Cognitive neuroscience

Neural mechanisms for detecting and remembering novel events

Key Points

  • Novel or unexpected events or stimuli draw our attention and are more easily remembered than predictable or familiar ones. Evidence from a variety of sources is beginning to clarify the neural mechanisms that contribute to this response to novelty.

  • When a stimulus is repeated, the neuronal response to it (in many parts of the brain) often decreases rapidly. The response is highest when the stimulus is novel. Behavioural responses also depend on stimulus novelty: the initial presentation seems to produce 'priming' so that repeated stimuli are processed more efficiently. Repetition suppression of neuronal responses occurs over short timescales and is stimulus-specific. Stimulus repetition can also cause suppression of responses over longer time periods, including over weeks of training on a task.

  • This effect seems to rely on synaptic plasticity mediated by NMDA (N-methyl-D-aspartate) receptors. It has been proposed that the reduction in population activity represents a sparsening of the response to a stimulus that leaves a more robust response carried by fewer neurons. Reductions in responses in early visual areas might result from decreased feedback from higher visual areas of cortex.

  • Another type of novelty that has been studied is contextual novelty. This arises when an unexpected stimulus or event occurs, for example a dog's bark amidst a string of birdsong. Stimuli that are contextually novel produce characteristic event-related potentials in human electroencephalograms. These potentials seem to be generated by frontal and temporal areas of cortex. Evidence from functional imaging studies supports the idea that a network of brain areas responds to contextual novelty. This network probably produces the enhanced memory that is seen for contextually novel stimuli.

  • The neurotransmitter acetylcholine and the neuromodulator noradrenaline seem to be important for the generation of this response. An integrated view of novelty processing could see the release of acetylcholine and noradrenaline being increased in response to a novel stimulus, and modulating the activity of the cortical areas to which they project. This in turn would lead to the production of novelty-related potentials and the modulation of synaptic plasticity.

Abstract

The ability to detect and respond to novel events is crucial for survival in a rapidly changing environment. Four decades of neuroscientific research has begun to delineate the neural mechanisms by which the brain detects and responds to novelty. Here, we review this research and suggest how changes in neural processing at the cellular, synaptic and network levels allow us to detect, attend to and subsequently remember the occurrence of a novel event.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Stimulus novelty effects in humans and monkeys.
Figure 2: The novelty P3.
Figure 3: Effects of lateral prefrontal or posterior medial temporal lesions on the P3.

References

  1. 1

    Tulving, E. & Schacter, D. L. Priming and human memory systems. Science 247, 301–306 (1990).

    CAS  Article  Google Scholar 

  2. 2

    Gilbert, C. D., Sigman, M. & Crist, R. E. The neural basis of perceptual learning. Neuron 31, 681–697 (2001).

    CAS  Article  Google Scholar 

  3. 3

    Ringo, J. L. Stimulus specific adaptation in inferior temporal and medial temporal cortex of the monkey. Behav. Brain Res. 76, 191–197 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4

    Henson, R. N. & Rugg, M. D. Neural response suppression, haemodynamic repetition effects, and behavioural priming. Neuropsychologia 41, 263–270 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5

    Habib, R. On the relation between conceptual priming, neural priming, and novelty assessment. Scand. J. Psychol. 42, 187–195 (2001).

    CAS  PubMed  Google Scholar 

  6. 6

    Miller, E. K., Erickson, C. A. & Desimone, R. Neural mechanisms of visual working memory in prefrontal cortex of the macaque. J. Neurosci. 16, 5154–5167 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7

    Rainer, G., Rao, S. C. & Miller, E. K. Prospective coding for objects in primate prefrontal cortex. J. Neurosci. 19, 5493–5505 (1999).

    CAS  PubMed  Google Scholar 

  8. 8

    Riches, I. P., Wilson, F. A. & Brown, M. W. The effects of visual stimulation and memory on neurons of the hippocampal formation and the neighboring parahippocampal gyrus and inferior temporal cortex of the primate. J. Neurosci. 11, 1763–1779 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9

    Baylis, G. C. & Rolls, E. T. Responses of neurons in the inferior temporal cortex in short term and serial recognition memory tasks. Exp. Brain Res. 65, 614–622 (1987).

    CAS  Google Scholar 

  10. 10

    Sobotka, S. & Ringo, J. L. Stimulus specific adaptation in excited but not in inhibited cells in inferotemporal cortex of macaque. Brain Res. 646, 95–99 (1994).

    CAS  PubMed  Google Scholar 

  11. 11

    Miller, E. K., Gochin, P. M. & Gross, C. G. Habituation-like decrease in the responses of neurons in inferior temporal cortex of the macaque. Vis. Neurosci. 7, 357–362 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Miller, E. K. & Desimone, R. Parallel neuronal mechanisms for short-term memory. Science 263, 520–522 (1994).

    CAS  Google Scholar 

  13. 13

    Maffei, L., Fiorentini, A. & Bisti, S. Neural correlate of perceptual adaptation to gratings. Science 182, 1036–1038 (1973).

    CAS  PubMed  Google Scholar 

  14. 14

    Movshon, J. A. & Lennie, P. Pattern-selective adaptation in visual cortical neurones. Nature 278, 850–852 (1979).

    CAS  Google Scholar 

  15. 15

    Dragoi, V., Sharma, J. & Sur, M. Adaptation-induced plasticity of orientation tuning in adult visual cortex. Neuron 28, 287–298 (2000).

    CAS  Google Scholar 

  16. 16

    Carandini, M., Barlow, H. B., O'Keefe, L. P., Poirson, A. B. & Movshon, J. A. Adaptation to contingencies in macaque primary visual cortex. Phil. Trans. R. Soc. Lond. B 352, 1149–1154 (1997).

    CAS  Google Scholar 

  17. 17

    Sanchez-Vives, M. V., Nowak, L. G. & McCormick, D. A. Cellular mechanisms of long-lasting adaptation in visual cortical neurons in vitro. J. Neurosci. 20, 4286–4299 (2000).

    CAS  PubMed  Google Scholar 

  18. 18

    Sohal, V. S. & Hasselmo, M. E. A model for experience-dependent changes in the responses of inferotemporal neurons. Network 11, 169–190 (2000). A modelling study that accounts for several key aspects of single-neuron data in the inferior temporal cortex during short-term memory tasks.

    CAS  PubMed  Google Scholar 

  19. 19

    Brown, M. W. & Aggleton, J. P. Recognition memory: what are the roles of the perirhinal cortex and hippocampus? Nature Rev. Neurosci. 2, 51–61 (2001).

    CAS  Google Scholar 

  20. 20

    Muller, J. R., Metha, A. B., Krauskopf, J. & Lennie, P. Rapid adaptation in visual cortex to the structure of images. Science 285, 1405–1408 (1999).

    CAS  Article  Google Scholar 

  21. 21

    Li, L., Miller, E. K. & Desimone, R. The representation of stimulus familiarity in anterior inferior temporal cortex. J. Neurophysiol. 69, 1918–1929 (1993).

    CAS  Google Scholar 

  22. 22

    Rolls, E. T., Baylis, G. C., Hasselmo, M. E. & Nalwa, V. The effect of learning on the face selective responses of neurons in the cortex in the superior temporal sulcus of the monkey. Exp. Brain Res. 76, 153–164 (1989).

    CAS  PubMed  Google Scholar 

  23. 23

    Fahy, F. L., Riches, I. P. & Brown, M. W. Neuronal activity related to visual recognition memory: long-term memory and the encoding of recency and familiarity information in the primate anterior and medial inferior temporal and rhinal cortex. Exp. Brain Res. 96, 457–472 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Asaad, W. F., Rainer, G. & Miller, E. K. Neural activity in the primate prefrontal cortex during associative learning. Neuron 21, 1399–1407 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25

    Chen, L. L. & Wise, S. P. Supplementary eye field contrasted with the frontal eye field during acquisition of conditional oculomotor associations. J. Neurophysiol. 73, 1122–1134 (1995).

    CAS  PubMed  Google Scholar 

  26. 26

    Schoups, A., Vogels, R., Qian, N. & Orban, G. Practising orientation identification improves orientation coding in V1 neurons. Nature 412, 549–553 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Ghose, G. M., Yang, T. & Maunsell, J. H. Physiological correlates of perceptual learning in monkey V1 and V2. J. Neurophysiol. 87, 1867–1888 (2002).

    PubMed  PubMed Central  Google Scholar 

  28. 28

    Brown, M. W. & Xiang, J. Z. Recognition memory: neuronal substrates of the judgement of prior occurrence. Prog. Neurobiol. 55, 149–189 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29

    Kourtzi, Z. & Kanwisher, N. Cortical regions involved in perceiving object shape. J. Neurosci. 20, 3310–3318. (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30

    Buckner, R. L. et al. Functional-anatomic correlates of object priming in humans revealed by rapid presentation event-related fMRI. Neuron 20, 285–296 (1998).

    CAS  Google Scholar 

  31. 31

    Ranganath, C., Johnson, M. K. & D'Esposito, M. Left anterior prefrontal activation increases with demands to recall specific perceptual information. J. Neurosci. 20, RC108 (2000).

    CAS  PubMed  Google Scholar 

  32. 32

    Ranganath, C. & D'Esposito, M. Medial temporal lobe activity associated with active maintenance of novel information. Neuron 31, 865–873 (2001).

    CAS  PubMed  Google Scholar 

  33. 33

    Grill-Spector, K. & Malach, R. fMR-adaptation: a tool for studying the functional properties of human cortical neurons. Acta Psychol. (Amst.) 107, 293–321 (2001).

    CAS  Google Scholar 

  34. 34

    Tolias, A. S., Smirnakis, S. M., Augath, M. A., Trinath, T. & Logothetis, N. K. Motion processing in the macaque: revisited with functional magnetic resonance imaging. J. Neurosci. 21, 8594–8601 (2001).

    CAS  Google Scholar 

  35. 35

    Huk, A. C., Ress, D. & Heeger, D. J. Neuronal basis of the motion aftereffect reconsidered. Neuron 32, 161–172 (2001).

    CAS  PubMed  Google Scholar 

  36. 36

    Logothetis, N. K., Pauls, J., Augath, M., Trinath, T. & Oeltermann, A. Neurophysiological investigation of the basis of the fMRI signal. Nature 412, 150–157 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37

    Logothetis, N. K. The neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging signal. Phil. Trans. R. Soc. Lond. B 357, 1003–1037 (2002).

    Google Scholar 

  38. 38

    Desimone, R. & Duncan, J. Neural mechanisms of selective visual attention. Annu. Rev. Neurosci. 18, 193–222 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Wiggs, C. L. & Martin, A. Properties and mechanisms of perceptual priming. Curr. Opin. Neurobiol. 8, 227–233 (1998).

    CAS  Google Scholar 

  40. 40

    Stark, C. E. & McClelland, J. L. Repetition priming of words, pseudowords, and nonwords. J. Exp. Psychol. Learn. Mem. Cogn. 26, 945–972 (2000).

    CAS  PubMed  Google Scholar 

  41. 41

    Grunwald, T. et al. Evidence relating human verbal memory to hippocampal N-methyl-D-aspartate receptors. Proc. Natl Acad. Sci. USA 96, 12085–12089 (1999).

    CAS  PubMed  Google Scholar 

  42. 42

    Rainer, G. & Miller, E. K. Timecourse of object-related neural activity in the primate prefrontal cortex during a short-term memory task. Eur. J. Neurosci. 15, 1244–1254 (2002).

    PubMed  PubMed Central  Google Scholar 

  43. 43

    Rainer, G. & Miller, E. K. Effects of visual experience on the representation of objects in the prefrontal cortex. Neuron 27, 179–189 (2000). A report demonstrating that reduced neural responses following stimulus repetition can reflect the development of a more sparse and robust object representation.

    CAS  Google Scholar 

  44. 44

    Sokolov, E. N. Higher nervous functions: the orienting reflex. Annu. Rev. Physiol. 25, 545–580 (1963).

    CAS  PubMed  Google Scholar 

  45. 45

    Corbetta, M. & Shulman, G. L. Control of goal-directed and stimulus-driven attention in the brain. Nature Rev. Neurosci. 3, 201–215 (2002).

    CAS  Google Scholar 

  46. 46

    Sutton, S., Braren, M., Zubin, J. & John, E. R. Evoked-potential correlates of stimulus uncertainty. Science 150, 1187–1188 (1965).

    CAS  PubMed  Google Scholar 

  47. 47

    Paller, K. A. in Cognitive Electrophysiology (eds Heinze, H. J., Munte, T. F. & Mangun, G. R.) 300–333 (Birkhauser, Boston, Massachusetts, 1994). A review paper summarizing studies of the P300 across different mammalian species.

    Google Scholar 

  48. 48

    Courchesne, E., Hillyard, S. A. & Galambos, R. Stimulus novelty, task relevance and the visual evoked potential in man. Electroencephalogr. Clin. Neurophysiol. 39, 131–143 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49

    Squires, N. K., Squires, K. C. & Hillyard, S. A. Two varieties of long-latency positive waves evoked by unpredictable auditory stimuli in man. Electroencephalogr. Clin. Neurophysiol. 38, 387–401 (1975).

    CAS  PubMed  Google Scholar 

  50. 50

    Halgren, E., Marinkovic, K. & Chauvel, P. Generators of the late cognitive potentials in auditory and visual oddball tasks. Electroencephalogr. Clin. Neurophysiol. 106, 156–164 (1998).

    CAS  PubMed  Google Scholar 

  51. 51

    Friedman, D., Cycowicz, Y. M. & Gaeta, H. The novelty P3: an event-related brain potential (ERP) sign of the brain's evaluation of novelty. Neurosci. Biobehav. Rev. 25, 355–373 (2001). An extensive review describing the available findings on ERP correlates of contextual novelty, their neural sources, and the potential cognitive processes reflected by these ERPs.

    CAS  PubMed  Google Scholar 

  52. 52

    Knight, R. T. & Nakada, T. Cortico-limbic circuits and novelty: a review of EEG and blood flow data. Rev. Neurosci. 9, 57–70 (1998).

    CAS  PubMed  Google Scholar 

  53. 53

    Soltani, M. & Knight, R. T. Neural origins of the P300. Crit. Rev. Neurobiol. (in the press). A detailed review describing what is known about the neural sources that contribute to the novelty P3.

  54. 54

    McCarthy, G. & Wood, C. C. Intracranial recordings of endogenous ERPs in humans. Electroencephalogr. Clin. Neurophysiol. 39 (suppl.), 331–337 (1987). | PubMed |

    CAS  Google Scholar 

  55. 55

    Johnson, R. Jr. On the neural generators of the P300 component of the event-related potential. Psychophysiology 30, 90–97 (1993).

    PubMed  Google Scholar 

  56. 56

    Ruchkin, D. S., Johnson, R. Jr, Canoune, H. L., Ritter, W. & Hammer, M. Multiple sources of P3b associated with different types of information. Psychophysiology 27, 157–176 (1990).

    CAS  PubMed  Google Scholar 

  57. 57

    Knight, R. T. Decreased response to novel stimuli after prefrontal lesions in man. Electroencephalogr. Clin. Neurophysiol. 59, 9–20 (1984). The first in a series of investigations into the neural basis of the novelty P3.

    CAS  PubMed  Google Scholar 

  58. 58

    Ranganath, C. & Paller, K. A. Frontal brain activity during episodic and semantic retrieval: insights from event-related potentials. J. Cogn. Neurosci. 11, 598–609 (1999).

    CAS  PubMed  Google Scholar 

  59. 59

    Cycowicz, Y. M. & Friedman, D. Effect of sound familiarity on the event-related potentials elicited by novel environmental sounds. 36, 30–51 (1998).

  60. 60

    Friedman, D. & Simpson, G. V. ERP amplitude and scalp distribution to target and novel events: effects of temporal order in young, middle-aged and older adults. Brain Res. Cogn. Brain Res. 2, 49–63 (1994).

    CAS  PubMed  Google Scholar 

  61. 61

    Kazmerski, V. A. & Friedman, D. Repetition of novel stimuli in an ERP oddball paradigm: aging effects. J. Psychophysiol. 9, 298–311 (1995).

    Google Scholar 

  62. 62

    Knight, R. T. Contribution of human hippocampal region to novelty detection. Nature 383, 256–259 (1996).

    CAS  PubMed  Google Scholar 

  63. 63

    Knight, R. T. Distributed cortical network for visual attention. J. Cogn. Neurosci. 9, 75–91 (1997).

    CAS  PubMed  Google Scholar 

  64. 64

    Simons, R. F., Graham, F. K., Miles, M. A. & Chen, X. On the relationship of P3a and the novelty-P3. Biol. Psychol. 56, 207–218 (2001).

    CAS  PubMed  Google Scholar 

  65. 65

    Comerchero, M. D. & Polich, J. P3a, perceptual distinctiveness, and stimulus modality. Brain Res. Cogn. Brain Res. 7, 41–48 (1998).

    CAS  PubMed  Google Scholar 

  66. 66

    Katayama, J. & Polich, J. Stimulus context determines P3a and P3b. Psychophysiology 35, 23–33 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67

    Demiralp, T., Ademoglu, A., Comerchero, M. & Polich, J. Wavelet analysis of P3a and P3b. Brain Topogr. 13, 251–267 (2001).

    CAS  PubMed  Google Scholar 

  68. 68

    Jeon, Y. W. & Polich, J. P3a from a passive visual stimulus task. Clin. Neurophysiol. 112, 2202–2208 (2001).

    CAS  PubMed  Google Scholar 

  69. 69

    Friedman, D., Kazmerski, V. A. & Cycowicz, Y. M. Effects of aging on the novelty P3 during attend and ignore oddball tasks. Psychophysiology 35, 508–520 (1998).

    CAS  PubMed  Google Scholar 

  70. 70

    Clarke, J. M., Halgren, E. & Chauvel, P. Intracranial ERPs in humans during a lateralized visual oddball task: I. Occipital and peri-Rolandic recordings. Clin. Neurophysiol. 110, 1210–1225 (1999).

    CAS  PubMed  Google Scholar 

  71. 71

    Clarke, J. M., Halgren, E. & Chauvel, P. Intracranial ERPs in humans during a lateralized visual oddball task: II. Temporal, parietal, and frontal recordings. Clin. Neurophysiol. 110, 1226–1244 (1999).

    CAS  PubMed  Google Scholar 

  72. 72

    Halgren, E. et al. Endogenous potentials generated in the human hippocampal formation and amygdala by infrequent events. Science 210, 803–805 (1980).

    CAS  Google Scholar 

  73. 73

    Halgren, E. et al. Intracerebral potentials to rare target and distractor auditory and visual stimuli. I. Superior temporal plane and parietal lobe. Electroencephalogr. Clin. Neurophysiol. 94, 191–220 (1995).

    CAS  PubMed  Google Scholar 

  74. 74

    Halgren, E. et al. Intracerebral potentials to rare target and distractor auditory and visual stimuli. II. Medial, lateral and posterior temporal lobe. Electroencephalogr. Clin. Neurophysiol. 94, 229–250 (1995).

    CAS  PubMed  Google Scholar 

  75. 75

    Baudena, P., Halgren, E., Heit, G. & Clarke, J. M. Intracerebral potentials to rare target and distractor auditory and visual stimuli. III. Frontal cortex. Electroencephalogr. Clin. Neurophysiol. 94, 251–264 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76

    Alain, C., Richer, F., Achim, A. & Saint Hilaire, J. M. Human intracerebral potentials associated with target, novel, and omitted auditory stimuli. Brain Topogr. 1, 237–245 (1989).

    CAS  PubMed  Google Scholar 

  77. 77

    McCarthy, G., Wood, C. C., Williamson, P. D. & Spencer, D. D. Task-dependent field potentials in human hippocampal formation. J. Neurosci. 9, 4253–4268 (1989).

    CAS  PubMed  Google Scholar 

  78. 78

    Grunwald, T. et al. Limbic P300s in temporal lobe epilepsy with and without Ammon's horn sclerosis. Eur. J. Neurosci. 11, 1899–1906 (1999).

    CAS  PubMed  Google Scholar 

  79. 79

    Daffner, K. R. et al. The central role of the prefrontal cortex in directing attention to novel events. Brain 123, 927–939 (2000).

    Google Scholar 

  80. 80

    Daffner, K. R. et al. Regulation of attention to novel stimuli by frontal lobes: an event-related potential study. Neuroreport 9, 787–791 (1998).

    CAS  PubMed  Google Scholar 

  81. 81

    Yamaguchi, S. & Knight, R. T. Anterior and posterior association cortex contributions to the somatosensory P300. J. Neurosci. 11, 2039–2054 (1991).

    CAS  PubMed  Google Scholar 

  82. 82

    Knight, R. T. & Scabini, D. Anatomic bases of event-related potentials and their relationship to novelty detection in humans. J. Clin. Neurophysiol. 15, 3–13 (1998).

    CAS  Google Scholar 

  83. 83

    Knight, R. T., Scabini, D., Woods, D. L. & Clayworth, C. C. Contributions of temporal-parietal junction to the human auditory P3. Brain Res. 502, 109–116 (1989).

    CAS  Google Scholar 

  84. 84

    Luria, A. R. The Working Brain (Penguin, New York, 1966).

    Google Scholar 

  85. 85

    Daffner, K. R. et al. Disruption of attention to novel events after frontal lobe injury in humans. J. Neurol. Neurosurg. Psychiatry 68, 18–24 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86

    Rule, R. R., Shimamura, A. P. & Knight, R. T. Orbitofrontal cortex and dynamic filtering of emotional stimuli. Cogn. Affect. Behav. Neurosci. 2, 264–270 (2002).

    PubMed  Google Scholar 

  87. 87

    Kiehl, K. A. & Liddle, P. F. Reproducibility of the hemodynamic response to auditory oddball stimuli: a six-week test-retest study. Hum. Brain Mapp. 18, 42–52 (2003).

    PubMed  Google Scholar 

  88. 88

    Kiehl, K. A., Laurens, K. R., Duty, T. L., Forster, B. B. & Liddle, P. F. Neural sources involved in auditory target detection and novelty processing: an event-related fMRI study. Psychophysiology 38, 133–142 (2001).

    CAS  Google Scholar 

  89. 89

    Kiehl, K. A., Laurens, K. R., Duty, T. L., Forster, B. B. & Liddle, P. F. An event-related fMRI study of visual and auditory oddball tasks. J. Psychophysiol. 15, 221–240 (2001).

    Google Scholar 

  90. 90

    Clark, V. P., Fannon, S., Lai, S., Benson, R. & Bauer, L. Responses to rare visual target and distractor stimuli using event-related fMRI. J. Neurophysiol. 83, 3133–3139 (2000).

    CAS  Google Scholar 

  91. 91

    Kirino, E., Belger, A., Goldman-Rakic, P. & McCarthy, G. Prefrontal activation evoked by infrequent target and novel stimuli in a visual target detection task: an event-related functional magnetic resonance imaging study. J. Neurosci. 20, 6612–6618 (2000).

    CAS  Google Scholar 

  92. 92

    Opitz, B., Mecklinger, A., Friederici, A. D. & von Cramon, D. Y. The functional neuroanatomy of novelty processing: integrating ERP and fMRI results. Cereb. Cortex 9, 379–391 (1999).

    CAS  PubMed  Google Scholar 

  93. 93

    Downar, J., Crawley, A. P., Mikulis, D. J. & Davis, K. D. A multimodal cortical network for the detection of changes in the sensory environment. Nature Neurosci. 3, 277–283 (2000).

    CAS  Google Scholar 

  94. 94

    Huettel, S. A., Mack, P. B. & McCarthy, G. Perceiving patterns in random series: dynamic processing of sequence in prefrontal cortex. Nature Neurosci. 5, 485–490 (2002).

    CAS  PubMed  Google Scholar 

  95. 95

    Strange, B. A. & Dolan, R. J. Adaptive anterior hippocampal responses to oddball stimuli. Hippocampus 11, 690–698 (2001).

    CAS  PubMed  Google Scholar 

  96. 96

    Strange, B. A., Fletcher, P. C., Henson, R. N., Friston, K. J. & Dolan, R. J. Segregating the functions of human hippocampus. Proc. Natl Acad. Sci. USA 96, 4034–4039 (1999).

    CAS  PubMed  Google Scholar 

  97. 97

    Poldrack, R. A. et al. Interactive memory systems in the human brain. Nature 414, 546–550 (2001).

    CAS  PubMed  Google Scholar 

  98. 98

    Buchel, C., Dolan, R. J., Armony, J. L. & Friston, K. J. Amygdala-hippocampal involvement in human aversive trace conditioning revealed through event-related functional magnetic resonance imaging. J. Neurosci. 19, 10869–10876 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. 99

    von Restorff, H. Uber die Wirkung von Bereichsbildungen im Spurenfeld. Psychol. Forsch. 18, 299–342 (1933).

    Google Scholar 

  100. 100

    Parker, A., Wilding, E. L. & Akerman, C. The von Restorff effect in visual object recognition memory in humans and monkeys: the role of frontal/perirhinal interaction. J. Cogn. Neurosci. 10, 691–703 (1998). An experiment demonstrating that the processing advantage for contextually novel items, in an otherwise homogeneous list, is dependent on intact perirhinal–frontal interactions.

    CAS  Google Scholar 

  101. 101

    Hunt, R. R. The subtlety of distinctiveness: what von Restorff really did. Psychon. Bull. Rev. 2, 105–112 (1995).

    CAS  PubMed  Google Scholar 

  102. 102

    Wallace, W. P. Review of the historical, empirical, and theoretical status of the von Restorff phenomenon. Psychol. Bull. 63, 410–424 (1965).

    CAS  PubMed  Google Scholar 

  103. 103

    Habib, R., McIntosh, A. R., Wheeler, M. A. & Tulving, E. Memory encoding and hippocampally-based novelty/familiarity discrimination networks. Neuropsychologia 41, 271–279 (2003).

    PubMed  Google Scholar 

  104. 104

    Tulving, E., Markowitsch, H. J., Craik, F. E., Habib, R. & Houle, S. Novelty and familiarity activations in PET studies of memory encoding and retrieval. Cereb. Cortex 6, 71–79 (1996).

    CAS  PubMed  Google Scholar 

  105. 105

    Fabiani, M. & Donchin, E. Encoding processes and memory organization: a model of the von Restorff effect. J. Exp. Psychol. Learn. Mem. Cogn. 21, 224–240 (1995).

    CAS  PubMed  Google Scholar 

  106. 106

    Fabiani, M., Karis, D. & Donc hin, E. Effects of mnemonic strategy manipulation in a von Restorff paradigm. Electroencephalogr. Clin. Neurophysiol. 75, 22–35 (1990).

    CAS  PubMed  Google Scholar 

  107. 107

    Fabiani, M., Karis, D. & Donchin, E. P300 and recall in an incidental memory paradigm. Psychophysiology 23, 298–308 (1986).

    CAS  PubMed  Google Scholar 

  108. 108

    Kirchhoff, B. A., Wagner, A. D., Maril, A. & Stern, C. E. Prefrontal–temporal circuitry for episodic encoding and subsequent memory. J. Neurosci. 20, 6173–6180 (2000).

    CAS  Google Scholar 

  109. 109

    Fernandez, G. & Tendolkar, I. Integrated brain activity in medial temporal and prefrontal areas predicts subsequent memory performance: human declarative memory formation at the system level. Brain Res. Bull. 55, 1–9 (2001).

    CAS  PubMed  Google Scholar 

  110. 110

    Frodl-Bauch, T., Bottlender, R. & Hegerl, U. Neurochemical substrates and neuroanatomical generators of the event-related P300. Neuropsychobiology 40, 86–94 (1999).

    CAS  PubMed  Google Scholar 

  111. 111

    Gu, Q. Neuromodulatory transmitter systems in the cortex and their role in cortical plasticity. Neuroscience 111, 815–835 (2002).

    CAS  PubMed  Google Scholar 

  112. 112

    Mesulam, M. M. & Mufson, E. J. Neural inputs into the nucleus basalis of the substantia innominata (Ch4) in the rhesus monkey. Brain 107, 253–274 (1984). A careful characterization of the inputs to the NBM, revealing that, although this area modulates activity across several cortical regions, it receives input from only a few.

    PubMed  Google Scholar 

  113. 113

    Mesulam, M. M., Volicer, L., Marquis, J. K., Mufson, E. J. & Green, R. C. Systematic regional differences in the cholinergic innervation of the primate cerebral cortex: distribution of enzyme activities and some behavioral implications. Ann. Neurol. 19, 144–151 (1986).

    CAS  PubMed  Google Scholar 

  114. 114

    Easton, A. & Gaffan, D. Crossed unilateral lesions of the medial forebrain bundle and either inferior temporal or frontal cortex impair object-reward association learning in Rhesus monkeys. Neuropsychologia 39, 71–82 (2001). One of a series of recent lesion studies in monkeys by these authors that underscore the importance of the cholinergic system in learning and memory.

    CAS  PubMed  Google Scholar 

  115. 115

    Easton, A., Parker, A. & Gaffan, D. Crossed unilateral lesions of medial forebrain bundle and either inferior temporal or frontal cortex impair object recognition memory in Rhesus monkeys. Behav. Brain Res. 121, 1–10 (2001).

    CAS  PubMed  Google Scholar 

  116. 116

    Fine, A. et al. Learning impairments following injection of a selective cholinergic immunotoxin, ME20.4 IgG-saporin, into the basal nucleus of Meynert in monkeys. Neuroscience 81, 331–343 (1997). A study demonstrating that immunotoxic lesions specific to cholinergic neurons in the basal forebrain result in cell loss in inferior temporal and frontal cortex of monkeys, the severity of which is correlated with behavioural impairments.

    CAS  PubMed  Google Scholar 

  117. 117

    Hasselmo, M. E. Neuromodulation: acetylcholine and memory consolidation. Trends Cogn. Sci. 3, 351–359 (1999).

    CAS  Google Scholar 

  118. 118

    Wilson, F. A. & Rolls, E. T. Neuronal responses related to the novelty and familiarity of visual stimuli in the substantia innominata, diagonal band of Broca and periventricular region of the primate basal forebrain. Exp. Brain Res. 80, 104–120 (1990).

    CAS  PubMed  Google Scholar 

  119. 119

    Wilson, F. A. & Rolls, E. T. Learning and memory is reflected in the responses of reinforcement-related neurons in the primate basal forebrain. J. Neurosci. 10, 1254–1267 (1990).

    CAS  PubMed  Google Scholar 

  120. 120

    Giovannini, M. G. et al. Effects of novelty and habituation on acetylcholine, GABA, and glutamate release from the frontal cortex and hippocampus of freely moving rats. Neuroscience 106, 43–53 (2001). A microdialysis study in behaving rats showing robust novelty-related changes in levels of ACh, but not glutamate, in rat frontal cortex.

    CAS  PubMed  Google Scholar 

  121. 121

    Thiel, C. M., Henson, R. N. & Dolan, R. J. Scopolamine but not lorazepam modulates face repetition priming: a psychopharmacological fMRI study. Neuropsychopharmacology 27, 282–292 (2002).

    CAS  PubMed  Google Scholar 

  122. 122

    Thiel, C. M., Henson, R. N., Morris, J. S., Friston, K. J. & Dolan, R. J. Pharmacological modulation of behavioral and neuronal correlates of repetition priming. J. Neurosci. 21, 6846–6852 (2001).

    CAS  PubMed  Google Scholar 

  123. 123

    Sperling, R. et al. Functional MRI detection of pharmacologically induced memory impairment. Proc. Natl Acad. Sci. USA 99, 455–460 (2002).

    CAS  PubMed  Google Scholar 

  124. 124

    Miller, E. K. & Desimone, R. Scopolamine affects short-term memory but not inferior temporal neurons. Neuroreport 4, 81–84 (1993).

    CAS  PubMed  Google Scholar 

  125. 125

    Potter, D. D., Pickles, C. D., Roberts, R. C. & Rugg, M. D. The effect of cholinergic receptor blockade by scopolamine on memory performance and the auditory P3. J. Psychophysiol. 14, 11–23 (2000).

    Google Scholar 

  126. 126

    Potter, D. D., Pickles, C. D., Roberts, R. C. & Rugg, M. D. Scopolamine impairs memory performance and reduces frontal but not parietal visual P3 amplitude. Biol. Psychol. 52, 37–52 (2000).

    CAS  PubMed  Google Scholar 

  127. 127

    Zaborszky, L., Cullinan, W. E. & Luine, V. N. Catecholaminergic–cholinergic interaction in the basal forebrain. Prog. Brain Res. 98, 31–49 (1993).

    CAS  PubMed  Google Scholar 

  128. 128

    Morrison, J. H. & Foote, S. L. Noradrenergic and serotoninergic innervation of cortical, thalamic, and tectal visual structures in Old and New World monkeys. J. Comp. Neurol. 243, 117–138 (1986).

    CAS  Google Scholar 

  129. 129

    Aston-Jones, G., Chiang, C. & Alexinsky, T. Discharge of noradrenergic locus coeruleus neurons in behaving rats and monkeys suggests a role in vigilance. Prog. Brain Res. 88, 501–520 (1991).

    CAS  PubMed  Google Scholar 

  130. 130

    Foote, S. L., Berridge, C. W., Adams, L. M. & Pineda, J. A. Electrophysiological evidence for the involvement of the locus coeruleus in alerting, orienting, and attending. Prog. Brain Res. 88, 521–532 (1991).

    CAS  PubMed  Google Scholar 

  131. 131

    Vankov, A., Herve-Minvielle, A. & Sara, S. J. Response to novelty and its rapid habituation in locus coeruleus neurons of the freely exploring rat. Eur. J. Neurosci. 7, 1180–1187 (1995). A direct demonstration of novelty-related responses in single neurons of the locus coeruleus of freely behaving rats.

    CAS  PubMed  Google Scholar 

  132. 132

    Pineda, J. A. & Westerfield, M. Monkey P3 in an 'oddball' paradigm: pharmacological support for multiple neural sources. Brain Res. Bull. 31, 689–696 (1993).

    CAS  PubMed  Google Scholar 

  133. 133

    Guillem, F., Rougier, A. & Claverie, B. Short- and long-delay intracranial ERP repetition effects dissociate memory systems in the human brain. J. Cogn. Neurosci. 11, 437–458 (1999).

    CAS  PubMed  Google Scholar 

  134. 134

    Grunwald, T., Lehnertz, K., Heinze, H. J., Helmstaedter, C. & Elger, C. E. Verbal novelty detection within the human hippocampus proper. Proc. Natl Acad. Sci. USA 95, 3193–3197 (1998).

    CAS  PubMed  Google Scholar 

  135. 135

    Grunwald, T., Elger, C. E., Lehnertz, K., Van Roost, D. & Heinze, H. J. Alterations of intrahippocampal cognitive potentials in temporal lobe epilepsy. Electroencephalogr. Clin. Neurophysiol. 95, 53–62 (1995).

    CAS  PubMed  Google Scholar 

  136. 136

    Elger, C. E. et al. Human temporal lobe potentials in verbal learning and memory processes. Neuropsychologia 35, 657–667 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. 137

    McCarthy, G., Nobre, A. C., Bentin, S. & Spencer, D. D. Language-related field potentials in the anterior-medial temporal lobe: I. Intracranial distribution and neural generators. J. Neurosci. 15, 1080–1089 (1995).

    CAS  Google Scholar 

  138. 138

    Nobre, A. C. & McCarthy, G. Language-related field potentials in the anterior-medial temporal lobe: II. Effects of word type and semantic priming. J. Neurosci. 15, 1090–1098 (1995).

    CAS  PubMed  Google Scholar 

  139. 139

    Loy, R., Koziell, D. A., Lindsey, J. D. & Moore, R. Y. Noradrenergic innervation of the adult rat hippocampal formation. J. Comp. Neurol. 189, 699–710 (1980).

    CAS  PubMed  Google Scholar 

  140. 140

    Lewis, D. A. & Morrison, J. H. Noradrenergic innervation of monkey prefrontal cortex: a dopamine-β-hydroxylase immunohistochemical study. J. Comp. Neurol. 282, 317–330 (1989).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank C. Clayworth, R. Knight, K. Lamberty, K. Paller and M. Soltani for their generous assistance in figure preparation, and C. Brozinsky, N. Kroll and M. Kishiyama for helpful comments on earlier versions of this article. G.R. was supported by the Austrian Academy of Sciences and the Max Planck Society.

Author information

Affiliations

Authors

Related links

Related links

FURTHER INFORMATION

Dynamic Memory Lab 

Encyclopedia of Life Sciences

acetylcholine

brain imaging: localization of brain functions

brain imaging: observing ongoing neural activity

learning and memory

NMDA receptors

Gregor Rainer's homepage

Glossary

DELAYED MATCHING-TO-SAMPLE TASKS

Recognition memory tasks in which presentation of a stimulus is followed by a delay, after which a choice is offered. In matching tasks, the originally presented stimulus must be chosen; in non-matching tasks, a new stimulus must be selected. With small stimulus sets, the stimuli are frequently repeated and therefore become highly familiar. So, typically, such tasks are most readily solved by short-term or working memory rather than by long-term memory mechanisms.

TILT AFTER-EFFECT

If you stare at a set of lines that are tilted in one direction from upright, upright lines will subsequently look as though they are tilted in the opposite direction.

TEMPORAL DECORRELATION

Small eye movements made during free viewing of natural scenes tend to expose neurons to similar but not identical structure. Adaptation can reduce responses to structure that is similar across fixations, removing correlations.

EYE FIELD

An area that receives visual inputs and produces movements of the eye.

CONDITIONAL OCULOMOTOR LEARNING

An association between a set of stimuli and a set of eye movements has to be learned by trial and error, where each stimulus is associated with a particular eye movement.

EVENT-RELATED POTENTIALS

Electrical potentials that are generated in the brain as a consequence of the synchronized activation of neuronal networks by external stimuli. These evoked potentials are recorded at the scalp and consist of precisely timed sequences of waves or 'components'.

EVENT-RELATED fMRI

 A variant of functional magnetic resonance imaging (fMRI) methods that allows neural correlates of individual trials or classes of trials to be isolated and compared.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ranganath, C., Rainer, G. Neural mechanisms for detecting and remembering novel events. Nat Rev Neurosci 4, 193–202 (2003). https://doi.org/10.1038/nrn1052

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing