–265 (1998).

    Article  CAS  PubMed  Google Scholar 

  52. Ozkul, Y. & Uckardes, A. Median nerve somatosensory evoked potentials in migraine. Eur. J. Neurol. 9, 227–232 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Wilson, D. A. Habituation of odor responses in the rat anterior piriform cortex. J. Neurophysiol. 79, 1425–1440 (1998).

    Article  CAS  PubMed  Google Scholar 

  54. Wang, W., Wang, Y. H., Fu, X. M., Sun, Z. M. & Schoenen, J. Auditory evoked potentials and multiple personality measures in migraine and post-traumatic headaches. Pain 79, 235–242 (1999).

    Article  PubMed  Google Scholar 

  55. Hegerl, U., Gallinat, J. & Juckel, G. Event-related potentials. Do they reflect central serotonergic neurotransmission and do they predict clinical response to serotonin agonists? J. Affect. Disord. 62, 93–100 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Evers, S., Quibeldey, F., Grotemeyer, K. H., Suhr, B. & Husstedt, I. W. Dynamic changes of cognitive habituation and serotonin metabolism during the migraine interval. Cephalalgia 19, 485–491 (1999).

    Article  CAS  PubMed  Google Scholar 

  57. Siniatchkin, M., Kropp, P., Gerber, W. D. & Stephani, U. Migraine in childhood — are periodically occurring migraine attacks related to dynamic changes of cortical information processing? Neurosci. Lett. 279, 1–4 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Siniatchkin, M., Gerber, W. D., Kropp, P. & Vein, A. How the brain anticipates an attack: a study of neurophysiological periodicity in migraine. Funct. Neurol. 14, 69–77 (1999).

    CAS  PubMed  Google Scholar 

  59. Bohotin, V. et al. Effects of repetitive transcranial magnetic stimulation on visual evoked potentials in migraine. Brain 125, 912–922 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Gu, Q. Neuromodulatory transmitter systems in the cortex and their role in cortical plasticity. Neuroscience 111, 815–835 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Gartside, S. E. et al. Neurochemical and electrophysiological studies on the functional significance of burst firing in serotonergic neurons. Neuroscience 98, 295–300 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Ferrari, M. D. & Saxena, P. R. On serotonin and migraine: a clinical and pharmacological review. Cephalalgia 13, 151–165 (1993).

    Article  CAS  PubMed  Google Scholar 

  63. Ferrari, M. D., Odink, J., Bos, K. D., Malessy, M. J. & Bruyn, G. W. Neuroexcitatory plasma amino acids are elevated in migraine. Neurology 40, 1582–1586 (1990).

    Article  CAS  PubMed  Google Scholar 

  64. Welch, K. M. & Ramadan, N. M. Mitochondria, magnesium and migraine. J. Neurol. Sci. 134, 9–14 (1995).

    Article  CAS  PubMed  Google Scholar 

  65. Boska, M. D., Welch, K. M., Barker, P. B., Nelson, J. A. & Schultz, L. Contrasts in cortical magnesium, phospholipid and energy metabolism between migraine syndromes. Neurology 58, 1227–1233 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Parsons, A. A. Recent advances in mechanisms of spreading depression. Curr. Opin. Neurol. 11, 227–231 (1998).

    Article  CAS  PubMed  Google Scholar 

  67. Arakawa, S., Nakamura, S., Kawashima, N., Nishiike, S. & Fujii, Y. Antidromic burst activity of locus coeruleus neurons during cortical spreading depression. Neuroscience 78, 1147–1158 (1997).

    Article  CAS  PubMed  Google Scholar 

  68. Kruger, H., Luhmann, H. J. & Heinemann, U. Repetitive spreading depression causes selective suppression of GABAergic function. Neuroreport 7, 2733–2736 (1996).

    Article  CAS  PubMed  Google Scholar 

  69. Goadsby, P. J. The pharmacology of headache. Prog. Neurobiol. 62, 509–525 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. May, A. et al. Retinal plasma extravasation in animals but not in humans: implications for the pathophysiology of migraine. Brain 121, 1231–1237 (1998).

    Article  PubMed  Google Scholar 

  71. Cumberbatch, M. J., Williamson, D. J., Mason, G. S., Hill, R. G. & Hargreaves, R. J. Dural vasodilation causes a sensitization of rat caudal trigeminal neurones in vivo that is blocked by a 5-HT1B/1D agonist. Br. J. Pharmacol. 126, 1478–1486 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lassen, L. H. et al. CGRP may play a causative role in migraine. Cephalalgia 22, 54–61 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Williamson, D. J., Hill, R. G., Shepheard, S. L. & Hargreaves, R. J. The anti-migraine 5-HT1B/1D agonist rizatriptan inhibits neurogenic dural vasodilation in anaesthetized guinea-pigs. Br. J. Pharmacol. 133, 1029–1034 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Goldstein, D. J. et al. Selective serotonin 1F (5-HT1F) receptor agonist LY334370 for acute migraine: a randomised controlled trial. Lancet 358, 1230–1234 (2001). Although further development of LY334370 was halted, this clinical trial provided good evidence for the efficacy of 5-HT 1F -selective antagonists as anti-migraine drugs, and supported the concept that anti-migraine efficacy does not require vasoconstrictory actions.

    Article  CAS  PubMed  Google Scholar 

  75. Shepheard, S. et al. Possible antimigraine mechanisms of action of the 5HT1F receptor agonist LY334370. Cephalalgia 19, 851–858 (1999).

    Article  CAS  PubMed  Google Scholar 

  76. Kaube, H. et al. Acute migraine headache: possible sensitization of neurons in the spinal trigeminal nucleus? Neurology 58, 1234–1238 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Burstein, R., Yarnitsky, D., Goor-Aryeh, I., Ransil, B. J. & Bajwa, Z. H. An association between migraine and cutaneous allodynia. Ann. Neurol. 47, 614–624 (2000).

    Article  CAS  PubMed  Google Scholar 

  78. Burstein, R., Yamamura, H., Malick, A. & Strassman, A. M. Chemical stimulation of the intracranial dura induces enhanced responses to facial stimulation in brain stem trigeminal neurons. J. Neurophysiol. 79, 964–982 (1998). References 22, 77 and 78 are key papers for our understanding of pain sensitization in migraine. The data provide evidence for sensitization of TNC neurons in humans during migraine attacks and in rats after chemical stimulation of the dura, and are consistent with the idea that initiation, but not maintenance, of central sensitization depends on incoming impulses from nocieptors.

    Article  CAS  PubMed  Google Scholar 

  79. Burstein, R., Cutrer, M. F. & Yarnitsky, D. The development of cutaneous allodynia during a migraine attack clinical evidence for the sequential recruitment of spinal and supraspinal nociceptive neurons in migraine. Brain 123, 1703–1709 (2000).

    Article  PubMed  Google Scholar 

  80. Woolf, C. J. & Salter, M. W. Neuronal plasticity: increasing the gain in pain. Science 288, 1765–1769 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. Sandrini, G. et al. Electrophysiological evidence for trigeminal neuron sensitization in patients with migraine. Neurosci. Lett. 317, 135–138 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Grosser, K. et al. Olfactory and trigeminal event-related potentials in migraine. Cephalalgia 20, 621–631 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Thomsen, L. L. & Olesen, J. Nitric oxide in primary headaches. Curr. Opin. Neurol. 14, 315–321 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. Akerman, S., Williamson, D. J., Kaube, H. & Goadsby, P. J. Nitric oxide synthase inhibitors can antagonize neurogenic and calcitonin gene-related peptide induced dilation of dural meningeal vessels. Br. J. Pharmacol. 137, 62–68 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Pardutz, A., Krizbai, I., Multon, S., Vecsei, L. & Schoenen, J. Systemic nitroglycerin increases nNOS levels in rat trigeminal nucleus caudalis. Neuroreport 11, 3071–3075 (2000).

    Article  CAS  PubMed  Google Scholar 

  86. Hoskin, K. L., Bulmer, D. C. & Goadsby, P. J. Fos expression in the trigeminocervical complex of the cat after stimulation of the superior sagittal sinus is reduced by L-NAME. Neurosci. Lett. 266, 173–176 (1999).

    Article  CAS  PubMed  Google Scholar 

  87. Lambert, G. A., Donaldson, C., Boers, P. M. & Zagami, A. S. Activation of trigeminovascular neurons by glyceryl trinitrate. Brain Res. 887, 203–210 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Jones, M. G. et al. Nitric oxide potentiates response of trigeminal neurones to dural or facial stimulation in the rat. Cephalalgia 21, 643–655 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Thomsen, L. L. et al. A population-based study of familial hemiplegic migraine suggests revised diagnostic criteria. Brain 125, 1379–1391 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. Ducros, A. et al. The clinical spectrum of familial hemiplegic migraine associated with mutations in a neuronal calcium channel. N. Engl. J. Med. 345, 17–24 (2001). The authors identified several new FHM mutations and correlated the mutations with clinical parameters. The data strongly indicated that pure FHM and FHM with cerebellar signs are associated with distinct mutations in CACNA1A.

    Article  CAS  PubMed  Google Scholar 

  91. Ophoff, R. A. et al. Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the calcium channel gene CACNL1A4. Cell 87, 543–552 (1996). First report showing that missense mutations in CACNA1A cause FHM. Mutations leading to more pronounced structural abnormalities (such as truncations) were identified as the cause of episodic ataxia type 2, an autosomal dominant disease.

    Article  CAS  PubMed  Google Scholar 

  92. Kors, E. E., van den Maagdenberg, A. M., Plomp, J. J., Frants, R. R. & Ferrari, M. D. Calcium channel mutations and migraine. Curr. Opin. Neurol. 15, 311–316 (2002).

    Article  PubMed  Google Scholar 

  93. Pietrobon, D. Calcium channels and channelopathies of the central nervous system. Mol. Neurobiol. 25, 31–50 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. De Fusco, M. et al. Haploinsufficiency of ATP1A2 encoding the Na+/K+ pump α2 subunit gene is responsible for familial hemiplegic migraine type 2. Nature Genet. 33, 192–196 (2003). This paper reported the long-awaited identification of the gene in chromosome 1q23 linked to FHM. It was identified as ATP1A2 , encoding the Na+/K+ ATPase α 2 -subunit. Functional studies indicate a loss of function of a single allele as the relevant pathophysiological mechanism.

    Article  CAS  PubMed  Google Scholar 

  95. Terwindt, G. M. et al. Involvement of the CACNA1A gene containing region on 19p13 in migraine with and without aura. Neurology 56, 1028–1032 (2001).

    Article  CAS  PubMed  Google Scholar 

  96. Nyholt, D. R., Lea, R. A., Goadsby, P. J., Brimage, P. J. & Griffiths, L. R. Familial typical migraine: linkage to chromosome 19p13 and evidence for genetic heterogeneity. Neurology 50, 1428–1432 (1998).

    Article  CAS  PubMed  Google Scholar 

  97. Jones, K. W. et al. Migraine with aura susceptibility locus on chromosome 19p13 is distinct from the familial hemiplegic migraine locus. Genomics 78, 150–154 (2001).

    Article  CAS  PubMed  Google Scholar 

  98. Westenbroek, R. E. et al. Immunochemical identification and subcellular distribution of the α1A subunits of brain calcium channels. J. Neurosci. 15, 6403–6418 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Mintz, I. M., Sabatini, B. L. & Regehr, W. G. Calcium control of transmitter release at a cerebellar synapse. Neuron 15, 675–688 (1995).

    Article  CAS  PubMed  Google Scholar 

  100. Wu, L. G., Westenbroek, R. E., Borst, J. G., Catterall, W. A. & Sakmann, B. Calcium channel types with distinct presynaptic localization couple differentially to transmitter release in single calyx-type synapses. J. Neurosci. 19, 726–736 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Qian, J. & Noebels, J. L. Presynaptic Ca2+ channels and neurotransmitter release at the terminal of a mouse cortical neuron. J. Neurosci. 21, 3721–3728 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Bayliss, D. A., Li, Y. -W. & Talley, E. M. Effects of serotonin on caudal raphe neurons: inhibition of N- and P/Q-type calcium channels and the afterhyperpolarization. J. Neurophysiol. 1362–1374 (1997).

  103. Pineda, J. C., Waters, R. S. & Foehring, R. C. Specificity in the interaction of HVA Ca2+ channel types with Ca2+- dependent AHPs and firing behavior in neocortical pyramidal neurons. J. Neurophysiol. 79, 2522–2534 (1998).

    Article  CAS  PubMed  Google Scholar 

  104. Mori, Y. et al. Reduced voltage sensitivity of activation of P/Q-type Ca2+ channels is associated with the ataxic mouse mutation Rolling Nagoya (tgrol). J. Neurosci. 20, 5654–5662 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Sutton, K. G., McRory, J. E., Guthrie, H., Murphy, T. H. & Snutch, T. P. P/Q-type calcium channels mediate the activity-dependent feedback of syntaxin-1A. Nature 401, 800–804 (1999).

    Article  CAS  PubMed  Google Scholar 

  106. Volsen, S. G. et al. The expression of neuronal voltage-dependent calcium channels in human cerebellum. Brain Res. Mol. Brain Res. 34, 271–282 (1995).

    Article  CAS  PubMed  Google Scholar 

  107. Mintz, I. M., Adams, M. E. & Bean, B. P. P-type calcium channels in rat central and peripheral neurons. Neuron 9, 85–95 (1992).

    Article  CAS  PubMed  Google Scholar 

  108. Randall, A. & Tsien, R. W. Pharmacological dissection of multiple types of calcium channels currents in rat cerebellar granule neurons. J. Neurosci. 15, 2995–3012 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Tottene, A., Moretti, A. & Pietrobon, D. Functional diversity of P-type and R-type calcium channels in rat cerebellar neurons. J. Neurosci. 16, 6353–6363 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Iwasaki, S., Momiyama, A., Uchitel, O. D. & Takahashi, T. Developmental changes in calcium channel types mediating central synaptic transmission. J. Neurosci. 20, 59–65 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Stephens, G. J., Morris, N. P., Fyffe, R. E. & Robertson, B. The Cav2.1/α1A (P/Q-type) voltage-dependent calcium channel mediates inhibitory neurotransmission onto mouse cerebellar Purkinje cells. Eur. J. Neurosci. 13, 1902–1912 (2001).

    Article  CAS  PubMed  Google Scholar 

  112. Matsushita, K. et al. Bidirectional alterations in cerebellar synaptic transmission of tottering and rolling Ca2+ channel mutant mice. J. Neurosci. 22, 4388–4398 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Eilers, J., Plant, T. & Konnerth, A. Localized calcium signalling and neuronal integration in cerebellar Purkinje neurones. Cell Calcium 20, 215–226 (1996).

    Article  CAS  PubMed  Google Scholar 

  114. Fletcher, C. F. et al. Dystonia and cerebellar atrophy in Cacna1a null mice lacking P/Q calcium channel activity. FASEB J. 15, 1288–1290 (2001).

    Article  CAS  PubMed  Google Scholar 

  115. Jun, K. et al. Ablation of P/Q-type Ca2+ channel currents, altered synaptic transmission, and progressive ataxia in mice lacking the α1A-subunit. Proc. Natl Acad. Sci. USA 96, 15245–15250 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Zhuchenko, O. et al. Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the α1A-voltage-dependent calcium channel. Nature Genet. 15, 62–69 (1997).

    Article  CAS  PubMed  Google Scholar 

  117. Timmermann, D. B., Westenbroek, R. E., Schousboe, A. & Catterall, W. A. Distribution of high-voltage-activated calcium channels in cultured γ-aminobutyric acidergic neurons from mouse cerebral cortex. J. Neurosci. Res. 67, 48–61 (2002).

    Article  CAS  PubMed  Google Scholar 

  118. Lorenzon, N. M. & Foehring, R. C. Characterization of pharmacologically identified voltage-gated calcium channel currents in acutely isolated rat neocortical neurons. I. Adult neurons. J. Neurophysiol. 73, 1430–1442 (1995).

    Article  CAS  PubMed  Google Scholar 

  119. Koester, H. J. & Sakmann, B. Calcium dynamics associated with action potentials in single nerve terminals of pyramidal cells in layer 2/3 of the young rat neocortex. J. Physiol. (Lond.) 529, 625–646 (2000).

    Article  CAS  Google Scholar 

  120. Turner, T. J., Adams, M. E. & Dunlap, K. Calcium channels coupled to glutamate release identified by ω-Aga-IVA. Science 258, 310–313 (1992).

    Article  CAS  PubMed  Google Scholar 

  121. Wakamori, M. et al. Single tottering mutations responsible for the neuropathic phenotype of the P-type calcium channel. J. Biol. Chem. 273, 34857–34867 (1998).

    Article  CAS  PubMed  Google Scholar 

  122. Dove, L. S., Abbott, L. C. & Griffith, W. H. Whole-cell and single-channel analysis of P-type calcium currents in cerebellar Purkinje cells of leaner mutant mice. J. Neurosci. 18, 7687–7699 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Ayata, C., Shimizu-Sasamata, M., Lo, E. H., Noebels, J. L. & Moskowitz, M. A. Impaired neurotransmitter release and elevated threshold for cortical spreading depression in mice with mutations in the α1A subunit of P/Q type calcium channels. Neuroscience 95, 639–645 (2000). This study exploited naturally occuring Ca v 2.1α 1 mutations in leaner mouse mutants to show that P/Q-type channels contribute to the initiation and propagation of CSD in the neocortex. A defect in KCl-induced transmitter release and a striking elevation of CSD threshold in both types of mice were identified.

    Article  CAS  PubMed  Google Scholar 

  124. Richter, F., Ebersberger, A. & Schaible, H. G. Blockade of voltage-gated calcium channels in rat inhibits repetitive cortical spreading depression. Neurosci. Lett. 334, 123–126 (2002).

    Article  CAS  PubMed  Google Scholar 

  125. Hillmann, D. et al. Localization of P-type calcium channels in the central nervous system. Proc. Natl Acad. Sci. USA 88, 7076–7080 (1991).

    Article  Google Scholar 

  126. Craig, P. J. et al. Distribution of the voltage-dependent calcium channel α1A subunit throughout the mature rat brain and its relationship to neurotransmitter pathways. J. Comp. Neurol. 397, 251–267 (1998).

    Article  CAS  PubMed  Google Scholar 

  127. Kim, C. J., Rhee, J. S. & Akaike, N. Modulation of high-voltage activated Ca2+ channels in the rat periaqueductal gray neurons by μ-type opioid agonist. J. Neurophysiol. 77, 1418–1424 (1997).

    Article  CAS  PubMed  Google Scholar 

  128. Connor, M. & Christie, M. J. Modulation of Ca2+ channel currents of acutely dissociated rat periaqueductal grey neurons. J. Physiol. (Lond.) 509, 47–58 (1998).

    Article  CAS  Google Scholar 

  129. Penington, N. J. & Fox, A. P. Toxin-insensitive Ca current in dorsal raphe neurons. J. Neurosci. 15, 5719–2726 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Chieng, B. & Bekkers, J. M. GABAB, opioid and α2 receptor inhibition of calcium channels in acutely-dissociated locus coeruleus neurones. Br. J. Pharmacol. 127, 1533–1538 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Ishibashi, H., Rhee, J. S. & Akaike, N. Regional difference of high voltage-activated Ca2+ channels in rat CNS neurones. Neuroreport 6, 1621–1624 (1995).

    Article  CAS  PubMed  Google Scholar 

  132. Knight, Y. E., Bartsch, T., Kaube, H. & Goadsby, P. J. P/Q-type calcium-channel blockade in the periaqueductal gray facilitates trigeminal nociception: a functional genetic link for migraine? J. Neurosci. 22, RC213 (2002). The first study to investigate P/Q-type channel function on descending antinociceptive activity. By recording electrical responses of TNC neurons to electrical, dural stimulation, it was shown that the agatoxin IVA-induced P/Q-channel block in the ventrolateral PAG facilitated responses of second-order neurons. This indicated a role of P/Q-type channels in the PAG for trigeminal antinociception.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Borgland, S. L., Connor, M. & Christie, M. J. Nociceptin inhibits calcium channel currents in a subpopulation of small nociceptive trigeminal ganglion neurons in mouse. J. Physiol. (Lond.) 536, 35–47 (2001).

    Article  CAS  Google Scholar 

  134. Hong, K. W., Kim, C. D., Rhim, B. Y. & Lee, W. S. Effect of ω-conotoxin GVIA and ω-agatoxin IVA on the capsaicin-sensitive calcitonin gene-related peptide release and autoregulatory vasodilation in rat pial arteries. J. Cereb. Blood Flow Metab. 19, 53–60 (1999).

    Article  CAS  PubMed  Google Scholar 

  135. Asakura, K. et al. α-Eudesmol, a P/Q-type Ca2+ channel blocker, inhibits neurogenic vasodilation and extravasation following electrical stimulation of trigeminal ganglion. Brain Res. 873, 94–101 (2000).

    Article  CAS  PubMed  Google Scholar 

  136. Westenbroek, R. E., Hoskins, L. & Catterall, W. A. Localization of Ca2+ channel subtypes on rat spinal motor neurons, interneurons, and nerve terminals. J. Neurosci. 18, 6319–6330 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Vanegas, H. & Schaible, H. Effects of antagonists to high-threshold calcium channels upon spinal mechanisms of pain, hyperalgesia and allodynia. Pain 85, 9–18 (2000).

    Article  CAS  PubMed  Google Scholar 

  138. Takahashi, T. & Momiyama, A. Different types of calcium channels mediate central synaptic transmission. Nature 366, 156–158 (1993).

    Article  CAS  PubMed  Google Scholar 

  139. Ogasawara, M., Kurihara, T., Hu, Q. & Tanabe, T. Characterization of acute somatosensory pain transmission in P/Q-type Ca2+ channel mutant mice, leaner. FEBS Lett. 508, 181–6 (2001).

    Article  CAS  PubMed  Google Scholar 

  140. Kors, E. E. et al. Delayed cerebral edema and fatal coma after minor head trauma: role of the CACNA1A calcium channel subunit gene and relationship with familial hemiplegic migraine. Ann. Neurol. 49, 753–760 (2001).

    Article  CAS  PubMed  Google Scholar 

  141. Kraus, R. L., Sinnegger, M. J., Glossmann, H., Hering, S. & Striessnig, J. Familial hemiplegic migraine mutations change α1A calcium channel kinetics. J. Biol. Chem. 273, 5586–5590 (1998).

    Article  CAS  PubMed  Google Scholar 

  142. Hans, M. et al. Functional consequences of mutations in the human α1A calcium channel subunit linked to familial hemiplegic migraine. J. Neurosci. 19, 1610–1619 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Kraus, R. L. et al. Three new familial hemiplegic migraine mutants affect P/Q-type Ca2+ channel kinetics. J. Biol. Chem. 275, 9239–9243 (2000).

    Article  CAS  PubMed  Google Scholar 

  144. Tottene, A. et al. Familial hemiplegic migraine mutations increase Ca2+ influx through single human Cav2.1 channels and decrease maximal Cav2.1 current density in neurons. Proc. Natl Acad. Sci. USA 99, 13284–13289 (2002). This paper reported the expression of FHM mutant Ca v 2.1α 1 constructs in Ca v 2.1α 1 deficient neurons, and disclosed two functional effects that are common to all analysed FHM mutations: increase of single-channel Ca2+ influx over a broad range of negative voltages and decrease of channel density. These findings provide a unifying hypothesis for the pathophysiology of FHM.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Meinrenken, C. J., Borst, J. G. & Sakmann, B. Calcium secretion coupling at calyx of Held governed by nonuniform channel-vesicle topography. J. Neurosci. 22, 1648–1667 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Borst, J. G. & Sakmann, B. Calcium current during a single action potential in a large presynaptic terminal of the rat brainstem. J. Physiol. (Lond.) 506, 143–157 (1998).

    Article  CAS  Google Scholar 

  147. Juhaszova, M. & Blaustein, M. P. Na+ pump low and high ouabain affinity α subunit isoforms are differently distributed in cells. Proc. Natl Acad. Sci. USA 94, 1800–1805 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Snow, V., Weiss, K., Wall, E. M. & Mottur-Pilson, C. Pharmacologic management of acute attacks of migraine and prevention of migraine headache. Ann. Intern. Med. 137, 840–849 (2002).

    Article  CAS  PubMed  Google Scholar 

  149. Goadsby, P. J., Hoskin, K. L., Storer, R. J., Edvinsson, L. & Connor, H. E. Adenosine A1 receptor agonists inhibit trigeminovascular nociceptive transmission. Brain 125, 1392–1401 (2002).

    Article  CAS  PubMed  Google Scholar 

  150. Penn, R. D. & Paice, J. A. Adverse effects associated with the intrathecal administration of ziconotide. Pain 85, 291–296 (2000).

    Article  CAS  PubMed  Google Scholar 

  151. Sang, C. N. et al. AMPA/kainate antagonist LY293558 reduces capsaicin-evoked hyperalgesia but not pain in normal skin in humans. Anesthesiology 89, 1060–1067 (1998).

    Article  CAS  PubMed  Google Scholar 

  152. Gilron, I. et al. Effects of the 2-amino-3-hydroxy-5-methyl-4-isoxazole-proprionic acid/kainate antagonist LY293558 on spontaneous and evoked postoperative pain. Clin. Pharmacol. Ther. 68, 320–327 (2000).

    Article  CAS  PubMed  Google Scholar 

  153. Ramadan, N. M. Acute treatments: future developments. Curr. Med. Res. Opin. 17, Suppl. S81–86 (2001).

    Article  PubMed  Google Scholar 

  154. Le Grand, B., Panissie, A., Perez, M., Pauwels, P. J. & John, G. W. Zolmitriptan stimulates a Ca2+-dependent K+ current in C6 glioma cells stably expressing recombinant human 5-HT1B receptors. Eur. J. Pharmacol. 397, 297–302 (2000).

    Article  CAS  PubMed  Google Scholar 

  155. John, G. W. et al. F-11356, a novel 5-hydroxytryptamine (5-HT) derivative with potent, selective, and unique high intrinsic activity at 5-HT1B/1D receptors in models relevant to migraine. J. Pharmacol. Exp. Ther. 290, 83–95 (1999).

    CAS  PubMed  Google Scholar 

  156. Diamond, S., Freitag, F., Phillips, S. B., Bernstein, J. E. & Saper, J. R. Intranasal civamide for the acute treatment of migraine headache. Cephalalgia 20, 597–602 (2000).

    Article  CAS  PubMed  Google Scholar 

  157. Mulleners, W. M., Chronicle, E. P., Vredeveld, J. W. & Koehler, P. J. Visual cortex excitability in migraine before and after valproate prophylaxis: a pilot study using TMS. Eur. J. Neurol. 9, 35–40 (2002).

    Article  CAS  PubMed  Google Scholar 

  158. Kaube, H., Herzog, J., Kaufer, T., Dichgans, M. & Diener, H. C. Aura in some patients with familial hemiplegic migraine can be stopped by intranasal ketamine. Neurology 55, 139–141 (2000).

    Article  CAS  PubMed  Google Scholar 

  159. Bradley, D. P. et al. Diffusion-weighted MRI used to detect in vivo modulation of cortical spreading depression: comparison of sumatriptan and tonabersat. Exp. Neurol. 172, 342–353 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Our work is funded by the Austrian Science Fund, Telethon-Italia, the Italian Ministry of University and Research, and the European Community.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Pietrobon.

Related links

Related links

DATABASES

LocusLink

ATP1A2

CACNA1A

Cav2.2

OMIM

FHM

MA

MO

FURTHER INFORMATION

Encyclopedia of Life Sciences

headache

migraine

Glossary

POLYGENIC

A characteristic controlled by different genes, each of which has only a small role in the phenotype.

EXTRAVASATION

The exit of fluid from a blood vessel.

SCOTOMA

An area of lost vision that is surrounded by an area of less depressed or normal vision.

MAGNETOENCEPHALOGRAPHY

A non-invasive technique that allows the detection of the changing magnetic fields that are associated with brain activity. As the magnetic fields of the brain are very weak, extremely sensitive magnetic detectors known as superconducting quantum interference devices, which work at very low, superconducting temperatures (−269 °C), are used to pick up the signal.

FOS

An immediate early gene that is rapidly turned on when many types of neuron increase their activity. It can therefore be used to identify responsive neurons.

PERFUSION-WEIGHTED IMAGING

Imaging technique in which the magnetic resonance signal is intrinsically sensitive to the presence and rate of blood perfusion. It commonly involves the intravenous injection of a bolus of a contrast agent, and the subsequent imaging of the changes in signal intensity as the contrast agent first passes through the brain.

TRANSCRANIAL MAGNETIC STIMULATION

A technique that is used to induce a transient interruption of normal activity in a relatively restricted area of the brain. It is based on the generation of a strong magnetic field near the area of interest, which, if changed rapidly enough, will induce an electric field that is sufficient to stimulate neurons.

PHOSPHENES

Luminous perceptions that are elicited by excitation of the retina by means other than light itself, as when the eyeballs are pressed through closed lids.

INTERICTAL

Refers to events that occur between attacks or paroxysms.

EVENT-RELATED POTENTIALS

Electrical potentials that are generated in the brain as a consequence of the synchronized activation of neuronal networks by external stimuli. These evoked potentials are recorded at the scalp and consist of precisely timed sequences of waves or 'components'.

CONTINGENT NEGATIVE VARIATION

A small electroencephalographic potential that is often recorded as subjects perform expectation- or attention-dependent tasks. It is also known as the expectation or E wave.

P300 POTENTIAL

A positive waveform in the electroencephalogram that occurs about 300 ms after the onset of a stimulus, and is related to the attentional and working memory demands of a task.

PAIRED-PULSE DEPRESSION

When two depolarizing stimuli are delivered in close succession to a group of axons, their average response to the second one is sometimes smaller than to the first. This form of short-term plasticity is more common at inhibitory than at excitatory synapses.

ALLODYNIA

The perception of a stimulus as painful when previously the same stimulus was reported to be non-painful.

ATAXIA

Lack of movement coordination that is commonly associated with cerebellar damage.

NYSTAGMUS

An involuntary, rapid and rhythmic movement of the eyeball.

MISSENSE MUTATIONS

Mutations that result in the substitution of an amino acid in a protein.

LINKAGE ANALYSIS

An analysis of the frequency of co-inheritance of a pair of genetic markers to obtain an index of their physical proximity on a chromosome.

SIB-PAIRS ANALYSIS

A means to establish whether affected siblings have the same allele at a particular locus.

SNARE PROTEINS

A family of membrane-tethered coiled-coil proteins that are required for membrane fusion in exocytosis (such as during neurotransmitter release) and other membrane transport events. When trans-SNARE complexes are formed between vesicle SNAREs and target-membrane SNAREs, they pull the two membranes close together, presumably causing them to fuse.

DYSTONIA

The occurrence of dyskinetic movements due to alterations of muscle tone.

SPIKE-FREQUENCY ADAPTATION

A decrease in the rate of action potentials fired by a neuron under prolonged depolarization.

LEANER MICE

Mice with mutations in Cacna1a. They are characterized by marked cerebellar atrophy that is accompanied by ataxia, wobbly gait and dyskinesia.

PENETRANCE

The probability that an individual with a particular genotype will manifest a given phenotype. Complete penetrance corresponds to the situation in which every individual with the same specific genotype manifests the phenotype in question.

ACTIVE ZONE

A portion of the presynaptic membrane that faces the postsynaptic density across the synaptic cleft. It constitutes the site of synaptic vesicle clustering, docking and transmitter release.

KNOCK-IN

The insertion of a mutant gene at the exact site in the genome where the corresponding wild-type gene is located. This approach is used to ensure that the effect of the mutant gene is not affected by the activity of the endogenous locus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pietrobon, D., Striessnig, J. Neurobiology of migraine. Nat Rev Neurosci 4, 386–398 (2003). https://doi.org/10.1038/nrn1102

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1102

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing