Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Signalling from the periphery to the brain that regulates energy homeostasis

Abstract

The CNS regulates body weight; however, we still lack a clear understanding of what drives decisions about when, how much and what to eat. A vast array of peripheral signals provides information to the CNS regarding fluctuations in energy status. The CNS then integrates this information to influence acute feeding behaviour and long-term energy homeostasis. Previous paradigms have delegated the control of long-term energy homeostasis to the hypothalamus and short-term changes in feeding behaviour to the hindbrain. However, recent studies have identified target hindbrain neurocircuitry that integrates the orchestration of individual bouts of ingestion with the long-term regulation of energy balance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Peripheral-to-CNS signals of energy status.
Figure 2: Endocrine and neuronal pathways to the CNS.
Figure 3: Roux-en Y gastric bypass and vertical sleeve gastrectomy.
Figure 4: The impact of bariatric surgery on intestinal signalling peptides.

Similar content being viewed by others

References

  1. Svendsen, B. et al. An analysis of cosecretion and coexpression of gut hormones from male rat proximal and distal small intestine. Endocrinology 156, 847–857 (2015).

    CAS  PubMed  Google Scholar 

  2. Psichas, A. et al. Gut chemosensing mechanisms. J. Clin. Invest. 125, 908–917 (2015).

    PubMed  PubMed Central  Google Scholar 

  3. Steinert, R. E. et al. Ghrelin, CCK, GLP-1, and PYY (3–36): secretory controls and physiological roles in eating and glycemia in health, obesity, and after RYGB. Physiol. Rev. 97, 411–463 (2017). This paper is the pinnacle of the reviews on gut peptides that regulate feeding.

    PubMed  Google Scholar 

  4. Batterham, R. L. et al. Critical role for peptide YY in protein-mediated satiation and body-weight regulation. Cell Metab. 4, 223–233 (2006).

    CAS  PubMed  Google Scholar 

  5. Scrocchi, L. A., Hill, M. E., Saleh, J., Perkins, B. & Drucker, D. J. Elimination of glucagon-like peptide 1R signaling does not modify weight gain and islet adaptation in mice with combined disruption of leptin and GLP-1 action. Diabetes 49, 1552–1560 (2000).

    CAS  PubMed  Google Scholar 

  6. Chambers, A. P. et al. The role of pancreatic preproglucagon in glucose homeostasis in mice. Cell Metab. 25, 927–934 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Sandoval, D. A. & D'Alessio, D. A. Physiology of proglucagon peptides: role of glucagon and GLP-1 in health and disease. Physiol. Rev. 95, 513–548 (2015).

    CAS  PubMed  Google Scholar 

  8. Holst, J. J. The physiology of glucagon-like peptide 1. Physiol Rev. 87, 1409–1439 (2007).

    CAS  PubMed  Google Scholar 

  9. West, D. B., Fey, D. & Woods, S. C. Cholecystokinin persistently suppresses meal size but not food intake in free-feeding rats. Am. J. Physiol. 246, R776–R787 (1984).

    CAS  PubMed  Google Scholar 

  10. Miller, L. J., Holicky, E. L., Ulrich, C. D. & Wieben, E. D. Abnormal processing of the human cholecystokinin receptor gene in association with gallstones and obesity. Gastroenterology 109, 1375–1380 (1995).

    CAS  PubMed  Google Scholar 

  11. Inoue, H. et al. Human cholecystokinin type A receptor gene: cytogenetic localization, physical mapping, and identification of two missense variants in patients with obesity and non-insulin-dependent diabetes mellitus (NIDDM). Genomics 42, 331–335 (1997).

    CAS  PubMed  Google Scholar 

  12. Bagdade, J. D., Bierman, E. L. & Porte, D. The significance of basal insulin levels in the evaluation of the insulin response to glucose in diabetic and nondiabetic subjects. J. Clin. Invest. 46, 1549–1557 (1967).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Considine, R. V. et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N. Engl. J. Med. 334, 292–295 (1996).

    CAS  PubMed  Google Scholar 

  14. Halaas, J. L. et al. Physiological response to long-term peripheral and central leptin infusion in lean and obese mice. Proc. Natl Acad. Sci. USA 94, 8878–8883 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Woods, S. C., Lotter, E. C., McKay, L. D. & Porte, D. Chronic intracerebroventricular infusion of insulin reduces food intake and body weight of baboons. Nature 282, 503–505 (1979). This study is one of the first to demonstrate the role of insulin with the CNS to regulate feeding.

    CAS  PubMed  Google Scholar 

  16. Sipols, A. J., Baskin, D. G. & Schwartz, M. W. Effect of intracerebroventricular insulin infusion on diabetic hyperphagia and hypothalamic neuropeptide gene expression. Diabetes 44, 147–151 (1995).

    CAS  PubMed  Google Scholar 

  17. Tschöp, M., Smiley, D. L. & Heiman, M. L. Ghrelin induces adiposity in rodents. Nature 407, 908–913 (2000).

    PubMed  Google Scholar 

  18. Cummings, D. E. et al. Elevated plasma ghrelin levels in Prader Willi syndrome. Nat. Med. 8, 643–644 (2002).

    CAS  PubMed  Google Scholar 

  19. Zigman, J. M. et al. Mice lacking ghrelin receptors resist the development of diet-induced obesity. J. Clin. Invest. 115, 3564–3572 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Schwartz, M. W., Woods, S. C., Porte, D., Seeley, R. J. & Baskin, D. G. Central nervous system control of food intake. Nature 404, 661–671 (2000).

    CAS  PubMed  Google Scholar 

  21. Leinninger, G. M. et al. Leptin action via neurotensin neurons controls orexin, the mesolimbic dopamine system and energy balance. Cell Metab. 14, 313–323 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Dhillon, H. et al. Leptin directly activates SF1 neurons in the VMH, and this action by leptin is required for normal body-weight homeostasis. Neuron 49, 191–203 (2006).

    CAS  PubMed  Google Scholar 

  23. van de Wall, E. et al. Collective and individual functions of leptin receptor modulated neurons controlling metabolism and ingestion. Endocrinology 149, 1773–1785 (2008).

    CAS  PubMed  Google Scholar 

  24. Myers, M. G. & Olson, D. P. SnapShot: neural pathways that control feeding. Cell Metab. 19, 732–732.e1 (2014). This paper contains many perceptive schematic figures of the neural pathways of feeding control.

    CAS  PubMed  Google Scholar 

  25. Marston, O. J., Garfield, A. S. & Heisler, L. K. Role of central serotonin and melanocortin systems in the control of energy balance. Eur. J. Pharmacol. 660, 70–79 (2011).

    CAS  PubMed  Google Scholar 

  26. Burmeister, M. A. et al. The hypothalamic glucagon-like peptide 1 receptor is sufficient but not necessary for the regulation of energy balance and glucose homeostasis in mice. Diabetes 66, 372–384 (2017).

    CAS  PubMed  Google Scholar 

  27. Batterham, R. L. et al. Gut hormone PYY3-36 physiologically inhibits food intake. Nature 418, 650–654 (2002).

    CAS  PubMed  Google Scholar 

  28. Wren, A. M. et al. Ghrelin causes hyperphagia and obesity in rats. Diabetes 50, 2540–2547 (2001).

    CAS  PubMed  Google Scholar 

  29. Sandoval, D. A., Bagnol, D., Woods, S. C., D'Alessio, D. A. & Seeley, R. J. Arcuate glucagon-like peptide 1 receptors regulate glucose homeostasis but not food intake. Diabetes 57, 2046–2054 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kinzig, K. P., D'Alessio, D. A. & Seeley, R. J. The diverse roles of CNS GLP-1 in the control of food intake and the mediation of visceral illness. J. Neurosci. 22, 10470–10476 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Woods, S. C., Begg, D. P. & Woods, S. C. The endocrinology of food intake. Nat. Rev. Endocrinol. 9, 584–597 (2013).

    PubMed  Google Scholar 

  32. Aponte, Y., Atasoy, D. & Sternson, S. M. AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training. Nat. Neurosci. 14, 351–355 (2011). This study uses optogenetics to demonstrate the melanocortin-independent effects of AGRP neurons on regulation of feeding behaviour.

    CAS  PubMed  Google Scholar 

  33. Krashes, M. J. et al. Rapid, reversible activation of AgRP neurons drives feeding behavior in mice. J. Clin. Invest. 121, 1424–1428 (2011). This study uses DREADD technology to demonstrate the role of AGRP neurons on regulating feeding behaviour.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhan, C. et al. Acute and long-term suppression of feeding behavior by POMC neurons in the brainstem and hypothalamus, respectively. J. Neurosci. 33, 3624–3632 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Steculorum, S. M. et al. AgRP neurons control systemic insulin sensitivity via myostatin expression in brown adipose tissue. Cell 165, 125–138 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Berthoud, H. R., Blackshaw, L. A., Brookes, S. J. H. & Grundy, D. Neuroanatomy of extrinsic afferents supplying the gastrointestinal tract. Neurogastroenterol. Motil. 16, 28–33 (2004).

    PubMed  Google Scholar 

  37. Berthoud, H.-R. Anatomy and function of sensory hepatic nerves. Anat. Rec. 280A, 827–835 (2004).

    Google Scholar 

  38. Woods, S. C. Metabolic signals and food intake. Forty years of progress. Appetite 71, 440–444 (2013).

    PubMed  Google Scholar 

  39. Wang, P. Y. et al. Upper intestinal lipids trigger a gut-brain-liver axis to regulate glucose production. Nature 452, 1012–1016 (2008).

    CAS  PubMed  Google Scholar 

  40. Grabauskas, G., Song, I., Zhou, S. & Owyang, C. Electrophysiological identification of glucose-sensing neurons in rat nodose ganglia. J. Physiol. 588, 617–632 (2010).

    CAS  PubMed  Google Scholar 

  41. Lal, S., Kirkup, A. J., Brunsden, A. M., Thompson, D. G. & Grundy, D. Vagal afferent responses to fatty acids of different chain length in the rat. Am. J. Physiol. 281, G907–G915 (2001).

    CAS  Google Scholar 

  42. Randich, A. et al. Responses of celiac and cervical vagal afferents to infusions of lipids in the jejunum or ileum of the rat. Am. J. Physiol. Regul. Integr. Comp. Physiol. 278, R34–R43 (2000).

    CAS  PubMed  Google Scholar 

  43. Liu, C. et al. PPARγ in vagal neurons regulates high-fat diet induced thermogenesis. Cell Metab. 19, 722–730 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Mansuy-Aubert, V. et al. Loss of the liver X receptor LXRα/β in peripheral sensory neurons modifies energy expenditure. eLife 4, e06667 (2015).

    PubMed Central  Google Scholar 

  45. Ritter, S. & Taylor, J. S. Vagal sensory neurons are required for lipoprivic but not glucoprivic feeding in rats. Am. J. Physiol. 258, R1395–R1401 (1990).

    CAS  PubMed  Google Scholar 

  46. Darling, R. A. et al. Mercaptoacetate and fatty acids exert direct and antagonistic effects on nodose neurons via GPR40 fatty acid receptors. Am. J. Physiol. Regul. Integr. Comp. Physiol. 307, R35–R43 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Li, A.-J., Wang, Q., Dinh, T. T., Simasko, S. M. & Ritter, S. Mercaptoacetate blocks fatty acid-induced GLP-1 secretion in male rats by directly antagonizing GPR40 fatty acid receptors. Am. J. Physiol. Regul. Integr. Comp. Physiol. 310, R724–R732 (2016).

    PubMed  PubMed Central  Google Scholar 

  48. Williams, E. K. et al. Sensory neurons that detect stretch and nutrients in the digestive system. Cell 166, 209–221 (2016). This study finds that there are distinct projections of vagal neurons to the GI tract that provide nutritive and mechanical information from the gut to the CNS.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Moran, T. H., Baldessarini, A. R., Salorio, C. F., Lowery, T. & Schwartz, G. J. Vagal afferent and efferent contributions to the inhibition of food intake by cholecystokinin. Am. J. Physiol. 272, R1245–R1251 (1997).

    CAS  PubMed  Google Scholar 

  50. Raybould, H. E. et al. Expression of 5-HT3 receptors by extrinsic duodenal afferents contribute to intestinal inhibition of gastric emptying. Am. J. Physiol. Gastrointest. Liver Physiol. 284, G367–G372 (2003).

    CAS  PubMed  Google Scholar 

  51. Babic, T., Troy, A. E., Fortna, S. R. & Browning, K. N. Glucose-dependent trafficking of 5-HT3 receptors in rat gastrointestinal vagal afferent neurons. Neurogastroenterol. Motil. 24, e476–e488 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Baumgartner, I. et al. Hepatic-portal vein infusions of glucagon-like peptide-1 reduce meal size and increase c-Fos expression in the nucleus tractus solitarii, area postrema and central nucleus of the amygdala in rats. J. Neuroendocrinol. 22, 557–563 (2010).

    CAS  PubMed  Google Scholar 

  53. Kim, D.-H., D'Alessio, D. A., Woods, S. C. & Seeley, R. J. The effects of GLP-1 infusion in the hepatic portal region on food intake. Regul. Pept. 155, 110–114 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Hayes, M. R. et al. The common hepatic branch of the vagus is not required to mediate the glycemic and food intake suppressive effects of glucagon-like-peptide-1. Am. J. Physiol. Regul. Integr. Comp. Physiol. 301, R1479–1485 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Abbott, C. R. et al. The inhibitory effects of peripheral administration of peptide YY3–36 and glucagon-like peptide-1 on food intake are attenuated by ablation of the vagal–brainstem–hypothalamic pathway. Brain Res. 1044, 127–131 (2005).

    CAS  PubMed  Google Scholar 

  56. Plamboeck, A. et al. The effect of exogenous GLP-1 on food intake is lost in male truncally vagotomized subjects with pyloroplasty. Am. J. Physiol. Gastrointest. Liver Physiol. 304, G1117–G127 (2013).

    CAS  PubMed  Google Scholar 

  57. Kanoski, S. E., Fortin, S. M., Arnold, M., Grill, H. J. & Hayes, M. R. Peripheral and central GLP-1 receptor populations mediate the anorectic effects of peripherally administered GLP-1 receptor agonists, liraglutide and exendin-4. Endocrinology 152, 3103–3112 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Baraboi, E.-D. et al. Effects of albumin-conjugated PYY on food intake: the respective roles of the circumventricular organs and vagus nerve. Eur. J. Neurosci. 32, 826–839 (2010).

    PubMed  Google Scholar 

  59. Halatchev, I. G. & Cone, R. D. Peripheral administration of PYY3–36 produces conditioned taste aversion in mice. Cell Metab. 1, 159–168 (2005).

    CAS  PubMed  Google Scholar 

  60. Ripken, D. et al. Cholecystokinin regulates satiation independently of the abdominal vagal nerve in a pig model of total subdiaphragmatic vagotomy. Physiol. Behav. 139, 167–176 (2015).

    CAS  PubMed  Google Scholar 

  61. Reidelberger, R. D., Hernandez, J., Fritzsch, B. & Hulce, M. Abdominal vagal mediation of the satiety effects of CCK in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 286, R1005–R1012 (2004).

    CAS  PubMed  Google Scholar 

  62. Diepenbroek, C. et al. Validation and characterization of a novel method for selective vagal deafferentation of the gut. Am. J. Physiol. Gastrointest. Liver Physiol. 313, G342–G352 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. de Lartigue, G., Ronveaux, C. C. & Raybould, H. E. Deletion of leptin signaling in vagal afferent neurons results in hyperphagia and obesity. Mol. Metab. 3, 595–607 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Sisley, S. et al. Neuronal GLP1R mediates liraglutide's anorectic but not glucose-lowering effect. J. Clin. Invest. 124, 2456–2463 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Krieger, J.-P. et al. Knockdown of GLP-1 receptors in vagal afferents affects normal food intake and glycemia. Diabetes 65, db150973 (2015).

    Google Scholar 

  66. Ritter, R. C. Gastrointestinal mechanisms of satiation for food. Physiol. Behav. 81, 249–273 (2004).

    CAS  PubMed  Google Scholar 

  67. Hayes, M. R. et al. Intracellular signals mediating the food intake-suppressive effects of hindbrain glucagon-like peptide-1 receptor activation. Cell Metab. 13, 320–330 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Hisadome, K., Reimann, F., Gribble, F. M. & Trapp, S. Leptin directly depolarizes preproglucagon neurons in the nucleus tractus solitarius: electrical properties of glucagon-like peptide 1 neurons. Diabetes 59, 1890–1898 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Barrera, J. G. et al. Hyperphagia and increased fat accumulation in two models of chronic CNS glucagon-like peptide-1 loss of function. J. Neurosci. 31, 3904–3913 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Gaykema, R. P. et al. Activation of murine pre-proglucagon–producing neurons reduces food intake and body weight. J. Clin. Invest. 127, 1031–1045 (2017). This study uses DREADD technology to understand the role of preproglucagon neurons in the regulation of energy homeostasis.

    PubMed  PubMed Central  Google Scholar 

  71. Lachey, J. L. et al. The role of central glucagon-like peptide-1 in mediating the effects of visceral illness: differential effects in rats and mice. Endocrinology 146, 458–462 (2005).

    CAS  PubMed  Google Scholar 

  72. Scott, M. M., Williams, K. W., Rossi, J., Lee, C. E. & Elmquist, J. K. Leptin receptor expression in hindbrain Glp-1 neurons regulates food intake and energy balance in mice. J. Clin. Invest. 121, 2413–2421 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Hayes, M. R. et al. Endogenous leptin signaling in the caudal nucleus tractus solitarius and area postrema is required for energy balance regulation. Cell Metab. 11, 77–83 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Grill, H. J. et al. Evidence that the caudal brainstem is a target for the inhibitory effect of leptin on food intake. Endocrinology 143, 239–246 (2002).

    CAS  PubMed  Google Scholar 

  75. Garfield, A. S. et al. Neurochemical characterization of body weight-regulating leptin receptor neurons in the nucleus of the solitary tract. Endocrinology 153, 4600–4607 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Hisadome, K., Reimann, F., Gribble, F. M. & Trapp, S. CCK stimulation of GLP-1 neurons involves α1-adrenoceptor-mediated increase in glutamatergic synaptic inputs. Diabetes 60, 2701–2709 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Alhadeff, A. L., Golub, D., Hayes, M. R. & Grill, H. J. Peptide YY signaling in the lateral parabrachial nucleus increases food intake through the Y1 receptor. Am. J. Physiol. Endocrinol. Metab. 309, E759–E766 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Alhadeff, A. L., Baird, J.-P., Swick, J. C., Hayes, M. R. & Grill, H. J. Glucagon-like peptide-1 receptor signaling in the lateral parabrachial nucleus contributes to the control of food intake and motivation to feed. Neuropsychopharmacology 39, 2233–2243 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Alhadeff, A. L., Hayes, M. R. & Grill, H. J. Leptin receptor signaling in the lateral parabrachial nucleus contributes to the control of food intake. Am. J. Physiol. Regul. Integr. Comp. Physiol. 307, R1338–R1344 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Campos, C. A., Bowen, A. J., Schwartz, M. W. & Palmiter, R. D. Parabrachial CGRP neurons control meal termination. Cell Metab. 23, 811–820 (2016). This study shows that specific populations of neurons within the parabrachial nucleus are important in regulated feeding.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Roman, C. W., Derkach, V. A. & Palmiter, R. D. Genetically and functionally defined NTS to PBN brain circuits mediating anorexia. Nat. Commun. 7, 11905 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Essner, R. A. et al. AgRP neurons can increase food intake during conditions of appetite suppression and inhibit anorexigenic parabrachial neurons. J. Neurosci. 37, 798–717 (2017).

    Google Scholar 

  83. Stachniak, T. J., Ghosh, A. & Sternson, S. M. Chemogenetic synaptic silencing of neural circuits localizes a hypothalamus→midbrain pathway for feeding behavior. Neuron 82, 797–808 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Weissbourd, B. et al. Presynaptic partners of dorsal raphe serotonergic and GABAergic neurons. Neuron 83, 645–662 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Nectow, A. R. et al. Identification of a brainstem circuit controlling feeding. Cell 170, 429–442.e11 (2017). This study identifies specific neurons in the dorsal raphe nucleus a novel feeding regulator.

    CAS  PubMed  Google Scholar 

  86. Thomas, C., Pellicciari, R., Pruzanski, M., Auwerx, J. & Schoonjans, K. Targeting bile-acid signalling for metabolic diseases. Nat. Rev. Drug Discov. 7, 678–693 (2008).

    CAS  PubMed  Google Scholar 

  87. Katsuma, S., Hirasawa, A. & Tsujimoto, G. Bile acids promote glucagon-like peptide-1 secretion through TGR5 in a murine enteroendocrine cell line STC-1. Biochem. Biophys. Res. Commun. 329, 386–390 (2005).

    CAS  PubMed  Google Scholar 

  88. Alemi, F. et al. The receptor TGR5 mediates the prokinetic actions of intestinal bile acids and is required for normal defecation in mice. Gastroenterology 144, 145–154 (2013).

    CAS  PubMed  Google Scholar 

  89. Nies, V. J. M. et al. Fibroblast growth factor signaling in metabolic regulation. Front. Endocrinol. 6, 193 (2016).

    Google Scholar 

  90. Fu, L. et al. Fibroblast growth factor 19 increases metabolic rate and reverses dietary and leptin-deficient diabetes. Endocrinology 145, 2594–2603 (2004).

    CAS  PubMed  Google Scholar 

  91. Ryan, K. K. et al. Fibroblast growth factor-19 action in the brain reduces food intake and body weight and improves glucose tolerance in male rats. Endocrinology 154, 9–15 (2013).

    CAS  PubMed  Google Scholar 

  92. Lan, T. et al. FGF19, FGF21, and an FGFR1/β-Klotho-activating antibody act on the nervous system to regulate body weight and glycemia. Cell Metab. 26, 709–718.e3 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1131 (2006).

    PubMed  Google Scholar 

  94. Turnbaugh, P. J., Bäckhed, F., Fulton, L. & Gordon, J. I. Diet-Induced Obesity Is Linked to Marked but Reversible Alterations in the Mouse Distal Gut Microbiome. Cell Host Microbe 3, 213–223 (2008). This paper links altered microbiome populations to dietary-induced obesity.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Kahles, F. et al. GLP-1 secretion is increased by inflammatory stimuli in an IL-6-dependent manner, leading to hyperinsulinemia and blood glucose lowering. Diabetes 63, 3221–3229 (2014).

    CAS  PubMed  Google Scholar 

  96. Ellingsgaard, H. et al. Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells. Nat. Med. 17, 1481–1489 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Rao, S. et al. Pathogen-mediated inhibition of anorexia promotes host survival and transmission. Cell 168, 503–516.e12 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Sayin, S. I. et al. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab. 17, 225–235 (2013).

    CAS  PubMed  Google Scholar 

  99. Perry, R. J. et al. Acetate mediates a microbiome–brain–β-cell axis to promote metabolic syndrome. Nature 534, 213–217 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Hsu, J.-Y. et al. Non-homeostatic body weight regulation through a brainstem-restricted receptor for GDF15. Nature 550, 255–259 (2017).

    PubMed  Google Scholar 

  101. Mullican, S. E. et al. GFRAL is the receptor for GDF15 and the ligand promotes weight loss in mice and nonhuman primates. Nat. Med. 23, 1150–1157 (2017).

    CAS  PubMed  Google Scholar 

  102. Emmerson, P. J. et al. The metabolic effects of GDF15 are mediated by the orphan receptor GFRAL. Nat. Med. 23, 1215–1219 (2017).

    CAS  PubMed  Google Scholar 

  103. Yang, L. et al. GFRAL is the receptor for GDF15 and is required for the anti-obesity effects of the ligand. Nat. Med. 23, 1158–1166 (2017).

    CAS  PubMed  Google Scholar 

  104. Xiong, Y. et al. Long-acting MIC-1/GDF15 molecules to treat obesity: evidence from mice to monkeys. Sci. Transl Med. 9, eaan8732 (2017).

    PubMed  Google Scholar 

  105. Schauer, P. R. et al. Bariatric surgery versus intensive medical therapy in obese patients with diabetes. N. Engl. J. Med. 366, 1567–1576 (2012). This paper demonstrates the much greater efficacy of bariatric surgery in diabetes treatment than that of intensive medical therapy.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Seeley, R. J., Chambers, A. P. & Sandoval, D. A. The role of gut adaptation in the potent effects of multiple bariatric surgeries on obesity and diabetes. Cell Metab. 21, 369–378 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. le Roux, C. W. et al. Gut hormones as mediators of appetite and weight loss after Roux-en-Y gastric bypass. Ann. Surg. 246, 780–785 (2007).

    PubMed  Google Scholar 

  108. Yousseif, A. et al. Differential effects of laparoscopic sleeve gastrectomy and laparoscopic gastric bypass on appetite, circulating acyl-ghrelin, peptide YY3-36 and active GLP-1 levels in non-diabetic humans. Obes. Surg. 24, 241–252 (2014).

    PubMed  Google Scholar 

  109. Wilson-Pérez, H. E. et al. The effect of vertical sleeve gastrectomy on food choice in rats. Int. J. Obes. 37, 288–295 (2013).

    Google Scholar 

  110. Mokadem, M., Zechner, J. F., Margolskee, R. F., Drucker, D. J. & Aguirre, V. Effects of Roux-en-Y gastric bypass on energy and glucose homeostasis are preserved in two mouse models of functional glucagon-like peptide-1 deficiency. Mol. Metab. 3, 191–201 (2014).

    CAS  PubMed  Google Scholar 

  111. Wilson-Pérez, H. E. et al. Vertical sleeve gastrectomy is effective in two genetic mouse models of glucagon-like peptide-1 receptor deficiency. Diabetes 62, 2380–2385 (2013).

    PubMed  PubMed Central  Google Scholar 

  112. Ye, J. et al. GLP-1 receptor signaling is not required for reduced body weight after RYGB in rodents. Am. J. Physiol. Regul. Integr. Comp. Physiol. 306, R352–362 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Chambers, A. P. et al. Regulation of gastric emptying rate and its role in nutrient-induced GLP-1 secretion in rats after vertical sleeve gastrectomy. Am. J. Physiol. Endocrinol. Metab. 306, E424–E432 (2014).

    CAS  PubMed  Google Scholar 

  114. Nguyen, N. Q. et al. Rapid gastric and intestinal transit is a major determinant of changes in blood glucose, intestinal hormones, glucose absorption, and postprandial symptoms after gastric bypass. Obesity 22, 2003–2009 (2014).

    CAS  PubMed  Google Scholar 

  115. Myronovych, A. et al. Vertical sleeve gastrectomy reduces hepatic steatosis while increasing serum bile acids in a weight-loss-independent manner. Obesity 22, 390–400 (2014).

    CAS  PubMed  Google Scholar 

  116. Patti, M.-E. et al. Serum bile acids are higher in humans with prior gastric bypass: potential contribution to improved glucose and lipid metabolism. Obesity 17, 1671–1677 (2009).

    CAS  PubMed  Google Scholar 

  117. McGavigan, A. K. et al. TGR5 contributes to glucoregulatory improvements after vertical sleeve gastrectomy in mice. Gut 66, 226–234 (2017).

    CAS  PubMed  Google Scholar 

  118. Ding, L. et al. Vertical sleeve gastrectomy activates GPBAR-1/TGR5 to sustain weight loss, improve fatty liver, and remit insulin resistance in mice. Hepatology 64, 760–773 (2016).

    CAS  PubMed  Google Scholar 

  119. Ryan, K. K. et al. FXR is a molecular target for the effects of vertical sleeve gastrectomy. Nature 509, 183–188 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Shin, A. C., Zheng, H. & Berthoud, H.-R. Vagal innervation of the hepatic portal vein and liver is not necessary for Roux-en-Y gastric bypass surgery-induced hypophagia, weight loss, and hypermetabolism. Ann. Surg. 255, 294–301 (2012).

    PubMed  Google Scholar 

  121. Gautron, L., Zechner, J. F. & Aguirre, V. Vagal innervation patterns following Roux-en-Y gastric bypass in the mouse. Int. J. Obes. 37, 1603–1607 (2013).

    CAS  Google Scholar 

  122. Hao, Z. et al. Vagal innervation of intestine contributes to weight loss after Roux-en-Y gastric bypass surgery in rats. Obes. Surg. 24, 2145–2151 (2014).

    PubMed  PubMed Central  Google Scholar 

  123. Hankir, M. K. et al. Gastric bypass surgery recruits a gut PPAR-α-striatal D1R pathway to reduce fat appetite in obese rats. Cell Metab. 25, 335–344 (2017). This study demonstrates that vagal innervation is necessary for surgery-induced changes in food choice.

    CAS  PubMed  Google Scholar 

  124. Benoit, S. C., Hunter, T. D., Francis, D. M. & De La Cruz-Munoz, N. Use of Bariatric Outcomes Longitudinal Database (BOLD) to study variability in patient success after bariatric surgery. Obes. Surg. 24, 936–943 (2014).

    PubMed  Google Scholar 

  125. Geary, N. in Satiation. From Gut to Brain (ed. Smith, G. P.) 164–197 (Oxford Univ. Press, 1998).

    Google Scholar 

  126. Pocai, A. et al. Glucagon-like peptide 1/glucagon receptor dual agonism reverses obesity in mice. Diabetes 58, 2258–2266 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Finan, B. et al. Targeted estrogen delivery reverses the metabolic syndrome. Nat. Med. 18, 1847–1856 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Finan, B. et al. Unimolecular dual incretins maximize metabolic benefits in rodents, monkeys, and humans. Sci. Transl Med. 5, 209ra151 (2013).

    PubMed  Google Scholar 

  129. Finan, B. et al. A rationally designed monomeric peptide triagonist corrects obesity and diabetes in rodents. Nat. Med. 21, 27–36 (2014).

    PubMed  Google Scholar 

  130. Wren, A. M. & Bloom, S. R. Gut hormones and appetite control. Gastroenterology 132, 2116–2130 (2007).

    CAS  PubMed  Google Scholar 

  131. Williams, D. L., Grill, H. J., Cummings, D. E. & Kaplan, J. M. Vagotomy dissociates short- and long-term controls of circulating ghrelin. Endocrinology 144, 5184–5187 (2003).

    CAS  PubMed  Google Scholar 

  132. Masuda, Y. et al. Ghrelin stimulates gastric acid secretion and motility in rats. Biochem. Biophys. Res. Commun. 276, 905–908 (2000).

    CAS  PubMed  Google Scholar 

  133. Sato, T. et al. Structure, regulation and function of ghrelin. J. Biochem. 151, 119–128 (2012).

    CAS  PubMed  Google Scholar 

  134. Foster-Schubert, K. E. et al. Acyl and total ghrelin are suppressed strongly by ingested proteins, weakly by lipids, and biphasically by carbohydrates. J. Clin. Endocrinol. Metab. 93, 1971–1979 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Batterham, R. L. et al. Inhibition of food intake in obese subjects by peptide YY 3–36. N. Engl. J. Med. 349, 941–948 (2003).

    CAS  PubMed  Google Scholar 

  136. Mentlein, R., Dahms, P., Grandt, D. & Krüger, R. Proteolytic processing of neuropeptide Y and peptide YY by dipeptidyl peptidase IV. Regul. Pept. 49, 133–144 (1993).

    CAS  PubMed  Google Scholar 

  137. Magnus, C. J. et al. Chemical and genetic engineering of selective ion channel-ligand interactions. Science 333, 1292–1296 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Gomez, J. L. et al. Chemogenetics revealed: DREADD occupancy and activation via converted clozapine. Science 357, 503–507 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Kim, K.-S. & Sandoval, D. A. in Comprehensive Physiology (ed. Pollock, D. M.) 783–798 (John Wiley & Sons, 2017).

    Google Scholar 

Download references

Acknowledgements

The authors' work is supported in part by US National Institutes of Health awards DK082480 (D.A.S.) and DK093848 (R.J.S.).

Author information

Authors and Affiliations

Authors

Contributions

D.A.S. researched data for the article, made a substantial contribution to the discussion of content and contributed to the writing, review and editing of the manuscript before submission. K.-S.K. researched data for the article, made a substantial contribution to the discussion of content and contributed to the writing of the manuscript. R.J.S. reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Darleen A. Sandoval.

Ethics declarations

Competing interests

K.-S.K. has no competing interest. R.J.S. has received research support from Ethicon Endo-Surgery, Novo Nordisk, Sanofi and Janssen. R.J.S. has served on scientific advisory boards for Ethicon Endo-Surgery, Daiichi Sankyo, Janssen, Novartis, Nestle, Takeda, Boehringer Ingelheim, Sanofi and Novo Nordisk. R.J.S. is also a paid speaker for Ethicon Endo-Surgery. D.A.S. has received research support from Ethicon Endo-Surgery, Novo Nordisk and Boehringer Ingelheim.

PowerPoint slides

Glossary

Vagus nerve

The longest cranial nerve. It contains both motor and sensory fibres involved in the parasympathetic regulation of homeostatic processes.

Enteroendocrine cells

Specialized endocrine cells within the intestine that secrete peptides important for regulating feeding and metabolism.

Afferent neurons

Peripheral sensory neurons that carry ascending nerve impulses from peripheral organs to the brain and spinal cord.

G-Protein-coupled receptor

(GPCR). Seven-transmembrane receptor that is coupled to, and activates, a heterotrimeric G protein, which subsequently activates a series of downstream signalling cascades; this receptor class is large and diverse and binds to a variety of nutrients and hormones.

Nodose ganglion

Contains the cell bodies of neurons of the vagus nerve.

Nutrient sensing

A process by which nutrients or their by-products directly activate cell signalling cascades that, in turn, regulate metabolism.

Efferent neurons

Peripheral motor neurons that carry descending nerve impulses from the CNS to peripheral organs.

Bariatric surgery

A surgical dissection and/or reorganization of the gastrointestinal tract that is used to induce weight loss.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, KS., Seeley, R. & Sandoval, D. Signalling from the periphery to the brain that regulates energy homeostasis. Nat Rev Neurosci 19, 185–196 (2018). https://doi.org/10.1038/nrn.2018.8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn.2018.8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing