Non-spatially lateralized mechanisms in hemispatial neglect

Key Points

  • Neglect patients suffer pronounced spatially lateralized impairments, involving difficulties in perceiving and responding to items on the side of space opposite to the side of brain damage. So far, most research has focused on these lateralized deficits. Here we propose that neglect patients typically also have deficits that are not necessarily worse towards one side of space and that such impairments exacerbate their difficulties. Understanding these non-spatially lateralized mechanisms might help to clarify the variability found among patients, lead to improved therapy and improve our understanding of the intact human brain.

  • We review the spatially lateralized deficits that are typically seen in patients suffering from neglect. We argue that a lateralized deficit is necessary, but perhaps not sufficient, to describe the behavioural deficits seen in neglect.

  • Neglect patients show perceptual deficits on tasks that do not require spatially lateralized orienting or selection. Recent studies have highlighted problems with non-spatially lateralized selective attention, sustained attention, and trans-saccadic working memory. Although not all neglect patients show all such deficits, each deficit alone could aggravate the lateralized deficits seen in neglect.

  • Functional imaging data also show that non-lateralized tasks often involve the regions of the brain that are damaged in neglect patients. Furthermore, different tasks appear to activate neighbouring but anatomically distinct regions, suggesting that a number of different functional modules might often be involved in neglect.

  • We propose that non-spatially lateralized and lateralized deficits might combine to produce the impairments seen in individual patients. Future studies should examine both types of deficit. On the basis of neuroimaging research, we predict that the patterns of impairment will correspond with the extent and location of the lesions.

  • Acknowledging and understanding the non-spatially lateralized functions of the brain regions involved in neglect leads to clear implications for rehabilitation. Once these mechanisms are understood, a patient's individual pattern of deficit might be dealt with more effectively, using pharmacological and/or behavioural interventions.


Hemispatial neglect is a common, disabling disorder that results from brain damage, most frequently stroke. Research on patients with neglect has provided important insights into normal brain mechanisms involved in directing attention, representing space and controlling movement. Although much work has focused on the lateralized components of neglect, recent investigations have also revealed deficits that are not spatially lateralized, consistent with new findings from functional imaging, human neuropsychological and monkey electrophysiological studies. Here we propose that understanding the interactions between spatially lateralized and non-lateralized mechanisms provides important insights into the neglect syndrome and the normal functions of brain structures that are commonly damaged in neglect patients, and will contribute to the development of treatments for the condition.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Neuroanatomy of neglect.
Figure 2: Clinical tests for neglect.
Figure 3: Attentional blink measures non-spatial selective attention.
Figure 4: Lateral parietal and frontal areas involved in non-spatial visual selective and sustained attention in healthy individuals.
Figure 5: Encoding salience in space and time.
Figure 6: Trans-saccadic spatial working memory.
Figure 7: Non-spatial and spatial visual attention.


  1. 1

    Bisiach, E., Perani, D., Vallar, G. & Berti, A. Unilateral neglect: personal and extra-personal. Neuropsychologia 24, 759–767 (1986).

    CAS  PubMed  Google Scholar 

  2. 2

    Bisiach, E., Vallar, G., Perani, D., Papagno, C. & Berti, A. Unawareness of disease following lesions of the right hemisphere: anosognosia for hemiplegia and anosognosia for hemianopia. Neuropsychologia 24, 471–482 (1986).

    CAS  PubMed  Google Scholar 

  3. 3

    Stone, S. P. et al. The assessment of visuo-spatial neglect after acute stroke. J. Neurol. Neurosurg. Psychiatry 54, 345–350 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4

    Vallar, G. Extrapersonal visual unilateral spatial neglect and its neuroanatomy. Neuroimage 14, S52–58 (2001).

    CAS  PubMed  Google Scholar 

  5. 5

    Husain, M. & Kennard, C. Visual neglect associated with frontal lobe infarction. J. Neurol. 243, 652–657 (1996).

    CAS  Google Scholar 

  6. 6

    Husain, M., Shapiro, K., Martin, J. & Kennard, C. Abnormal temporal dynamics of visual attention in spatial neglect patients. Nature 385, 154–156 (1997).

    CAS  PubMed  Google Scholar 

  7. 7

    Karnath, H. O., Ferber, S. & Himmelbach, M. Spatial awareness is a function of the temporal not the posterior parietal lobe. Nature 411, 950–953 (2001). A controverisal paper suggesting that the crucial lesion location for neglect is in the superior temporal gyrus.

    CAS  Google Scholar 

  8. 8

    Perani, D., Vallar, G., Cappa, S., Messa, C. & Fazio, F. Aphasia and neglect after subcortical stroke. A clinical/cerebral perfusion correlation study. Brain 110, 1211–1229 (1987).

    PubMed  Google Scholar 

  9. 9

    Karnath, H. O., Himmelbach, M. & Rorden, C. The subcortical anatomy of human spatial neglect: putamen, caudate nucleus and pulvinar. Brain 125, 350–360 (2002).

    PubMed  Google Scholar 

  10. 10

    Hillis, A. E. et al. Subcortical aphasia and neglect in acute stroke: the role of cortical hypoperfusion. Brain 125, 1094–1104 (2002). An elegant study using MR perfusion to demonstrate overlying cortical hypoperfusion in neglect patients with subcortical lesions.

    CAS  PubMed  Google Scholar 

  11. 11

    Gainotti, G., Messerli, P. & Tissot, R. Qualitative analysis of unilateral spatial neglect in relation to laterality of cerebral lesions. J. Neurol. Neurosurg. Psychiatry 35, 545–550 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Stone, S. P., Patel, P., Greenwood, R. J. & Halligan, P. W. Measuring visual neglect in acute stroke and predicting its recovery: the visual neglect recovery index. J. Neurol. Neurosurg. Psychiatry 55, 431–436 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13

    Denes, G., Semenza, C., Stoppa, E. & Lis, A. Unilateral spatial neglect and recovery from hemiplegia: a follow-up study. Brain 105, 543–552 (1982).

    PubMed  Google Scholar 

  14. 14

    Jehkonen, M. et al. Visual neglect as a predictor of functional outcome one year after stroke. Acta Neurol. Scand. 101, 195–201 (2000).

    CAS  PubMed  Google Scholar 

  15. 15

    Cherney, L. R., Halper, A. S., Kwasnica, C. M., Harvey, R. L. & Zhang, M. Recovery of functional status after right hemisphere stroke: relationship with unilateral neglect. Arch. Phys. Med. Rehabil. 82, 322–328 (2001).

    CAS  PubMed  Google Scholar 

  16. 16

    Mesulam, M. M. Spatial attention and neglect: parietal, frontal and cingulate contributions to the mental representation and attentional targeting of salient extrapersonal events. Phil. Trans. R. Soc. Lond. B 354, 1325–1346 (1999). | PubMed

    CAS  Google Scholar 

  17. 17

    Heilman, K. M. & Watson, R. T. in Clinical Neuropsychology (eds Heilman, K. M. & Valenstein, E.) 243–293 (Oxford Univ. Press, New York, 2001).

    Google Scholar 

  18. 18

    Bisiach, E. & Vallar, G. in Handbook of Neuropsychology (ed. Rizzolatti, G.) 459–502 (Elsevier, Amsterdam, 2000).

    Google Scholar 

  19. 19

    Pouget, A. & Driver, J. Relating unilateral neglect to the neural coding of space. Curr. Opin. Neurobiol. 10, 242–249 (2000).

    CAS  PubMed  Google Scholar 

  20. 20

    Halligan, P. W. & Marshall, J. C. Toward a principled explanation of unilateral neglect. Cogn. Neuropsychol. 11, 167–206 (1994).

    Google Scholar 

  21. 21

    Robertson, I. H. & Marshall, J. C. Unilateral Neglect: Clinical and Experimental Studies (Lawrence Erlbaum, Hove, 1993).

    Google Scholar 

  22. 22

    Rafal, R. D. Neglect. Curr. Opin. Neurobiol. 4, 231–236 (1994).

    CAS  PubMed  Google Scholar 

  23. 23

    Milner, A. D. in Parietal Lobe Contributions to Orientation in 3D Space (eds Thier, P. & Karnath, H.-O.) 3–22 (Springer, Berlin, 1997).

    Google Scholar 

  24. 24

    Bartolomeo, P. & Chokron, S. Orienting of attention in left unilateral neglect. Neurosci. Biobehav. Rev. 26, 217–234 (2002).

    PubMed  Google Scholar 

  25. 25

    Calton, J., Dickinson, A. R. & Snyder, L. H. Non-spatial, motor-specific activation in posterior parietal cortex. Nature Neurosci. 5, 580–588 (2002).

    CAS  PubMed  Google Scholar 

  26. 26

    Bisiach, E. Mental representation in unilateral neglect and related disorders: the twentieth Bartlett Memorial Lecture. Q. J. Exp. Psychol. A 46, 435–461 (1993).

    CAS  PubMed  Google Scholar 

  27. 27

    Heilman, K. M., Bowers, D., Coslett, B., Whelan, H. & Watson, R. T. Directional hypokinesia: prolonged reaction times for leftward movements in patients with right hemisphere lesions and neglect. Neurology 35, 855–859 (1985).

    CAS  PubMed  Google Scholar 

  28. 28

    Mattingley, J. B., Husain, M., Rorden, C., Kennard, C. & Driver, J. Motor role of human inferior parietal lobe revealed in unilateral neglect patients. Nature 392, 179–182 (1998).

    CAS  Google Scholar 

  29. 29

    Husain, M., Mattingley, J. B., Rorden, C., Kennard, C. & Driver, J. Distinguishing sensory and motor biases in parietal and frontal neglect. Brain 123, 1643–1659 (2000).

    PubMed  Google Scholar 

  30. 30

    Bisiach, E. & Luzzatti, C. Unilateral neglect of representational space. Cortex 14, 129–133 (1978).

    CAS  PubMed  Google Scholar 

  31. 31

    Behrmann, M. & Tipper, S. P. Attention accesses multiple reference frames: evidence from visual neglect. J. Exp. Psychol. Hum. Percept. Perform. 25, 83–100 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32

    Karnath, H. O., Schenkel, P. & Fischer, B. Trunk orientation as the determining factor of the 'contralateral' deficit in the neglect syndrome and as the physical anchor of the internal representation of body orientation in space. Brain 114, 1997–2014 (1991).

    PubMed  Google Scholar 

  33. 33

    Driver, J., Baylis, G. C., Goodrich, S. J. & Rafal, R. D. Axis-based neglect of visual shapes. Neuropsychologia 32, 1353–1365 (1994).

    CAS  PubMed  Google Scholar 

  34. 34

    Kinsbourne, M. in Unilateral Neglect: Clinical and Experimental Studies (eds Robertson, I. H. & Marshall, J. C.) 63–86 (Lawrence Erlbaum, Hove, 1993).

    Google Scholar 

  35. 35

    Smania, N. et al. The spatial distribution of visual attention in hemineglect and extinction patients. Brain 121, 1759–1770 (1998).

    Google Scholar 

  36. 36

    Posner, M. I., Walker, J. A., Friedrich, F. J. & Rafal, R. Effects of parietal injury on covert orienting of attention. J. Neurosci. 4, 1863–1874 (1984).

    CAS  Google Scholar 

  37. 37

    Duncan, J., Humphreys, G. & Ward, R. Competitive brain activity in visual attention. Curr. Opin. Neurobiol. 7, 255–261 (1997).

    CAS  PubMed  Google Scholar 

  38. 38

    Friedrich, F. J., Egly, R., Rafal, R. D. & Beck, D. Spatial attention deficits in humans: a comparison of superior parietal and temporal-parietal junction lesions. Neuropsychology 12, 193–207 (1998). A follow-up to reference 36, showing that the critical lesion location for the attentional disengagement deficit is the temporo-parietal junction.

    CAS  PubMed  Google Scholar 

  39. 39

    Bisiach, E. et al. Dissociation of ophthalmokinetic and melokinetic attention in unilateral neglect. Cereb. Cortex 5, 439–447 (1995).

    CAS  PubMed  Google Scholar 

  40. 40

    Mark, V. W., Kooistra, C. A. & Heilman, K. M. Hemispatial neglect affected by non–neglected stimuli. Neurology 38, 1207–1211 (1988).

    CAS  PubMed  Google Scholar 

  41. 41

    Niemeier, M. & Karnath, H. O. Exploratory saccades show no direction-specific deficit in neglect. Neurology 54, 515–518 (2000).

    CAS  PubMed  Google Scholar 

  42. 42

    Husain, M. et al. Impaired spatial working memory across saccades contributes to abnormal search in parietal neglect. Brain 124, 941–952 (2001).

    CAS  PubMed  Google Scholar 

  43. 43

    Eglin, M., Robertson, L. C. & Knight, R. T. Visual search performance in the neglect syndrome. J. Cogn. Neurosci. 1, 372–385 (1989).

    CAS  PubMed  Google Scholar 

  44. 44

    Luria, A. R. Disorders of 'simultaneous perception' in a case of bilateral occipito-parietal brain injury. Brain 83, 437–449 (1959).

    Google Scholar 

  45. 45

    Humphreys, G. W., Romani, C., Olson, A., Riddoch, M. J. & Duncan, J. Non-spatial extinction following lesions of the parietal lobes in humans. Nature 372, 357–359 (1994).

    CAS  PubMed  Google Scholar 

  46. 46

    Robertson, L. C., Lamb, M. R. & Knight, R. T. Effects of lesions of temporal-parietal junction on perceptual and attentional processing in humans. J. Neurosci. 8, 3757–3769 (1988). Local bias in patients with right temporo-parietal lesions is often underestimated as a potential contributor to the neglect syndrome.

    CAS  PubMed  Google Scholar 

  47. 47

    Duncan, J., Ward, R. & Shapiro, K. Direct measurement of attentional dwell time in human vision. Nature 369, 313–315 (1994).

    CAS  PubMed  Google Scholar 

  48. 48

    Raymond, J. E., Shapiro, K. L. & Arnell, K. M. Temporary suppression of visual processing in an RSVP task: an attentional blink? J. Exp. Psychol. Hum. Percept. Perform. 18, 849–860 (1992).

    CAS  Google Scholar 

  49. 49

    Shapiro, K., Hillstrom, A. & Husain, M. Control of visuotemporal attention by inferior parietal and superior temporal cortex. Curr. Biol. 12, 1320–1325 (2002).

    CAS  PubMed  Google Scholar 

  50. 50

    Duncan, J. et al. Systematic analysis of deficits in visual attention. J. Exp. Psychol. Gen. 128, 450–478 (1999).

    CAS  PubMed  Google Scholar 

  51. 51

    Battelli, L. et al. Unilateral right parietal damage leads to bilateral deficit for high-level motion. Neuron 32, 985–995 (2001).

    CAS  PubMed  Google Scholar 

  52. 52

    Cusack, R., Carlyon, R. P. & Robertson, I. H. Neglect between but not within auditory objects. J. Cogn. Neurosci. 12, 1056–1065 (2000).

    CAS  PubMed  Google Scholar 

  53. 53

    Coull, J. T. & Frith, C. D. Differential activation of right superior parietal cortex and intraparietal sulcus by spatial and nonspatial attention. Neuroimage 8, 176–187 (1998).

    CAS  PubMed  Google Scholar 

  54. 54

    Wojciulik, E. & Kanwisher, N. The generality of parietal involvement in visual attention. Neuron 23, 747–764 (1999). A carefully conducted functional imaging study revealing parietal involvement in both spatial and non-spatial functions.

    CAS  Google Scholar 

  55. 55

    Marois, R., Chun, M. M. & Gore, J. C. Neural correlates of the attentional blink. Neuron 28, 299–308 (2000).

    CAS  PubMed  Google Scholar 

  56. 56

    Coull, J. T. & Nobre, A. C. Where and when to pay attention: the neural systems for directing attention to spatial locations and to time intervals as revealed by both PET and fMRI. J. Neurosci. 18, 7426–7435 (1998).

    CAS  PubMed  Google Scholar 

  57. 57

    Sarter, M., Givens, B. & Bruno, J. P. The cognitive neuroscience of sustained attention: where top-down meets bottom-up. Brain Res. Rev. 35, 146–160 (2001).

    CAS  PubMed  Google Scholar 

  58. 58

    Parasuraman, R., Warm, J. S. & See, J. E. in The Attentive Brain (ed. Parasuraman, R.) 221–256 (MIT Press, Cambridge, Massachusetts, 1998).

    Google Scholar 

  59. 59

    Samuelsson, H., Hjelmquist, E., Jensen, C., Ekholm, S. & Blomstrand, C. Nonlateralized attentional deficits: an important component behind persisting visuospatial neglect? J. Clin. Exp. Neuropsychol. 20, 73–88 (1998).

    CAS  PubMed  Google Scholar 

  60. 60

    Wilkins, A. J., Shallice, T. & McCarthy, R. Frontal lesions and sustained attention. Neuropsychologia 25, 359–365 (1987).

    CAS  Google Scholar 

  61. 61

    Rueckart, L. & Grafman, J. Sustained attention deficits in patients with right frontal lesions. Neuropsychologia 34, 953–963 (1996).

    Google Scholar 

  62. 62

    Rueckart, L. & Grafman, J. Sustained attention deficits in patients with lesions of posterior cortex. Neuropsychologia 36, 653–660 (1998).

    Google Scholar 

  63. 63

    Robertson, I. H. et al. Auditory sustained attention is a marker of unilateral spatial neglect. Neuropsychologia 35, 1527–1532 (1997). The first clear demonstration of a sustained attention deficit in neglect that correlates with spatial severity.

    CAS  PubMed  Google Scholar 

  64. 64

    Hjaltason, H., Tegner, R., Tham, K., Levander, M. & Ericson, K. Sustained attention and awareness of disability in chronic neglect. Neuropsychologia 34, 1229–1233 (1996).

    CAS  PubMed  Google Scholar 

  65. 65

    Maguire, A. M. & Ogden, J. A. MRI brain scan analyses and neuropsychological profiles of nine patients with persistent unilateral neglect. Neuropsychologia 40, 879–887 (2002).

    PubMed  Google Scholar 

  66. 66

    Pardo, J. V., Fox, P. T. & Raichle, M. E. Localization of a human system for sustained attention by positron emission tomography. Nature 349, 61–64 (1991).

    CAS  Google Scholar 

  67. 67

    Hager, F. et al. Challenging the anterior attentional system with a continuous performance task: a functional magnetic resonance imaging approach. Eur. Arch. Psychiatry Clin. Neurosci. 248, 161–170 (1998).

    CAS  PubMed  Google Scholar 

  68. 68

    Sturm, W. et al. Functional anatomy of intrinsic alertness: evidence for a fronto-parietal-thalamic-brainstem network in the right hemisphere. Neuropsychologia 37, 797–805 (1999).

    CAS  PubMed  Google Scholar 

  69. 69

    Johannsen, P. et al. Cortical sites of sustained and divided attention in normal elderly humans. Neuroimage 6, 145–155 (1997).

    CAS  PubMed  Google Scholar 

  70. 70

    Vandenberghe, R., Gitelman, D. R., Parrish, T. B. & Mesulam, M. M. Functional specificity of superior parietal mediation of spatial shifting. Neuroimage 14, 661–673 (2001). This study provides evidence for an antomical dissociation between spatial shifting and sustained attention in human parietal cortex.

    CAS  PubMed  Google Scholar 

  71. 71

    Adler, C. M. et al. Changes in neuronal activation with increasing attention demand in healthy volunteers: an fMRI study. Synapse 42, 266–272 (2001).

    CAS  PubMed  Google Scholar 

  72. 72

    Gottlieb, J. P., Kusunoki, M. & Goldberg, M. E. The representation of visual salience in monkey parietal cortex. Nature 391, 481–484 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73

    Constantinidis, C. & Steinmetz, M. A. Neuronal responses in area 7a to multiple-stimulus displays: I. neurons encode the location of the salient stimulus. Cereb. Cortex 11, 581–591 (2001). An electrophysiological study demonstrating the sparse encoding of only salient stimuli within parietal cortex.

    CAS  PubMed  Google Scholar 

  74. 74

    Knight, R. T., Scabini, D., Woods, D. L. & Clayworth, C. C. Contributions of temporal-parietal junction to the human auditory P3. Brain Res. 502, 109–116 (1989).

    CAS  PubMed  Google Scholar 

  75. 75

    Barcelo, F., Suwazono, S. & Knight, R. T. Prefrontal modulation of visual processing in humans. Nature Neurosci. 3, 399–403 (2000).

    CAS  Google Scholar 

  76. 76

    Downar, J., Crawley, A. P., Mikulis, D. J. & Davis, K. D. A cortical network sensitive to stimulus salience in a neutral behavioral context across multiple sensory modalities. J. Neurophysiol. 87, 615–620 (2002).

    PubMed  Google Scholar 

  77. 77

    Downar, J., Crawley, A. P., Mikulis, D. J. & Davis, K. D. The effect of task relevance on the cortical response to changes in visual and auditory stimuli: an event-related fMRI study. Neuroimage 14, 1256–1267 (2001).

    CAS  Google Scholar 

  78. 78

    Clark, V. P., Fannon, S., Lai, S., Benson, R. & Bauer, L. Responses to rare visual target and distractor stimuli using event-related fMRI. J. Neurophysiol. 83, 3133–3139 (2000).

    CAS  Google Scholar 

  79. 79

    Marois, R., Leung, H. C. & Gore, J. C. A stimulus-driven approach to object identity and location processing in the human brain. Neuron 25, 717–728 (2000).

    CAS  Google Scholar 

  80. 80

    Braver, T. S., Barch, D. M., Gray, J. R., Molfese, D. L. & Snyder, A. Anterior cingulate cortex and response conflict: effects of frequency, inhibition and errors. Cereb. Cortex 11, 825–836 (2001).

    CAS  Google Scholar 

  81. 81

    Linden, D. E. et al. The functional neuroanatomy of target detection: an fMRI study of visual and auditory oddball tasks. Cereb. Cortex 9, 815–823 (1999).

    CAS  PubMed  Google Scholar 

  82. 82

    Behrmann, M., Watt, S., Black, S. E. & Barton, J. J. Impaired visual search in patients with unilateral neglect: an oculographic analysis. Neuropsychologia 35, 1445–1458 (1997).

    CAS  PubMed  Google Scholar 

  83. 83

    Wojciulik, E., Husain, M., Clarke, K. & Driver, J. Spatial working memory deficit in unilateral neglect. Neuropsychologia 39, 390–396 (2001).

    CAS  PubMed  Google Scholar 

  84. 84

    Driver, J. & Husain, M. in The Cognitive and Neural Bases of Spatial Neglect (eds Karnath, H.-O., Milner, A. D. & Vallar, G.) 351–362 (Oxford Univ. Press, Oxford, 2002).

    Google Scholar 

  85. 85

    Husain, M. et al. Impaired spatial working memory contributes to unilateral neglect. J. Neurol. Neurosurg. Psychiatry 73, 221 (2002).

    Google Scholar 

  86. 86

    Husain, M. et al. Trans-saccadic spatial working memory deficit in neglect patients. Soc. Neurosci. Meeting 16.7 (2002).

  87. 87

    Heide, W. et al. Activation of frontoparietal cortices during memorized triple-step sequences of saccadic eye movements: an fMRI study. Eur. J. Neurosci. 13, 1177–1189 (2001). An important functional imaging study localizing areas that are related to trans-saccadic updating of spatial representation.

    CAS  PubMed  Google Scholar 

  88. 88

    Tobler, P. N. et al. Functional organisation of the saccadic reference system processing extraretinal signals in humans. Vision Res. 41, 1351–1358 (2001).

    CAS  PubMed  Google Scholar 

  89. 89

    Duhamel, J. R., Goldberg, M. E., Fitzgibbon, E. J., Sirigu, A. & Grafman, J. Saccadic dysmetria in a patient with a right frontoparietal lesion. The importance of corollary discharge for accurate spatial behaviour. Brain 115, 1387–1402 (1992).

    PubMed  Google Scholar 

  90. 90

    Heide, W., Blankenburg, M., Zimmermann, E. & Kompf, D. Cortical control of double-step saccades: implications for spatial orientation. Ann. Neurol. 38, 739–748 (1995).

    CAS  PubMed  Google Scholar 

  91. 91

    Corbetta, M., Miezin, F. M., Shulman, G. L. & Petersen, S. E. A PET study of visuospatial attention. J. Neurosci. 13, 1202–1226 (1993).

    CAS  Google Scholar 

  92. 92

    Corbetta, M. & Shulman, G. L. Control of goal-directed and stimulus-driven attention in the brain. Nature Rev. Neurosci. 3, 201–215 (2002). An interesting review providing an alternative perspective on parietal and frontal functions.

    CAS  Google Scholar 

  93. 93

    di Pellegrino, G., Basso, G. & Frassinetti, F. Visual extinction as a spatio-temporal disorder of selective attention. Neuroreport 9, 835–839 (1998).

    CAS  PubMed  Google Scholar 

  94. 94

    Husain, M. in The Limits of Attention (ed. Shapiro, K.) 229–246 (Oxford Univ. Press, Oxford, 2001).

    Google Scholar 

  95. 95

    Cassidy, T. P., Lewis, S. & Gray, C. S. Recovery from visuospatial neglect in stroke patients. J. Neurol. Neurosurg. Psychiatry 64, 555–557 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. 96

    Robertson, I. H., Mattingley, J. B., Rorden, C. & Driver, J. Phasic alerting of neglect patients overcomes their spatial deficit in visual awareness. Nature 395, 169–172 (1998).

    CAS  Google Scholar 

  97. 97

    Weinberg, J. et al. Visual scanning training effect on reading-related tasks in acquired right brain damage. Arch. Phys. Med. Rehabil. 58, 479–486 (1977).

    CAS  Google Scholar 

  98. 98

    Rossetti, Y. et al. Prism adaptation to a rightward optical deviation rehabilitates left hemispatial neglect. Nature 395, 166–169 (1998). An innovative study showing improvement in left neglect after adaptation to rightward deviating prisms.

    CAS  PubMed  Google Scholar 

  99. 99

    Frassinetti, F., Angeli, V., Meneghello, F., Avanzi, S. & Ladavas, E. Long-lasting amelioration of visuospatial neglect by prism adaptation. Brain 125, 608–623 (2002).

    PubMed  Google Scholar 

  100. 100

    Robertson, I. H., Tegner, R., Tham, K., Lo, A. & Nimmo-Smith, I. Sustained attention training for unilateral neglect: theoretical and rehabilitation implications. J. Clin. Exp. Neuropsychol. 17, 416–430 (1995).

    CAS  PubMed  Google Scholar 

  101. 101

    Robbins, T. W. Arousal systems and attentional processes. Biol. Psychol. 45, 57–71 (1997).

    CAS  PubMed  Google Scholar 

  102. 102

    Andersen, R. A. Multimodal integration for the representation of space in the posterior parietal cortex. Phil. Trans. R. Soc. Lond. B 352, 1421–1428 (1997). | PubMed

    CAS  Google Scholar 

  103. 103

    Williams, S. & Goldman-Rakic, P. S. Modulation of memory fields by dopamine D1 receptors in prefrontal cortex. Nature 376, 572–575 (1995).

    CAS  PubMed  Google Scholar 

  104. 104

    Grujic, Z. et al. Dopamine agonists reorient visual exploration away from the neglected hemispace. Neurology 51, 1395–1398 (1998).

    CAS  PubMed  Google Scholar 

  105. 105

    Fleet, W. S., Valenstein, E., Watson, R. T. & Heilman, K. M. Dopamine agonist therapy for neglect in humans. Neurology 37, 1765–1771 (1987).

    CAS  PubMed  Google Scholar 

  106. 106

    Marshall, J. C., Fink, G. R., Halligan, P. W. & Vallar, G. Spatial awareness: a function of the posterior parietal lobe? Cortex 38, 253–257; discussion 258–260 (2002). | PubMed |

    PubMed  Google Scholar 

  107. 107

    Bisiach, E., Geminiani, G., Berti, A. & Rusconi, M. L. Perceptual and premotor factors of unilateral neglect. Neurology 40, 1278–1281 (1990).

    CAS  PubMed  Google Scholar 

  108. 108

    Milner, A. D. in Neurophysiological and Neuropsychological Aspects of Spatial Neglect (ed. Jeannerod, M.) 259–288 (Elsevier, Amsterdam, 1987).

    Google Scholar 

  109. 109

    Marshall, J. W. et al. Clomethiazole protects against hemineglect in a primate model of stroke. Brain Res. Bull. 52, 21–29 (2000).

    CAS  PubMed  Google Scholar 

  110. 110

    Husain, M. & Jackson, S. R. Vision: visual space is not what it appears to be. Curr. Biol. 11, R753–755 (2001).

    CAS  PubMed  Google Scholar 

  111. 111

    Duhamel, J. R., Colby, C. & Goldberg, M. E. The updating of the representation of visual space in parietal cortex by intended eye movements. Science 255, 90–92 (1992).

    CAS  Google Scholar 

  112. 112

    Colby, C. & Goldberg, M. E. Space and attention in parietal cortex. Annu. Rev. Neurosci. 22, 319–349 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references


This research is funded by a grant to M.H. from the Wellcome Trust. We thank J. Driver, C. Kennard, P. Malhotra, S. Mannan, D. Mort & A. Parton for their help.

Author information



Related links

Related links


Encyclopedia of Life Sciences


MIT Encyclopedia of Cognitive Sciences


eye movements and visual attention

visual neglect



Brain damage that is caused by a lack of blood supply, as a result of either blockage or rupture of a cerebral blood vessel.


A bedside clinical task in which patients have to find and mark targets that are usually displayed on a sheet of paper either on their own or with distracting non-targets.


A rapid eye movement that brings the fovea (the central retinal area with the highest resolution) to view a point of interest in a visual scene.


A rare disorder following bilateral parieto-occipital lesions in which the patient has difficulties in directing the eyes to visual objects (ocular apraxia), misreaching to peripheral visual targets (optic ataxia) and perceives only one object at a time (simultanagnosia).


Sometimes also referred to as 'simultagnosia', this is the inability to perceive more than one object at one time.


The ability to hold 'on-line' and manipulate information regarding the location of an object.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Husain, M., Rorden, C. Non-spatially lateralized mechanisms in hemispatial neglect. Nat Rev Neurosci 4, 26–36 (2003).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing