Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Feeding circuit development and early-life influences on future feeding behaviour

Abstract

A wide range of maternal exposures — undernutrition, obesity, diabetes, stress and infection — are associated with an increased risk of metabolic disease in offspring. Developmental influences can cause persistent structural changes in hypothalamic circuits regulating food intake in the service of energy balance. The physiological relevance of these alterations has been called into question because maternal impacts on daily caloric intake do not persist to adulthood. Recent behavioural and epidemiological studies in humans provide evidence that the relative contribution of appetitive traits related to satiety, reward and the emotional aspects of food intake regulation changes across the lifespan. This Opinion article outlines a neurodevelopmental framework to explore the possibility that crosstalk between developing circuits regulating different modalities of food intake shapes future behavioural responses to environmental challenges.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Summary diagram illustrating the crosstalk between circuits regulating different aspects of feeding behaviour.
Figure 2: Ontogeny of orosensory inputs in rodents.
Figure 3: Ontogeny of visceral control systems in rodents.
Figure 4: Ontogeny of reward control systems in rodents.
Figure 5: Ontogeny of homeostatic control systems in rodents.
Figure 6: Stepwise progression of ontogeny of feeding control systems is conserved between humans and rodents.

Similar content being viewed by others

References

  1. Taylor, P. D. & Poston, L. Developmental programming of obesity in mammals. Exp. Physiol. 92, 287–298 (2007).

    CAS  PubMed  Google Scholar 

  2. Spencer, S. J. Early life programming of obesity: the impact of the perinatal environment on the development of obesity and metabolic dysfunction in the offspring. Curr. Diabetes Rev. 8, 55–68 (2012).

    CAS  PubMed  Google Scholar 

  3. Hales, C. N. & Barker, D. J. The thrifty phenotype hypothesis. Br. Med. Bull. 60, 5–20 (2001).

    CAS  PubMed  Google Scholar 

  4. Ellis, P. J. et al. Thrifty metabolic programming in rats is induced by both maternal undernutrition and postnatal leptin treatment, but masked in the presence of both: implications for models of developmental programming. BMC Genomics 15, 49 (2014).

    PubMed  PubMed Central  Google Scholar 

  5. Vickers, M. H. Early life nutrition, epigenetics and programming of later life disease. Nutrients 6, 2165–2178 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Nicholas, L. M. et al. The early origins of obesity and insulin resistance: timing, programming and mechanisms. Int. J. Obes. 40, 229–238 (2016).

    CAS  Google Scholar 

  7. Elson, A. E. & Simerly, R. B. Developmental specification of metabolic circuitry. Front. Neuroendocrinol. 39, 38–51 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Dearden, L. & Ozanne, S. E. Early life origins of metabolic disease: Developmental programming of hypothalamic pathways controlling energy homeostasis. Front. Neuroendocrinol. 39, 3–16 (2015).

    PubMed  Google Scholar 

  9. Bouret, S. G., Draper, S. J. & Simerly, R. B. Trophic action of leptin on hypothalamic neurons that regulate feeding. Science 304, 108–110 (2004).

    CAS  PubMed  Google Scholar 

  10. Coupe, B., Grit, I., Darmaun, D. & Parnet, P. The timing of “catchup growth” affects metabolism and appetite regulation in male rats born with intrauterine growth restriction. Am. J. Physiol. Regul. Integr. Comp. Physiol. 297, R813–R824 (2009).

    CAS  PubMed  Google Scholar 

  11. Zhu, S., Eclarinal, J., Baker, M. S., Li, G. & Waterland, R. A. Developmental programming of energy balance regulation: is physical activity more 'programmable' than food intake? Proc. Nutr. Soc. 75, 73–77 (2016).

    PubMed  Google Scholar 

  12. Lagisz, M. et al. Transgenerational effects of caloric restriction on appetite: a meta-analysis. Obes. Rev. 15, 294–309 (2014).

    CAS  PubMed  Google Scholar 

  13. Bellinger, L., Lilley, C. & Langley-Evans, S. C. Prenatal exposure to a maternal low-protein diet programmes a preference for high-fat foods in the young adult rat. Br. J. Nutr. 92, 513–520 (2004).

    CAS  PubMed  Google Scholar 

  14. Bayol, S. A., Farrington, S. J. & Stickland, N. C. A maternal 'junk food' diet in pregnancy and lactation promotes an exacerbated taste for 'junk food' and a greater propensity for obesity in rat offspring. Br. J. Nutr. 98, 843–851 (2007).

    CAS  PubMed  Google Scholar 

  15. Lussana, F. et al. Prenatal exposure to the Dutch famine is associated with a preference for fatty foods and a more atherogenic lipid profile. Am. J. Clin. Nutr. 88, 1648–1652 (2008).

    CAS  PubMed  Google Scholar 

  16. Teegarden, S. L., Scott, A. N. & Bale, T. L. Early life exposure to a high fat diet promotes long-term changes in dietary preferences and central reward signaling. Neuroscience 162, 924–932 (2009).

    CAS  PubMed  Google Scholar 

  17. Shultis, W. A. et al. Does birth weight predict childhood diet in the Avon longitudinal study of parents and children? J. Epidemiol. Commun. Health 59, 955–960 (2005).

    CAS  Google Scholar 

  18. Swanson, L. W. Cerebral hemisphere regulation of motivated behavior. Brain Res. 886, 113–164 (2000).

    CAS  PubMed  Google Scholar 

  19. Berthoud, H.R. Multiple neural systems controlling food intake and body weight. Neurosci. Biobehavioral Rev. 26, 393–428 (2002).

    Google Scholar 

  20. Sternson, S. M. & Eiselt, A. K. Three pillars for the neural control of appetite. Annu. Rev. Physiol. 79, 401–423 (2017).

    CAS  PubMed  Google Scholar 

  21. Smith, G. P. The direct and indirect controls of meal size. Neurosci. Biobehav Rev. 20, 41–46 (1996).

    CAS  PubMed  Google Scholar 

  22. Schwartz, G. J. & Zeltser, L. M. Functional organization of neuronal and humoral signals regulating feeding behavior. Annu. Rev. Nutr. 33, 1–21 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Norgren, R. Gustatory responses in the hypothalamus. Brain Res. 21, 63–77 (1970).

    CAS  PubMed  Google Scholar 

  24. Saper, C. B. & Loewy, A. D. Efferent connections of the parabrachial nucleus in the rat. Brain Res. 197, 291–317 (1980).

    CAS  PubMed  Google Scholar 

  25. Tokita, K., Armstrong, W. E., St John, S. J. & Boughter, J. D. Jr. Activation of lateral hypothalamus-projecting parabrachial neurons by intraorally delivered gustatory stimuli. Front. Neural Circuits 8, 86 (2014).

    PubMed  PubMed Central  Google Scholar 

  26. Reilly, S. The parabrachial nucleus and conditioned taste aversion. Brain Res. Bull. 48, 239–254 (1999).

    CAS  PubMed  Google Scholar 

  27. Baird, J. P., Travers, S. P. & Travers, J. B. Integration of gastric distension and gustatory responses in the parabrachial nucleus. Am. J. Physiol. Regul. Integr. Comp. Physiol. 281, R1581–R1593 (2001).

    CAS  PubMed  Google Scholar 

  28. Carter, M. E., Soden, M. E., Zweifel, L. S. & Palmiter, R. D. Genetic identification of a neural circuit that suppresses appetite. Nature 503, 111–114 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Alhadeff, A. L., Baird, J. P., Swick, J. C., Hayes, M. R. & Grill, H. J. Glucagon-like Peptide1 receptor signaling in the lateral parabrachial nucleus contributes to the control of food intake and motivation to feed. Neuropsychopharmacology 39, 2233–2243 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Rinaman, L. Ascending projections from the caudal visceral nucleus of the solitary tract to brain regions involved in food intake and energy expenditure. Brain Res. 1350, 18–34 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Li, C. S., Cho, Y. K. & Smith, D. V. Modulation of parabrachial taste neurons by electrical and chemical stimulation of the lateral hypothalamus and amygdala. J. Neurophysiol. 93, 1183–1196 (2005).

    PubMed  Google Scholar 

  32. Wu, Z. et al. GABAergic projections from lateral hypothalamus to paraventricular hypothalamic nucleus promote feeding. J. Neurosci. 35, 3312–3318 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Cowley, M. A. et al. The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis. Neuron 37, 649–661 (2003).

    CAS  PubMed  Google Scholar 

  34. van den Top, M., Lee, K., Whyment, A. D., Blanks, A. M. & Spanswick, D. Orexigen-sensitive NPY/AgRP pacemaker neurons in the hypothalamic arcuate nucleus. Nat. Neurosci. 7, 493–494 (2004).

    CAS  PubMed  Google Scholar 

  35. Aponte, Y., Atasoy, D. & Sternson, S. M. AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training. Nat. Neurosci. 14, 351–355 (2011).

    CAS  PubMed  Google Scholar 

  36. Krashes, M. J. et al. Rapid, reversible activation of AgRP neurons drives feeding behavior in mice. J. Clin. Invest. 121, 1424–1428 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Betley, J. N., Cao, Z. F., Ritola, K. D. & Sternson, S. M. Parallel, redundant circuit organization for homeostatic control of feeding behavior. Cell 155, 1337–1350 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Naleid, A. M., Grace, M. K., Cummings, D. E. & Levine, A. S. Ghrelin induces feeding in the mesolimbic reward pathway between the ventral tegmental area and the nucleus accumbens. Peptides 26, 2274–2279 (2005).

    CAS  PubMed  Google Scholar 

  39. Abizaid, A. et al. Ghrelin modulates the activity and synaptic input organization of midbrain dopamine neurons while promoting appetite. J. Clin. Invest. 116, 3229–3239 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Hommel, J. D. et al. Leptin receptor signaling in midbrain dopamine neurons regulates feeding. Neuron 51, 801–810 (2006).

    CAS  PubMed  Google Scholar 

  41. Grill, H. J. et al. Evidence that the caudal brainstem is a target for the inhibitory effect of leptin on food intake. Endocrinology 143, 239–246 (2002).

    CAS  PubMed  Google Scholar 

  42. Hayes, M. R. et al. Endogenous leptin signaling in the caudal nucleus tractus solitarius and area postrema is required for energy balance regulation. Cell Metab. 11, 77–83 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Alhadeff, A. L., Hayes, M. R. & Grill, H. J. Leptin receptor signaling in the lateral parabrachial nucleus contributes to the control of food intake. Am. J. Physiol. Regul. Integr. Comp. Physiol. 307, R1338–R1344 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Chen, Y., Lin, Y. C., Kuo, T. W. & Knight, Z. A. Sensory detection of food rapidly modulates arcuate feeding circuits. Cell 160, 829–841 (2015).

    PubMed  PubMed Central  Google Scholar 

  45. Malik, S., McGlone, F., Bedrossian, D. & Dagher, A. Ghrelin modulates brain activity in areas that control appetitive behavior. Cell Metab. 7, 400–409 (2008).

    CAS  PubMed  Google Scholar 

  46. Kim, J., Zhang, X., Muralidhar, S., LeBlanc, S. A. & Tonegawa, S. Basolateral to central amygdala neural circuits for appetitive behaviors. Neuron 93, 1464–1479.e5 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Sah, P. & Lopez De Armentia, M. Excitatory synaptic transmission in the lateral and central amygdala. Ann. NY Acad. Sci. 985, 67–77 (2003).

    CAS  PubMed  Google Scholar 

  48. Beier, K. T. et al. Circuit architecture of VTA dopamine neurons revealed by systematic input-output mapping. Cell 162, 622–634 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Jennings, J. H., Rizzi, G., Stamatakis, A. M., Ung, R. L. & Stuber, G. D. The inhibitory circuit architecture of the lateral hypothalamus orchestrates feeding. Science 341, 1517–1521 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Brion, M. J. et al. Maternal macronutrient and energy intakes in pregnancy and offspring intake at 10 y: exploring parental comparisons and prenatal effects. Am. J. Clin. Nutr. 91, 748–756 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Rivera, H. M. et al. Maternal high-fat diet and obesity impact palatable food intake and dopamine signaling in nonhuman primate offspring. Obesity 23, 2157–2164 (2015).

    CAS  PubMed  Google Scholar 

  52. Johanson, I. B. & Hall, W. G. Appetitive learning in 1day-old rat pups. Science 205, 419–421 (1979).

    CAS  PubMed  Google Scholar 

  53. Hall, W. G. Feeding and behavioral activation in infant rats. Science 205, 206–209 (1979).

    CAS  PubMed  Google Scholar 

  54. Phifer, C. B., Browde, J. A. Jr & Hall, W. G. Ontogeny of glucose inhibition of independent ingestion in preweanling rats. Brain Res. Bull. 17, 673–679 (1986).

    CAS  PubMed  Google Scholar 

  55. Ackerman, S. H., Albert, M., Shindledecker, R. D., Gayle, C. & Smith, G. P. Intake of different concentrations of sucrose and corn oil in preweanling rats. Am. J. Physiol. 262, R624–R627 (1992).

    CAS  PubMed  Google Scholar 

  56. Terry, L. M. & Johanson, I. B. Olfactory influences on the ingestive behavior of infant rats. Dev. Psychobiol. 20, 313–331 (1987).

    CAS  PubMed  Google Scholar 

  57. Myers, K. P., Ferris, J. & Sclafani, A. Flavor preferences conditioned by postingestive effects of nutrients in preweanling rats. Physiol. Behav. 84, 407–419 (2005).

    CAS  PubMed  Google Scholar 

  58. Myers, K. P. & Sclafani, A. Development of learned flavor preferences. Dev. Psychobiol 48, 380–388 (2006).

    PubMed  Google Scholar 

  59. Philopena, J., Greenberg, D. & Smith, G. P. Naloxone decreases intake of 10% sucrose in preweanling rats. Pharmacol. Biochem. Behav. 54, 333–337 (1996).

    CAS  PubMed  Google Scholar 

  60. Widdowson, E. M. & McCance, R. A. The effect of finite periods of undernutrition at different ages on the composition and subsequent development of the rat. Proc. R. Soc. Lond. B Biol. Sci. 158, 329–342 (1963).

    CAS  PubMed  Google Scholar 

  61. Fiorotto, M. L., Burrin, D. G., Perez, M. & Reeds, P. J. Intake and use of milk nutrients by rat pups suckled in small, medium, or large litters. Am. J. Physiol. 260, R1104–R1113 (1991).

    CAS  PubMed  Google Scholar 

  62. Zhang, L. L. & Ashwell, K. W. Development of the cyto- and chemoarchitectural organization of the rat nucleus of the solitary tract. Anat. Embryol. 203, 265–282 (2001).

    CAS  Google Scholar 

  63. Rinaman, L. & Levitt, P. Establishment of vagal sensorimotor circuits during fetal development in rats. J. Neurobiol. 24, 641–659 (1993).

    CAS  PubMed  Google Scholar 

  64. Rinaman, L., Roesch, M. R. & Card, J. P. Retrograde transynaptic pseudorabies virus infection of central autonomic circuits in neonatal rats. Brain Res. Dev. Brain Res. 114, 207–216 (1999).

    CAS  PubMed  Google Scholar 

  65. Swithers, S. E. & Hall, W. G. A nutritive control of independent ingestion in rat pups emerges by nine days of age. Physiol. Behav. 46, 873–879 (1989).

    CAS  PubMed  Google Scholar 

  66. Rinaman, L. Postnatal development of hypothalamic inputs to the dorsal vagal complex in rats. Physiol. Behav. 79, 65–70 (2003).

    CAS  PubMed  Google Scholar 

  67. Grill, H. J. & Norgren, R. Chronically decerebrate rats demonstrate satiation but not bait shyness. Science 201, 267–269 (1978).

    CAS  PubMed  Google Scholar 

  68. Lorenz, D. N., Ellis, S. B. & Epstein, A. N. Differential effects of upper gastrointestinal fill on milk ingestion and nipple attachment in the suckling rat. Dev. Psychobiol 15, 309–330 (1982).

    CAS  PubMed  Google Scholar 

  69. Koehnle, T. J. & Rinaman, L. Progressive postnatal increases in Fos immunoreactivity in the forebrain and brain stem of rats after viscerosensory stimulation with lithium chloride. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, R1212–R1223 (2007).

    CAS  PubMed  Google Scholar 

  70. Rinaman, L., Hoffman, G. E., Stricker, E. M. & Verbalis, J. G. Exogenous cholecystokinin activates cFos expression in medullary but not hypothalamic neurons in neonatal rats. Brain Res. Dev. Brain Res. 77, 140–145 (1994).

    CAS  PubMed  Google Scholar 

  71. Lasiter, P. S. & Kachele, D. L. Postnatal development of the parabrachial gustatory zone in rat: dendritic morphology and mitochondrial enzyme activity. Brain Res. Bull. 21, 79–94 (1988).

    CAS  PubMed  Google Scholar 

  72. Rao, H., Jean, A. & Kessler, J. P. Postnatal ontogeny of glutamate receptors in the rat nucleus tractus solitarii and ventrolateral medulla. J. Auton. Nerv. Syst. 65, 25–32 (1997).

    CAS  PubMed  Google Scholar 

  73. Yoshioka, M. & Kawai, Y. Activity-dependent reorganization of local circuitry in the developing visceral sensory system. Neuroscience 150, 905–914 (2007).

    CAS  PubMed  Google Scholar 

  74. Rinaman, L. Postnatal development of catecholamine inputs to the paraventricular nucleus of the hypothalamus in rats. J. Comp. Neurol. 438, 411–422 (2001).

    CAS  PubMed  Google Scholar 

  75. Bouret, S. G., Draper, S. J. & Simerly, R. B. Formation of projection pathways from the arcuate nucleus of the hypothalamus to hypothalamic regions implicated in the neural control of feeding behavior in mice. J. Neurosci. 24, 2797–2805 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Vincent, A. & Tell, F. Postnatal development of rat nucleus tractus solitarius neurons: morphological and electrophysiological evidence. Neuroscience 93, 293–305 (1999).

    CAS  PubMed  Google Scholar 

  77. Rinaman, L. Ontogeny of hypothalamic-hindbrain feeding control circuits. Dev. Psychobiol 48, 389–396 (2006).

    PubMed  Google Scholar 

  78. Naef, L., Gjerde, E., Long, H., Richard, D. & Walker, C. D. Neonatal onset of leptin signaling in dopamine neurons of the ventral tegmental area in the rat. J. Neuroendocrinol. 26, 835–843 (2014).

    CAS  PubMed  Google Scholar 

  79. Gjerde, E., Long, H., Richard, D. & Walker, C. D. Developmental responses of the lateral hypothalamus to leptin in neonatal rats, and its implications for the development of functional connections with the ventral tegmental area. J. Neuroendocrinol. 28, 12354 (2016).

    CAS  PubMed  Google Scholar 

  80. Hu, Z., Cooper, M., Crockett, D. P. & Zhou, R. Differentiation of the midbrain dopaminergic pathways during mouse development. J. Comp. Neurol. 476, 301–311 (2004).

    PubMed  Google Scholar 

  81. Voorn, P., Kalsbeek, A., Jorritsma-Byham, B. & Groenewegen, H. J. The pre- and postnatal development of the dopaminergic cell groups in the ventral mesencephalon and the dopaminergic innervation of the striatum of the rat. Neuroscience 25, 857–887 (1988).

    CAS  PubMed  Google Scholar 

  82. Antonopoulos, J., Dori, I., Dinopoulos, A., Chiotelli, M. & Parnavelas, J. G. Postnatal development of the dopaminergic system of the striatum in the rat. Neuroscience 110, 245–256 (2002).

    CAS  PubMed  Google Scholar 

  83. Van den Heuvel, D. M. & Pasterkamp, R. J. Getting connected in the dopamine system. Prog. Neurobiol. 85, 75–93 (2008).

    CAS  PubMed  Google Scholar 

  84. Spain, J. W., Roth, B. L. & Coscia, C. J. Differential ontogeny of multiple opioid receptors (mu, delta, and kappa). J. Neurosci. 5, 584–588 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. McDowell, J. & Kitchen, I. Development of opioid systems: peptides, receptors and pharmacology. Brain Res. 434, 397–421 (1987).

    CAS  PubMed  Google Scholar 

  86. Tepper, J. M., Sharpe, N. A., Koos, T. Z. & Trent, F. Postnatal development of the rat neostriatum: electrophysiological, light- and electron-microscopic studies. Dev. Neurosci. 20, 125–145 (1998).

    CAS  PubMed  Google Scholar 

  87. Tarazi, F. I. & Baldessarini, R. J. Comparative postnatal development of dopamine D(1), D(2) and D(4) receptors in rat forebrain. Int. J. Dev. Neurosci. 18, 29–37 (2000).

    CAS  PubMed  Google Scholar 

  88. Ogawa, H., Hasegawa, K., Ohgushi, M. & Murayama, N. Changes in properties of neuronal responses in two cortical taste areas in rats of various ages. Neurosci. Res. 19, 407–417 (1994).

    CAS  PubMed  Google Scholar 

  89. Padilla, S. L., Carmody, J. S. & Zeltser, L. M. Pomc-expressing progenitors give rise to antagonistic neuronal populations in hypothalamic feeding circuits. Nat. Med. 16, 403–405 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Frontini, A. et al. Leptin-dependent STAT3 phosphorylation in postnatal mouse hypothalamus. Brain Res. 1215, 105–115 (2008).

    CAS  PubMed  Google Scholar 

  91. Cottrell, E. C. et al. Developmental changes in hypothalamic leptin receptor: relationship with the postnatal leptin surge and energy balance neuropeptides in the postnatal rat. Am. J. Physiol. Regul. Integr. Comp. Physiol. 296, R631–R639 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Baquero, A. F. et al. Developmental switch of leptin signaling in arcuate nucleus neurons. J. Neurosci. 34, 9982–9994 (2014).

    PubMed  PubMed Central  Google Scholar 

  93. Grove, K. L. & Smith, M. S. Ontogeny of the hypothalamic neuropeptide Y system. Physiol. Behav. 79, 47–63 (2003).

    CAS  PubMed  Google Scholar 

  94. Bouyer, K. & Simerly, R. B. Neonatal leptin exposure specifies innervation of presympathetic hypothalamic neurons and improves the metabolic status of leptin-deficient mice. J. Neurosci. 33, 840–851 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Steculorum, S. M. et al. Neonatal ghrelin programs development of hypothalamic feeding circuits. J. Clin. Invest. 125, 846–858 (2015).

    PubMed  PubMed Central  Google Scholar 

  96. Baquero, A. F. et al. Developmental changes in synaptic distribution in arcuate nucleus neurons. J. Neurosci. 35, 8558–8569 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Juan De Solis, A., Baquero, A. F., Bennett, C. M., Grove, K. L. & Zeltser, L. M. Postnatal undernutrition delays a key step in the maturation of hypothalamic feeding circuits. Mol. Metab. 5, 198–209 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Ahima, R. S., Prabakaran, D. & Flier, J. S. Postnatal leptin surge and regulation of circadian rhythm of leptin by feeding. Implications for energy homeostasis and neuroendocrine function. J. Clin. Invest. 101, 1020–1027 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Mistry, A. M., Swick, A. & Romsos, D. R. Leptin alters metabolic rates before acquisition of its anorectic effect in developing neonatal mice. Am. J. Physiol. 277, R742–R747 (1999).

    CAS  PubMed  Google Scholar 

  100. Ahima, R. S. & Hileman, S. M. Postnatal regulation of hypothalamic neuropeptide expression by leptin: implications for energy balance and body weight regulation. Regul. Pept. 92, 1–7 (2000).

    CAS  PubMed  Google Scholar 

  101. Steculorum, S. M. & Bouret, S. G. Developmental effects of ghrelin. Peptides 32, 2362–2366 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Kennedy, G. C. The development with age of hypothalamic restraint upon the appetite of the rat. J. Endocrinol. 16, 9–17 (1957).

    CAS  PubMed  Google Scholar 

  103. Huszar, D. et al. Targeted disruption of the melanocortin4 receptor results in obesity in mice. Cell 88, 131–141 (1997).

    CAS  PubMed  Google Scholar 

  104. Ring, L. E. & Zeltser, L. M. Disruption of hypothalamic leptin signaling in mice leads to early-onset obesity, but physiological adaptations in mature animals stabilize adiposity levels. J. Clin. Invest. 120, 2931–2941 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Bumaschny, V. F. et al. Obesity-programmed mice are rescued by early genetic intervention. J. Clin. Invest. 122, 4203–4212 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Zeltser, L. M. Developmental influences on circuits programming susceptibility to obesity. Front. Neuroendocrinol. 39, 17–27 (2015).

    PubMed  PubMed Central  Google Scholar 

  107. Porter, R. H. & Winberg, J. Unique salience of maternal breast odors for newborn infants. Neurosci. Biobehav Rev. 23, 439–449 (1999).

    CAS  PubMed  Google Scholar 

  108. Porter, R. H., Makin, J. W., Davis, L. B. & Christensen, K. M. An assessment of the salient olfactory environment of formula-fed infants. Physiol. Behav. 50, 907–911 (1991).

    CAS  PubMed  Google Scholar 

  109. Aoyama, S. et al. Maternal breast milk odour induces frontal lobe activation in neonates: a NIRS study. Early Hum. Dev. 86, 541–545 (2010).

    PubMed  Google Scholar 

  110. Steiner, J. E. The gustofacial response: observation on normal and anencephalic newborn infants. Symp. Oral Sens. Percept. 4, 254–278 (1973).

    Google Scholar 

  111. Wardle, J., Guthrie, C. A., Sanderson, S. & Rapoport, L. Development of the children's eating behaviour questionnaire. J. Child Psychol. Psychiatry 42, 963–970 (2001).

    CAS  PubMed  Google Scholar 

  112. Llewellyn, C. H., van Jaarsveld, C. H., Johnson, L., Carnell, S. & Wardle, J. Development and factor structure of the Baby Eating Behaviour Questionnaire in the Gemini birth cohort. Appetite 57, 388–396 (2011).

    PubMed  Google Scholar 

  113. Fomon, S. J. et al. Relationship between formula concentration and rate of growth of normal infants. J. Nutr. 98, 241–254 (1969).

    CAS  PubMed  Google Scholar 

  114. Adair, L. S. The infant's ability to self-regulate caloric intake: a case study. J. Am. Diet Assoc. 84, 543–546 (1984).

    CAS  PubMed  Google Scholar 

  115. Birch, L. L. & Deysher, M. Caloric compensation and sensory specific satiety: evidence for self regulation of food intake by young children. Appetite 7, 323–331 (1986).

    CAS  PubMed  Google Scholar 

  116. Fox, M. K., Devaney, B., Reidy, K., Razafindrakoto, C. & Ziegler, P. Relationship between portion size and energy intake among infants and toddlers: evidence of self-regulation. J. Am. Diet Assoc. 106, S77–S83 (2006).

    PubMed  Google Scholar 

  117. Shepard, D. N. & Chandler-Laney, P. C. Prospective associations of eating behaviors with weight gain in infants. Obesity 23, 1881–1885 (2015).

    PubMed  Google Scholar 

  118. Syrad, H., Johnson, L., Wardle, J. & Llewellyn, C. H. Appetitive traits and food intake patterns in early life. Am. J. Clin. Nutr. 103, 231–235 (2016).

    CAS  PubMed  Google Scholar 

  119. Parkinson, K. N., Drewett, R. F., Le Couteur, A. S., Adamson, A. J. & Gateshead Milennium Study Core Team. Do maternal ratings of appetite in infants predict later child eating behaviour questionnaire scores and body mass index? Appetite 54, 186–190 (2010).

    PubMed  Google Scholar 

  120. Koutcherov, Y., Mai, J. K. & Paxinos, G. Hypothalamus of the human fetus. J. Chem. Neuroanat 26, 253–270 (2003).

    CAS  PubMed  Google Scholar 

  121. Stunkard, A. J., Berkowitz, R. I., Stallings, V. A. & Schoeller, D. A. Energy intake, not energy output, is a determinant of body size in infants. Am. J. Clin. Nutr. 69, 524–530 (1999).

    CAS  PubMed  Google Scholar 

  122. Stunkard, A. J., Berkowitz, R. I., Schoeller, D., Maislin, G. & Stallings, V. A. Predictors of body size in the first 2 y of life: a high-risk study of human obesity. Int. J. Obes. Relat. Metab. Disord. 28, 503–513 (2004).

    CAS  PubMed  Google Scholar 

  123. Hoppe, C., Molgaard, C., Thomsen, B. L., Juul, A. & Michaelsen, K. F. Protein intake at 9 mo of age is associated with body size but not with body fat in 10yold Danish children. Am. J. Clin. Nutr. 79, 494–501 (2004).

    CAS  PubMed  Google Scholar 

  124. Yeo, G. S. et al. A frameshift mutation in MC4R associated with dominantly inherited human obesity. Nat. Genet. 20, 111–112 (1998).

    CAS  PubMed  Google Scholar 

  125. Pimpin, L., Jebb, S., Johnson, L., Wardle, J. & Ambrosini, G. L. Dietary protein intake is associated with body mass index and weight up to 5 y of age in a prospective cohort of twins. Am. J. Clin. Nutr. 103, 389–397 (2016).

    CAS  PubMed  Google Scholar 

  126. Meng, S. Z., Ozawa, Y., Itoh, M. & Takashima, S. Developmental and age-related changes of dopamine transporter, and dopamine D1 and D2 receptors in human basal ganglia. Brain Res. 843, 136–144 (1999).

    CAS  PubMed  Google Scholar 

  127. Birch, L. L. & Fisher, J. O. Development of eating behaviors among children and adolescents. Pediatrics 101, 539–549 (1998).

    CAS  PubMed  Google Scholar 

  128. Ashcroft, J., Semmler, C., Carnell, S., van Jaarsveld, C. H. & Wardle, J. Continuity and stability of eating behaviour traits in children. Eur. J. Clin. Nutr. 62, 985–990 (2008).

    CAS  PubMed  Google Scholar 

  129. Shea, S., Stein, A. D., Basch, C. E., Contento, I. R. & Zybert, P. Variability and self-regulation of energy intake in young children in their everyday environment. Pediatrics 90, 542–546 (1992).

    CAS  PubMed  Google Scholar 

  130. Pimpin, L. et al. Dietary intake of young twins: nature or nurture? Am. J. Clin. Nutr. 98, 1326–1334 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Llewellyn, C. & Wardle, J. Behavioral susceptibility to obesity: Gene-environment interplay in the development of weight. Physiol. Behav. 152, 494–501 (2015).

    CAS  PubMed  Google Scholar 

  132. Fernandez-Twinn, D. S. & Ozanne, S. E. Early life nutrition and metabolic programming. Ann. NY Acad. Sci. 1212, 78–96 (2010).

    CAS  PubMed  Google Scholar 

  133. Poston, L. Developmental programming and diabetes - The human experience and insight from animal models. Best Pract. Res. Clin. Endocrinol. Metab. 24, 541–552 (2010).

    PubMed  Google Scholar 

  134. Li, M., Sloboda, D. M. & Vickers, M. H. Maternal obesity and developmental programming of metabolic disorders in offspring: evidence from animal models. Exp. Diabetes Res. 2011, 592408 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Ravelli, G. P., Stein, Z. A. & Susser, M. W. Obesity in young men after famine exposure in utero and early infancy. N. Engl. J. Med. 295, 349–353 (1976).

    CAS  PubMed  Google Scholar 

  136. Catalano, P. M. et al. Perinatal risk factors for childhood obesity and metabolic dysregulation. Am. J. Clin. Nutr. 90, 1303–1313 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Stettler, N., Kumanyika, S. K., Katz, S. H., Zemel, B. S. & Stallings, V. A. Rapid weight gain during infancy and obesity in young adulthood in a cohort of African Americans. Am. J. Clin. Nutr. 77, 1374–1378 (2003).

    CAS  PubMed  Google Scholar 

  138. Sachdev, H. S. et al. Anthropometric indicators of body composition in young adults: relation to size at birth and serial measurements of body mass index in childhood in the New Delhi birth cohort. Am. J. Clin. Nutr. 82, 456–466 (2005).

    CAS  PubMed  Google Scholar 

  139. Ong, K. K. & Loos, R. J. Rapid infancy weight gain and subsequent obesity: systematic reviews and hopeful suggestions. Acta Paediatr. 95, 904–908 (2006).

    PubMed  Google Scholar 

  140. Ekelund, U. et al. Association of weight gain in infancy and early childhood with metabolic risk in young adults. J. Clin. Endocrinol. Metab. 92, 98–103 (2007).

    CAS  PubMed  Google Scholar 

  141. Taveras, E. M. et al. Crossing growth percentiles in infancy and risk of obesity in childhood. Arch. Pediatr. Adolesc. Med. 165, 993–998 (2011).

    PubMed  Google Scholar 

  142. Beauchamp, G. K. & Mennella, J. A. Flavor perception in human infants: development and functional significance. Digestion 83 (Suppl. 1), 1–6 (2011).

    PubMed  PubMed Central  Google Scholar 

  143. Ayres, C. et al. Intrauterine growth restriction and the fetal programming of the hedonic response to sweet taste in newborn infants. Int. J. Pediatr. 2012, 657379 (2012).

    PubMed  PubMed Central  Google Scholar 

  144. Barbieri, M. A. et al. Severe intrauterine growth restriction is associated with higher spontaneous carbohydrate intake in young women. Pediatr. Res. 65, 215–220 (2009).

    CAS  PubMed  Google Scholar 

  145. Stafford, M. & Lucas, A. Possible association between low birth weight and later heart disease needs to be investigated further. BMJ 316, 1247–1248 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Stein, A. D., Rundle, A., Wada, N., Goldbohm, R. A. & Lumey, L. H. Associations of gestational exposure to famine with energy balance and macronutrient density of the diet at age 58 years differ according to the reference population used. J. Nutr. 139, 1555–1561 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Llewellyn, C. H., van Jaarsveld, C. H., Johnson, L., Carnell, S. & Wardle, J. Nature and nurture in infant appetite: analysis of the Gemini twin birth cohort. Am. J. Clin. Nutr. 91, 1172–1179 (2010).

    CAS  PubMed  Google Scholar 

  148. van Jaarsveld, C. H., Llewellyn, C. H., Johnson, L. & Wardle, J. Prospective associations between appetitive traits and weight gain in infancy. Am. J. Clin. Nutr. 94, 1562–1567 (2011).

    CAS  PubMed  Google Scholar 

  149. van Jaarsveld, C. H., Boniface, D., Llewellyn, C. H. & Wardle, J. Appetite and growth: a longitudinal sibling analysis. JAMA Pediatr. 168, 345–350 (2014).

    PubMed  Google Scholar 

  150. Quah, P. L. et al. Prospective associations of appetitive traits at 3 and 12 months of age with body mass index and weight gain in the first 2 years of life. BMC Pediatr. 15, 153 (2015).

    PubMed  PubMed Central  Google Scholar 

  151. van Deutekom, A. W., Chinapaw, M. J., Vrijkotte, T. G. & Gemke, R. J. The association of birth weight and postnatal growth with energy intake and eating behavior at 5 years of age - a birth cohort study. Int. J. Behav. Nutr. Phys. Act 13, 15 (2016).

    PubMed  PubMed Central  Google Scholar 

  152. Wright, C. M. et al. To what extent do weight gain and eating avidity during infancy predict later adiposity? Public Health Nutr. 15, 656–662 (2012).

    PubMed  Google Scholar 

  153. Carnell, S. & Wardle, J. Associations between multiple measures of parental feeding and children's adiposity in United Kingdom preschoolers. Obesity 15, 137–144 (2007).

    PubMed  Google Scholar 

  154. Fuemmeler, B. F., Lovelady, C. A., Zucker, N. L. & Ostbye, T. Parental obesity moderates the relationship between childhood appetitive traits and weight. Obesity 21, 815–823 (2013).

    PubMed  Google Scholar 

  155. Syrad, H. et al. Meal size is a critical driver of weight gain in early childhood. Sci. Rep. 6, 28368 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Silventoinen, K. et al. Genetic and environmental effects on body mass index from infancy to the onset of adulthood: an individual-based pooled analysis of 45 twin cohorts participating in the COllaborative project of Development of Anthropometrical measures in Twins (CODATwins) study. Am. J. Clin. Nutr. 104, 371–379 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Bedont, J. L., Newman, E. A. & Blackshaw, S. Patterning, specification, and differentiation in the developing hypothalamus. Wiley Interdiscip Rev. Dev. Biol. 4, 445–468 (2015).

    Google Scholar 

  158. Gugusheff, J. R., Ong, Z. Y. & Muhlhausler, B. S. The early origins of food preferences: targeting the critical windows of development. FASEB J. 29, 365–373 (2015).

    CAS  PubMed  Google Scholar 

  159. Pitman, K. A. & Borgland, S. L. Changes in muopioid receptor expression and function in the mesolimbic system after long-term access to a palatable diet. Pharmacol. Ther. 154, 110–119 (2015).

    CAS  PubMed  Google Scholar 

  160. Symonds, M. E. Brown adipose tissue growth and development. Scientifica 2013, 305763 (2013).

    PubMed  PubMed Central  Google Scholar 

  161. Young, J. B. & Shimano, Y. Effects of rearing temperature on body weight and abdominal fat in male and female rats. Am. J. Physiol. 274, R398–R405 (1998).

    CAS  PubMed  Google Scholar 

  162. Swoap, S. J. et al. Vagal tone dominates autonomic control of mouse heart rate at thermoneutrality. Am. J. Physiol. Heart Circ. Physiol. 294, H1581–H1588 (2008).

    CAS  PubMed  Google Scholar 

  163. Cannon, B. & Nedergaard, J. Nonshivering thermogenesis and its adequate measurement in metabolic studies. J. Exp. Biol. 214, 242–253 (2011).

    PubMed  Google Scholar 

  164. Xiao, C., Goldgof, M., Gavrilova, O. & Reitman, M. L. Anti-obesity and metabolic efficacy of the beta3adrenergic agonist, CL316243, in mice at thermoneutrality compared to 22 degrees C. Obes. (Silver Spring) 23, 1450–1459 (2015).

    CAS  Google Scholar 

  165. Stein, A. D. et al. Anthropometric measures in middle age after exposure to famine during gestation: evidence from the Dutch famine. Am. J. Clin. Nutr. 85, 869–876 (2007).

    CAS  PubMed  Google Scholar 

  166. da Silva, A. A. et al. Perinatal undernutrition stimulates seeking food reward. Int. J. Dev. Neurosci. 31, 334–341 (2013).

    PubMed  Google Scholar 

  167. Alves, M. B., Dalle Molle, R., Desai, M., Ross, M. G. & Silveira, P. P. Increased palatable food intake and response to food cues in intrauterine growth-restricted rats are related to tyrosine hydroxylase content in the orbitofrontal cortex and nucleus accumbens. Behav. Brain Res. 287, 73–81 (2015).

    CAS  PubMed  Google Scholar 

  168. de Melo Martimiano, P. H. et al. Perinatal malnutrition stimulates motivation through reward and enhances drd(1a) receptor expression in the ventral striatum of adult mice. Pharmacol. Biochem. Behav. 134, 106–114 (2015).

    PubMed  Google Scholar 

  169. Dalle Molle, R. et al. Intrauterine growth restriction increases the preference for palatable foods and affects sensitivity to food rewards in male and female adult rats. Brain Res. 1618, 41–49 (2015).

    CAS  PubMed  Google Scholar 

  170. Laureano, D. P. et al. Intrauterine growth restriction modifies the hedonic response to sweet taste in newborn pups - Role of the accumbal muopioid receptors. Neuroscience 322, 500–508 (2016).

    CAS  PubMed  Google Scholar 

  171. Thanos, P. K. et al. Suboptimal maternal diets alter mu opioid receptor and dopamine type 1 receptor binding but exert no effect on dopamine transporters in the offspring brain. Int. J. Dev. Neurosci. 64, 21–28 (2016).

    PubMed  PubMed Central  Google Scholar 

  172. Levin, B. E., Triscari, J., Marquet, E. & Sullivan, A. C. Dietary obesity and neonatal sympathectomy. I. Effects on body composition and brown adipose. Am. J. Physiol. 247, R979–R987 (1984).

    CAS  PubMed  Google Scholar 

  173. Plagemann, A. et al. Perinatal elevation of hypothalamic insulin, acquired malformation of hypothalamic galaninergic neurons, and syndrome xlike alterations in adulthood of neonatally overfed rats. Brain Res. 836, 146–155 (1999).

    CAS  PubMed  Google Scholar 

  174. Biddinger, J. E. & Fox, E. A. Meal parameters and vagal gastrointestinal afferents in mice that experienced early postnatal overnutrition. Physiol. Behav. 101, 184–191 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Velkoska, E., Cole, T. J. & Morris, M. J. Early dietary intervention: long-term effects on blood pressure, brain neuropeptide Y, and adiposity markers. Am. J. Physiol. Endocrinol. Metab. 288, E1236–E1243 (2005).

    CAS  PubMed  Google Scholar 

  176. Lopez, M. et al. Perinatal overfeeding in rats results in increased levels of plasma leptin but unchanged cerebrospinal leptin in adulthood. Int. J. Obes. 31, 371–377 (2007).

    CAS  Google Scholar 

  177. Zhang, L. N., Morgan, D. G., Clapham, J. C. & Speakman, J. R. Factors predicting nongenetic variability in body weight gain induced by a high-fat diet in inbred C57BL/6J mice. Obesity 20, 1179–1188 (2012).

    CAS  PubMed  Google Scholar 

  178. Plagemann, A. et al. Observations on the orexigenic hypothalamic neuropeptide Ysystem in neonatally overfed weanling rats. J. Neuroendocrinol. 11, 541–546 (1999).

    CAS  PubMed  Google Scholar 

  179. Plagemann, A. et al. Hypothalamic neuropeptide Y levels in weaning offspring of low-protein malnourished mother rats. Neuropeptides 34, 1–6 (2000).

    CAS  PubMed  Google Scholar 

  180. Yura, S. et al. Role of premature leptin surge in obesity resulting from intrauterine undernutrition. Cell Metab. 1, 371–378 (2005).

    CAS  PubMed  Google Scholar 

  181. Patterson, C. M. et al. Large litter rearing enhances leptin sensitivity and protects selectively bred diet-induced obese rats from becoming obese. Endocrinology 151, 4270–4279 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Ong, Z. Y. & Muhlhausler, B. S. Maternal “junk-food” feeding of rat dams alters food choices and development of the mesolimbic reward pathway in the offspring. FASEB J. 25, 2167–2179 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Lagisz, M. et al. Little appetite for obesity: meta-analysis of the effects of maternal obesogenic diets on offspring food intake and body mass in rodents. Int. J. Obes. 39, 1669–1678 (2015).

    CAS  Google Scholar 

  184. Ong, Z. Y. & Muhlhausler, B. S. Consuming a low-fat diet from weaning to adulthood reverses the programming of food preferences in male, but not in female, offspring of 'junk food'-fed rat dams. Acta Physiol. 210, 127–141 (2014).

    CAS  Google Scholar 

  185. Vucetic, Z., Kimmel, J., Totoki, K., Hollenbeck, E. & Reyes, T. M. Maternal high-fat diet alters methylation and gene expression of dopamine and opioid-related genes. Endocrinology 151, 4756–4764 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Gugusheff, J. R. et al. Sex and age-dependent effects of a maternal junk food diet on the muopioid receptor in rat offspring. Behav. Brain Res. 301, 124–131 (2016).

    CAS  PubMed  Google Scholar 

  187. Grissom, N. M. et al. Obesity at conception programs the opioid system in the offspring brain. Neuropsychopharmacology 39, 801–810 (2014).

    CAS  PubMed  Google Scholar 

  188. Paradis, J. et al. Perinatal western diet consumption leads to profound plasticity and GABAergic phenotype changes within hypothalamus and reward pathway from birth to sexual maturity in rat. Front. Endocrinol. 8, 216 (2017).

    Google Scholar 

  189. Carlin, J., George, R. & Reyes, T. M. Methyl donor supplementation blocks the adverse effects of maternal high fat diet on offspring physiology. PLOS ONE 8, e63549 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Gugusheff, J. R., Ong, Z. Y. & Muhlhausler, B. S. Naloxone treatment alters gene expression in the mesolimbic reward system in 'junk food' exposed offspring in a sex-specific manner but does not affect food preferences in adulthood. Physiol. Behav. 133, 14–21 (2014).

    CAS  PubMed  Google Scholar 

  191. Bayol, S. A., Simbi, B. H. & Stickland, N. C. A maternal cafeteria diet during gestation and lactation promotes adiposity and impairs skeletal muscle development and metabolism in rat offspring at weaning. J. Physiol. 567, 951–961 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Gorski, J. N., Dunn-Meynell, A. A., Hartman, T. G. & Levin, B. E. Postnatal environment overrides genetic and prenatal factors influencing offspring obesity and insulin resistance. Am. J. Physiol. Regul. Integr. Comp. Physiol. 291, R768–R778 (2006).

    CAS  PubMed  Google Scholar 

  193. Gugusheff, J. R., Vithayathil, M., Ong, Z. Y. & Muhlhausler, B. S. The effects of prenatal exposure to a 'junk food' diet on offspring food preferences and fat deposition can be mitigated by improved nutrition during lactation. J. Dev. Origins Health Dis. 4, 348–357 (2013).

    CAS  Google Scholar 

  194. Vogt, M. C. et al. Neonatal insulin action impairs hypothalamic neurocircuit formation in response to maternal high-fat feeding. Cell 64, 21–28 (2014).

    Google Scholar 

  195. Gillman, M. W. The first months of life: a critical period for development of obesity. Am. J. Clin. Nutr. 87, 1587–1589 (2008).

    CAS  PubMed  Google Scholar 

  196. Baker, M. S., Li, G., Kohorst, J. J. & Waterland, R. A. Fetal growth restriction promotes physical inactivity and obesity in female mice. Int. J. Obes. 39, 98–104 (2015).

    CAS  Google Scholar 

  197. Remmers, F., Verhagen, L. A., Adan, R. A. & Delemarre- van de Waal, H. A. Hypothalamic neuropeptide expression of juvenile and middle-aged rats after early postnatal food restriction. Endocrinology 149, 3617–3625 (2008).

    CAS  PubMed  Google Scholar 

  198. Carmody, J. S., Wan, P., Accili, D., Zeltser, L. M. & Leibel, R. L. Respective contributions of maternal insulin resistance and diet to metabolic and hypothalamic phenotypes of progeny. Obesity 19, 492–499 (2010).

    PubMed  Google Scholar 

  199. Bouret, S. G. et al. Hypothalamic neural projections are permanently disrupted in diet-induced obese rats. Cell Metab. 7, 179–185 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Glavas, M. M. et al. Early overnutrition results in early-onset arcuate leptin resistance and increased sensitivity to high-fat diet. Endocrinology 151, 1598–1610 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Kirk, S. L. et al. Maternal obesity induced by diet in rats permanently influences central processes regulating food intake in offspring. PLOS ONE 4, e5870 (2009).

    PubMed  PubMed Central  Google Scholar 

  202. Steculorum, S. M. & Bouret, S. G. Maternal diabetes compromises the organization of hypothalamic feeding circuits and impairs leptin sensitivity in offspring. Endocrinology 152, 4171–4179 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Nakashima, Y., Tsukita, Y. & Yokoyama, M. Preferential fat intake of pups nursed by dams fed low fat diet during pregnancy and lactation is higher than that of pups nursed by dams fed control diet and high fat diet. J. Nutr. Sci. Vitaminol. 54, 215–222 (2008).

    CAS  PubMed  Google Scholar 

  204. Denis, R. G. et al. Palatability can drive feeding independent of AgRP neurons. Cell Metab. 22, 646–657 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Dietrich, M. O. et al. AgRP neurons regulate development of dopamine neuronal plasticity and nonfood-associated behaviors. Nat. Neurosci. 5, 1108–1110 (2012).

    Google Scholar 

  206. Luquet, S., Perez, F. A., Hnasko, T. S. & Palmiter, R. D. NPY/AgRP neurons are essential for feeding in adult mice but can be ablated in neonates. Science 310, 683–685 (2005).

    CAS  PubMed  Google Scholar 

  207. Naef, L. et al. Maternal high-fat intake alters presynaptic regulation of dopamine in the nucleus accumbens and increases motivation for fat rewards in the offspring. Neuroscience 176, 225–236 (2011).

    CAS  PubMed  Google Scholar 

  208. Chuang, J. C. et al. Ghrelin mediates stress-induced food-reward behavior in mice. J. Clin. Invest. 121, 2684–2692 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Chung, K. et al. Structural and molecular interrogation of intact biological systems. Nature 497, 332–337 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Ziv, Y. et al. Long-term dynamics of CA1 hippocampal place codes. Nat. Neurosci. 16, 264–266 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Gunaydin, L. A. et al. Natural neural projection dynamics underlying social behavior. Cell 157, 1535–1551 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded by the US National Institutes of Health (R01 DK089038), the Klarman Family Foundation for Eating Disorders Research and the American Diabetes Association (117IBS208).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lori M. Zeltser.

Ethics declarations

Competing interests

The author declares no competing financial interests.

PowerPoint slides

Glossary

Dutch Hunger Winter

A famine that occurred in the Netherlands near the end of World War II. Epidemiological studies of children of pregnant women exposed to this famine provided some of the earliest evidence of maternal programming of disease risk.

Emotional eating

Eating to satisfy emotional needs rather than to satisfy hunger or homeostatic needs; a classic example is eating behaviour in response to stress.

Intrauterine growth restriction

(IUGR). A condition in which a baby is smaller than expected for its gestational age because it is not growing at the normal rate inside the uterus.

Maternal undernutrition

Insufficient food intake during pregnancy and/or lactation, usually resulting in growth restriction.

Metabolic status

The sum of short-term energy availability and long-term energy stores; this information is transmitted by a combination of nutrient (such as glucose), hormonal (such as insulin) and neural (such as vagus-mediated gastric distension or AGRP neuron) signals.

Pre-gravid

The time period before pregnancy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeltser, L. Feeding circuit development and early-life influences on future feeding behaviour. Nat Rev Neurosci 19, 302–316 (2018). https://doi.org/10.1038/nrn.2018.23

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn.2018.23

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing