Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Human prefrontal cortex: processing and representational perspectives

Key Points

  • The prefrontal cortex (PFC) has been implicated in a variety of 'higher' cognitive functions — language, abstract reasoning, problem solving, social interactions and planning. A number of theories have been proposed for how the PFC might mediate these functions.

  • This paper proposes five criteria that we believe a theory should meet if it is to provide a useful framework for understanding the functions of the PFC. We provide an overview of some of the key PFC theories and assess how well they meet our criteria.

  • The criteria by which we assess the theories are: (1) specification of the type of information stored in the PFC; (2) consistency with our knowledge of stimulus representation in the brain; (3) consistency with what is known of the evolutionary development of the PFC; (4) ability to test the model and hence to verify or invalidate it; and (5) consistency of the model with available experimental data.

  • A theory might take a processing approach — that is, it might specify computational procedures that are performed by the PFC to manipulate information stored elsewhere in the brain. Alternatively, a theory can take a representational approach — that is, it can specify the type of information that is stored in memories in the PFC. Finally, a theory might have components of both the processing and representational viewpoints.

  • We discuss the main claims of each key theory and review data addressing these claims. The models meet our criteria to varying degrees. All models are supported to some extent by the available cognitive neuroscience data, but not all of the models address all of the available data. In particular, many researchers rely almost solely on functional neuroimaging data and ignore other sources of evidence (such as lesion studies). With respect to specific theories, without modification, no single theory of PFC function seems to explain all of the available data.

  • With respect to the general theoretical approaches, we argue that the representational approach seems to be more consistent with our criteria than does the processing approach. We argue that the representational approach forces a more detailed specification of a theory and thus enables specific hypothesis testing. We argue that adoption of a representational framework is the most parsimonious way to explore the nature of knowledge stored in the human PFC.

Abstract

Through evolution, humans have acquired 'higher' cognitive skills — such as language, reasoning and planning — and complex social behaviour. Evidence from neuropsychological and neuroimaging research indicates that the prefrontal cortex (PFC) underlies much of this higher cognition. A number of theories have been proposed for how the PFC might achieve this. Although many of these theories focus on the types of 'process' that the PFC carries out, we argue for the validity of a representational approach to understanding PFC function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A summary of the connectivity between prefrontal cortex and other brain regions.
Figure 2: Prefrontal cortex regions implicated in different functions by neuroimaging studies.
Figure 3: The representational forms of the SEC and their proposed localization within the prefrontal cortex.

Similar content being viewed by others

References

  1. Semendeferi, K., Lu, A., Schenker, N. & Damasio, H. Humans and great apes share a large frontal cortex. Nature Neurosci. 5, 272–276 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Rilling, J. K. & Insel, T. R. The primate neocortex in comparative perspective using magnetic resonance imaging. J. Human Evol. 37, 191–223 (1999).

    Article  CAS  Google Scholar 

  3. Semendeferi, K., Armstrong, E., Schleicher, A., Zilles, K. & van Hoesen, G. W. Prefrontal cortex in humans and apes: a comparative study of area 10. Am. J. Phys. Anthropol. 114, 224–241 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Levy, R. & Goldman-Rakic, P. S. Segregation of working memory functions within the dorsolateral prefrontal cortex. Exp. Brain Res. 133, 23–32 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Bodner, M., Kroger, J. & Fuster, J. M. Auditory memory cells in dorsolateral prefrontal cortex. Neuroreport 7, 1905–1908 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Fuster, J. M. & Alexander, G. E. Neuron activity related to short-term memory. Science 173, 652–654 (1971). A seminal paper demonstrating sustained activity in PFC neurons related to short-term memory of a stimulus over a delay period.

    Article  CAS  PubMed  Google Scholar 

  7. Fuster, J. M., Bodner, M. & Kroger, J. K. Cross-modal and cross-temporal association in neurons of frontal cortex. Nature 405, 347–351 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Elston, G. N. Pyramidal cells of the frontal lobe: all the more spinous to think with. J. Neurosci. 20, RC95 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Gallese, V., Fadiga, L., Fogassi, L. & Rizzolatti, G. Action recognition in the premotor cortex. Brain 119, 593–609 (1996).

    Article  PubMed  Google Scholar 

  10. Grafton, S. T., Arbib, M. A., Fadiga, L. & Rizzolatti, G. Localization of grasp representations in humans by PET: II. Observation compared with imagination. Exp. Brain Res. 112, 103–111 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Rizzolatti, G. et al. Localization of grasp representations in humans by PET: I. Observation versus execution. Exp. Brain Res. 111, 246–252 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Williams, J. H. G., Whiten, A., Suddendorf, T. & Perrett, D. I. Imitation, mirror neurons and autism. Neurosci. Biobehav. Rev. 25, 287–295 (2001). An interesting perspective on the PFC, action representation, imitation, and its relationship to social cognition and autism.

    Article  CAS  PubMed  Google Scholar 

  13. Banyas, C. A. in The Human Frontal Lobes: Functions and Disorders (eds Miller, B. L. & Cummings, J. L.) 83–106 (Guilford, New York, 1999).

    Google Scholar 

  14. Fuster, J. M. The Prefrontal Cortex: Anatomy, Physiology, and Neuropsychology of the Frontal Lobe (Raven, New York, 1997). A comprehensive review of research into PFC function and a detailed account of the temporal organization model.

    Google Scholar 

  15. Goldman-Rakic, P. S. in Handbook of Physiology: A Critical Comprehensive Presentation of Physiological Knowledge and Concepts (ed. Geiger, S. R.) 373–417 (American Physiological Society, Bethesda, Maryland, 1987).

    Google Scholar 

  16. Nichelli, P. et al. Where the brain appreciates the moral of a story. Neuroreport 6, 2309–2313 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Rueckert, L. & Grafman, J. Sustained attention deficits in patients with right frontal lesions. Neuropsychologia 34, 953–963 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Duncan, J. An adaptive coding model of neural function in prefrontal cortex. Nature Rev. Neurosci. 2, 820–829 (2001).

    Article  CAS  Google Scholar 

  19. Freedman, D. J., Riesenhuber, M., Poggio, T. & Miller, E. K. Categorical representation of visual stimuli in the primate prefrontal cortex. Science 291, 312–316 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Rainer, G., Asaad, W. F. & Miller, E. K. Selective representation of relevant information by neurons in the primate prefrontal cortex. Nature 393, 577–579 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Rao, S. C., Rainer, G. & Miller, E. K. Integration of what and where in the primate prefrontal cortex. Science 276, 821–824 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Cabeza, R. & Nyberg, L. Imaging cognition II: an empirical review of 275 PET and fMRI studies. J. Cogn. Neurosci. 12, 1–47 (2000). A comprehensive review of the functional imaging literature regarding most aspects of cognition.

    Article  CAS  PubMed  Google Scholar 

  23. Asaad, W. F., Rainer, G. & Miller, E. K. Task-specific neural activity in the primate prefrontal cortex. J. Neurophysiol. 84, 451–459 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Chang, J. Y., Chen, L., Luo, F., Shi, L. H. & Woodward, D. J. Neuronal responses in the frontal cortico-basal ganglia system during delayed matching-to-sample task: ensemble recording in freely moving rats. Exp. Brain Res. 142, 67–80 (2002).

    Article  PubMed  Google Scholar 

  25. Ramus, S. J. & Eichenbaum, H. Neural correlates of olfactory recognition memory in the rat orbitofrontal cortex. J. Neurosci. 20, 8199–8208 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Kawasaki, H. et al. Single-neuron responses to emotional visual stimuli recorded in the human ventral prefrontal cortex. Nature Neurosci. 4, 15–16 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Norman, D. A. & Shallice, T. in Consciousness and Self-regulation (eds Davidson, R. J., Schwartz, G. E. & Shapiro, D.) 1–18 (Plenum, New York, 1986).

    Book  Google Scholar 

  28. Shallice, T. & Burgess, P. in The Prefrontal Cortex: Executive and Cognitive Functions (eds Roberts, A. C., Robbins, T. W. & Weiskrantz, L.) 22–35 (Oxford Univ. Press, Oxford, UK, 1998).

    Book  Google Scholar 

  29. Dimitrov, M., Phipps, M., Zahn, T. & Grafman, J. A thoroughly modern Gage. Neurocase 5, 345–354 (1999).

    Article  Google Scholar 

  30. Masterman, D. L. & Cummings, J. L. Frontal-subcortical circuits: the anatomic basis of executive, social and motivated behaviors. J. Psychopharmacol. 11, 107–114 (1997). This paper provides an excellent overview of the neural circuitry of the PFC and its relationship to behaviour.

    Article  CAS  PubMed  Google Scholar 

  31. Allain, P., Le Gall, D., Etcharry-Brouyx, F., Aubin, G. & Emile, J. Mental representation of knowledge following frontal-lobe lesion: dissociations on tasks using scripts. J. Clin. Exp. Neuropsychol. 21, 643–665 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Sirigu, A. et al. Encoding of sequence and boundaries of scripts following prefrontal lesions. Cortex 32, 297–310 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Crozier, S. et al. Distinct prefrontal activations in processing sequence at the sentence and script level: an fMRI study. Neuropsychologia 37, 1469–1476 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Partiot, A., Grafman, J., Sadato, N., Flitman, S. & Wild, K. Brain activation during script event processing. Neuroreport 7, 761–766 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. Wood, J. N., Romero, S. G., Makale, M. & Grafman, J. Category-specific representations of social and non-social knowledge in the human prefrontal cortex. J. Cogn. Neurosci. (in the press).

  36. Koechlin, E., Corrado, G., Pietrini, P. & Grafman, J. Dissociating the role of the medial and lateral anterior prefrontal cortex in human planning. Proc. Natl Acad. Sci. USA 97, 7651–7656 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Braver, T. S., Barch, D. M., Gray, J. R., Molfese, D. L. & Snyder, A. Anterior cingulate cortex and response conflict: effects of frequency, inhibition and errors. Cereb. Cortex 11, 825–836 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. MacDonald, A. W., Cohen, J. D., Stenger, V. A. & Carter, C. S. Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science 288, 1835–1838 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Menon, V., Adleman, N. E., White, C. D., Glover, G. H. & Reiss, A. L. Error-related brain activation during a Go/NoGo response inhibition task. Hum. Brain Mapp. 12, 131–143 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Buckner, R. L., Kelley, W. M. & Petersen, S. E. Frontal cortex contributes to human memory formation. Nature Neurosci. 2, 311–314 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Rugg, M. D. & Wilding, E. L. Retrieval processing and episodic memory. Trends Cogn. Sci. 4, 108–115 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Wagner, A. D., Desmond, J. E., Glover, G. H. & Gabrieli, J. D. Prefrontal cortex and recognition memory: functional-MRI evidence for context-dependent retrieval processes. Brain 121, 1985–2002 (1998).

    Article  PubMed  Google Scholar 

  43. Baker, S. C. et al. Neural systems engaged by planning: a PET study of the Tower of London task. Neuropsychologia 34, 515–526 (1996).

    Article  CAS  PubMed  Google Scholar 

  44. Strange, B. A., Henson, R. N. A., Friston, K. J. & Dolan, R. J. Anterior prefrontal cortex mediates rule learning in humans. Cereb. Cortex 11, 1040–1046 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Braver, T. S. & Bongiolatti, S. R. The role of frontopolar cortex in subgoal processing during working memory. Neuroimage 15, 523–536 (2002).

    Article  PubMed  Google Scholar 

  46. Burnod, Y. Organizational levels of the cerebral cortex: an integrated model. Acta Biotheor. 39, 351–361 (1991). An interesting approach to the functional integration of the cerebral cortex that does not focus simply on the PFC.

    Article  CAS  PubMed  Google Scholar 

  47. Guigon, E., Grandguillaume, P., Otto, I., Boutkhil, L. & Burnod, Y. Neural network models of cortical functions based on the computational properties of the cerebral cortex. J. Physiol. 88, 291–308 (1994). | PubMed |

    CAS  Google Scholar 

  48. Godbout, L. & Doyon, J. Mental representation of knowledge following frontal-lobe or postrolandic lesions. Neuropsychologia 33, 1671–1696 (1995).

    Article  CAS  PubMed  Google Scholar 

  49. Koechlin, E., Danek, A., Burnod, Y. & Grafman, J. Medial prefrontal and subcortical mechanisms underlying the acquisition of motor and cognitive action sequences. Neuron 35, 371–381 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Murray, E. A., Bussey, T. J. & Wise, S. P. Role of prefrontal cortex in a network for arbitrary visuomotor mapping. Exp. Brain Res. 133, 114–129 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Zalla, T., Plassiart, C., Pillon, B., Grafman, J. & Sirigu, A. Action planning in a virtual context after prefrontal cortex damage. Neuropsychologia 39, 759–770 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Zalla, T. et al. How patients with Parkinson's disease retrieve and manage cognitive event knowledge. Cortex 36, 163–179 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Grafman, J. in The Frontal Lobes (eds Stuss, D. T. H. & Knight, R. T.) 292–310 (Oxford Univ. Press, Oxford, UK, 2002). This book chapter provides a more detailed formulation of the SEC framework.

    Google Scholar 

  54. Grafman, J. et al. Frontal lobe injuries, violence, and aggression: a report of the Vietnam Head Injury Study. Neurology 46, 1231–1238 (1996).

    Article  CAS  PubMed  Google Scholar 

  55. Burgess, P. W., Veitch, E., de Lacy Costello, A. & Shallice, T. The cognitive and neuroanatomical correlates of multitasking. Neuropsychologia 38, 848–863 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Goel, V. & Grafman, J. Role of the right prefrontal cortex in ill-structured planning. Cogn. Neuropsychol. 17, 415–436 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Partiot, A., Grafman, J., Sadato, N., Wachs, J. & Hallett, M. Brain activation during the generation of non-emotional and emotional plans. Neuroreport 6, 1397–1400 (1995).

    Article  CAS  PubMed  Google Scholar 

  58. Gehring, W. J. & Knight, R. T. Prefrontal-cingulate interactions in action monitoring. Nature Neurosci. 3, 516–520 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Stone, V. E., Baron-Cohen, S. & Knight, R. T. Frontal contributions to theory of mind. J. Cogn. Neurosci. 10, 640–656 (1998).

    Article  CAS  PubMed  Google Scholar 

  60. Miller, E. K. & Cohen, J. D. An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 24, 167–202 (2001). A useful summary of research into PFC functions that also presents a detailed account of the guided activation model.

    Article  CAS  PubMed  Google Scholar 

  61. Frith, C. D., Friston, K., Liddle, P. F. & Frackowiak, R. S. J. Willed action and the prefrontal cortex in man: a study with PET. Proc. R. Soc. Lond. B 244, 241–246 (1991).

    Article  CAS  Google Scholar 

  62. Ó Scalaidhe, S. P., Wilson, F. A. & Goldman-Rakic, P. S. Areal segmentation of face-processing neurons in prefrontal cortex. Science 278, 1135–1138 (1997).

    Article  PubMed  Google Scholar 

  63. Wilson, F. A., Ó Scalaidhe, S. P. & Goldman-Rakic, P. S. Dissociation of object and spatial processing domains in primate prefrontal cortex. Science 260, 1955–1958 (1993).

    Article  CAS  PubMed  Google Scholar 

  64. Anderson, S. W., Bechara, A., Damasio, H., Tranel, D. & Damasio, A. R. Impairment of social and moral behavior related to early damage in human prefrontal cortex. Nature Neurosci. 2, 1032–1037 (1999).

    Article  CAS  PubMed  Google Scholar 

  65. Barrash, J., Tranel, D. & Anderson, S. W. Acquired personality distrubances associated with bilateral damage to the ventromedial prefrontal region. Dev. Neuropsychol. 18, 355–381 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Bechara, A., Damasio, H. & Damasio, A. R. Emotion, decision making and the orbitofrontal cortex. Cereb. Cortex 10, 295–307 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Rolls, E. T. The orbitofrontal cortex. Phil. Trans. R. Soc. Lond. B 351, 1433–1444 (1996).

    Article  CAS  Google Scholar 

  68. Berthoz, S., Armony, J. L., Blair, R. J. & Dolan, R. J. An fMRI study of intentional and unintentional (embarrassing) violations of social norms. Brain 125, 1696–1708 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Moll, J., de Oliveira-Souza, R., Bramati, I. E. & Grafman, J. Functional networks in emotional moral and nonmoral social judgments. Neuroimage 16, 696–703 (2002).

    Article  PubMed  Google Scholar 

  70. Northoff, G. et al. Functional dissociation between medial and lateral prefrontal cortical spatiotemporal activation in negative and positive emotions: a combined fMRI/MEG study. Cereb. Cortex 10, 93–107 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Roberts, A. C. & Wallis, J. D. Inhibitory control and affective processing in the prefrontal cortex: neuropsychological studies in the common marmoset. Cereb. Cortex 10, 252–262 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Damasio, A. R. in Structure and Functions of the Human Prefrontal Cortex (eds Grafman, J., Holyoak, K. J. & Boller, F.) 241–251 (New York Academy of Sciences, New York, 1995).

    Google Scholar 

  73. Damasio, A. R. in The Prefrontal Cortex: Executive and Cognitive Functions (eds Roberts, A. C., Robbins, T. W. & Weiskrantz, L.) 36–50 (Oxford Univ. Press, Oxford, UK, 1998).

    Book  Google Scholar 

  74. Bechara, A., Damasio, H., Tranel, D. & Damasio, A. R. Deciding advantageously before knowing the advantageous strategy. Science 275, 1293–1295 (1997).

    Article  CAS  PubMed  Google Scholar 

  75. Zahn, T. P., Grafman, J. & Tranel, D. Frontal lobe lesions and electrodermal activity: effects of significance. Neuropsychologia 37, 1227–1241 (1999).

    Article  CAS  PubMed  Google Scholar 

  76. Davidson, R. J. & Irwin, W. in Functional MRI (eds Moonen, C. T. W. & Bandettini, P. A.) 487–499 (Springer, New York, 2000).

    Book  Google Scholar 

  77. Bechara, A., Tranel, D. & Damasio, H. Characterization of the decision-making deficit of patients with ventromedial prefrontal cortex lesions. Brain 123, 2189–2202 (2000).

    Article  PubMed  Google Scholar 

  78. Bechara, A., Tranel, D., Damasio, H. & Damasio, A. R. Failure to respond autonomically to anticipated future outcomes following damage to prefrontal cortex. Cereb. Cortex 6, 215–225 (1996).

    Article  CAS  PubMed  Google Scholar 

  79. Kurata, K. Information processing for motor control in primate premotor cortex. Behav. Brain Res. 61, 135–142 (1994).

    Article  CAS  PubMed  Google Scholar 

  80. Toni, I., Thoenissen, D. & Zilles, K. Movement preparation and motor intention. Neuroimage 14, S110–117 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Harrington, D. L. et al. Specialized neural systems underlying representations of sequential movements. J. Cogn. Neurosci. 12, 56–77 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Averbeck, B. B., Chafee, M. V., Crowe, D. A. & Georgopoulos, A. P. Parallel processing of serial movements in prefrontal cortex. Proc. Natl Acad. Sci. USA 99, 13172–13177 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. Paulus, M. P. et al. Prefrontal, parietal, and temporal cortex networks underlie decision-making in the presence of uncertainty. Neuroimage 13, 91–100 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. Rubinsztein, J. S. et al. Decision-making in mania: a PET study. Brain 124, 2550–2563 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Elliott, R. & Dolan, R. J. Activation of different anterior cingulate foci in association with hypothesis testing and response selection. Neuroimage 8, 17–29 (1998).

    Article  CAS  PubMed  Google Scholar 

  86. Jentsch, J. D., Olausson, P., De La Garza, R. & Taylor, J. R. Impairments of reversal learning and response perseveration after repeated intermittent cocaine administrations to monkeys. Neuropsychopharmacology 26, 183–190 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Wallis, J. D., Dias, R., Robbins, T. W. & Roberts, A. C. Dissociable contributions of the orbitofrontal and lateral prefrontal cortex of the marmoset to performance on a detour reaching task. Eur. J. Neurosci. 13, 1797–1808 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Cummings, J. L. in Structure and Functions of the Human Prefrontal Cortex (eds Grafman, J., Holyoak, K. J. & Boller, F.) 1–13 (New York Academy of Sciences, New York, 1995).

    Google Scholar 

  89. Garavan, H., Ross, T. J. & Stein, E. A. Right hemispheric dominance of inhibitory control: an event-related fMRI study. Proc. Natl Acad. Sci. USA 96, 8301–8306 (1999).

    Article  CAS  PubMed  Google Scholar 

  90. Konishi, S. et al. Transient activation of inferior prefrontal cortex during cognitive set shifting. Nature Neurosci. 1, 80–84 (1998).

    Article  CAS  PubMed  Google Scholar 

  91. Konishi, S. et al. Common inhibitory mechanisms in the human inferior prefrontal cortex revealed by event-related functional MRI. Brain 22, 981–991 (1999).

    Article  Google Scholar 

  92. Leung, H. C., Skudlarski, P., Gatenby, J. C., Peterson, B. S. & Gore, J. C. An event-related functional MRI study of the Stroop color word interference task. Cereb. Cortex 10, 552–560 (2000).

    Article  CAS  PubMed  Google Scholar 

  93. Casey, B. J. et al. Dissociation of response conflict, attentional selection, and expectancy with functional magnetic resonance imaging. Proc. Natl Acad. Sci. USA 97, 8728–8733 (2000).

    Article  CAS  PubMed  Google Scholar 

  94. Goldman-Rakic, P. S. in The Prefrontal Cortex: Executive and Cognitive Functions (eds Roberts, A. C., Robbins, T. W. & Weiskrantz, L.) 87–102 (Oxford Univ. Press, Oxford, UK, 1998).

    Book  Google Scholar 

  95. Godefroy, O. & Rousseaux, M. Divided and focused attention in patients with lesion of the prefrontal cortex. Brain Cogn. 30, 155–174 (1996).

    Article  CAS  PubMed  Google Scholar 

  96. Koski, L. & Petrides, M. Distractibility after unilateral resections from the frontal and anterior cingulate cortex in humans. Neuropsychologia 40, 1059–1072 (2002).

    Article  PubMed  Google Scholar 

  97. Crofts, H. S. et al. Differential effects of 6-OHDA lesions of the frontal cortex and caudate nucleus on the ability to acquire an attentional set. Cereb. Cortex 11, 1015–1026 (2001).

    Article  CAS  PubMed  Google Scholar 

  98. Stuss, D. T. et al. Dissociation of attentional processes in patients with focal frontal and posterior lesions. Neuropsychologia 37, 1005–1027 (1999).

    Article  CAS  PubMed  Google Scholar 

  99. Klenberg, L., Korkman, M. & Lahti-Nuuttila, P. Differential development of attention and executive functions in 3- to 12-year-old Finnish children. Dev. Neuropsychol. 20, 407–428 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Bunge, S. A., Dudukovic, N. M., Thomason, M. E., Vaidya, C. J. & Gabrieli, J. D. E. Immature frontal lobe contributions to cognitive control in children: evidence from fMRI. Neuron 33, 301–311 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Helmstaedter, C., Gleibner, U., Zentner, J. & Elger, C. E. Neuropsychological consequences of epilepsy surgery in frontal lobe epilepsy. Neuropsychologia 36, 681–689 (1998).

    Article  CAS  PubMed  Google Scholar 

  102. Colvin, M. K., Dunbar, K. & Grafman, J. The effects of frontal lobe lesions on goal achievement in the water jug task. J. Cogn. Neurosci. 13, 1129–1147 (2001).

    Article  CAS  PubMed  Google Scholar 

  103. Goel, V. & Grafman, J. Are the frontal lobes implicated in 'planning' functions? Interpreting data from the Tower of Hanoi. Neuropsychologia 33, 623–642 (1995).

    Article  CAS  PubMed  Google Scholar 

  104. Goel, V., Grafman, J., Tajik, J., Gana, S. & Danto, D. A study of the performance of patients with frontal lobe lesions in a financial planning task. Brain 120, 1805–1822 (1997).

    Article  PubMed  Google Scholar 

  105. Burgess, P. W. & Shallice, T. Response suppression, initiation and strategy use following frontal lobe lesions. Neuropsychologia 34, 263–273 (1996).

    Article  CAS  PubMed  Google Scholar 

  106. Lee, S. S., Wild, K., Hollnagel, C. & Grafman, J. Selective visual attention in patients with frontal lobe lesions or Parkinson's disease. Neuropsychologia 37, 595–604 (1999).

    Article  CAS  PubMed  Google Scholar 

  107. Kaufer, D. I. & Lewis, D. A. in The Human Frontal Lobes: Functions and Disorders (eds Miller, B. L. & Cummings, J. L.) 27–44 (Guilford, New York, 1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jordan Grafman.

Related links

Related links

FURTHER INFORMATION

Encyclopedia of Life Sciences

brain imaging: observing ongoing neural activity

learning and memory

MIT Encyclopedia of Cognitive Sciences

amygdala, primate

attention

culture, cognition and evolution

face recognition

memory

mental representation

neural networks

Glossary

WORKING MEMORY

Activated long-term memory.

SELECTIVE ATTENTION

Ability to focus mental effort on a subset of all available information.

EPISODIC MEMORY

Memory for specific events that are temporally dated; includes the relationships between different events.

SEMANTIC MEMORY

Memory for factual information about the world, concepts and word meaning.

PRIMING

Increased accessibility of information as a result of previous exposure to similar information.

SOMATIC STATES

Emotional state as indicated by musculoskeletal and visceral (body) states.

ASSOCIATIVE STRENGTH

The degree to which different representations are associated.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wood, J., Grafman, J. Human prefrontal cortex: processing and representational perspectives. Nat Rev Neurosci 4, 139–147 (2003). https://doi.org/10.1038/nrn1033

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1033

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing