Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Surviving threats: neural circuit and computational implications of a new taxonomy of defensive behaviour

Abstract

Research on defensive behaviour in mammals has in recent years focused on elicited reactions; however, organisms also make active choices when responding to danger. We propose a hierarchical taxonomy of defensive behaviour on the basis of known psychological processes. Included are three categories of reactions (reflexes, fixed reactions and habits) and three categories of goal-directed actions (direct action–outcome behaviours and actions based on implicit or explicit forecasting of outcomes). We then use this taxonomy to guide a summary of findings regarding the underlying neural circuits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Neural circuits underlying innate reactions and instrumental actions and habits.
Figure 2: Switching between reactive and active coping during active avoidance learning.
Figure 3: Proposed circuits for deliberative defensive actions.

Similar content being viewed by others

References

  1. Emerson, R. W. in The Selected Lectures of Ralph Waldo Emerson (eds Bosco, R. A. & Myerson, J.) 301 (Univ. of Georgia Press, 1863).

    Google Scholar 

  2. Schneirla, T. C. in Nebraska Symposium on Motivation (ed. Jones, M. R.) 1–42 (Univ. of Nebraska Press, 1959).

    Google Scholar 

  3. LeDoux, J. Rethinking the emotional brain. Neuron 73, 653–676 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. LeDoux, J. E. Coming to terms with fear. Proc. Natl Acad. Sci. USA 111, 2871–2878 (2014). This article provides a summary of the issues related to describing defensive behaviour in terms of fear versus threat processing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mobbs, D., Hagan, C. C., Dalgleish, T., Silston, B. & Prevost, C. The ecology of human fear: survival optimization and the nervous system. Front. Neurosci. 9, 55 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Emery, N. J. & Amaral, D. G. in in Cognitive Neuroscience of Emotion Series in Affective Science. (eds Lane, R. D. & Nadel, L.) 156–191 (Oxford Univ. Press, 2000).

    Google Scholar 

  7. Adolphs, R. The social brain: neural basis of social knowledge. Annu. Rev. Psychol. 60, 693–716 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  8. LeDoux, J. E. Anxious: Using the Brain to Understand and Treat Fear and Anxiety. (Viking, 2015).

    Google Scholar 

  9. Grupe, D. W. & Nitschke, J. B. Uncertainty and anticipation in anxiety: an integrated neurobiological and psychological perspective. Nat. Rev. Neurosci. 14, 488–501 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Balleine, B. W. & Dickinson, A. Goal-directed instrumental action: contingency and incentive learning and their cortical substrates. Neuropharmacology 37, 407–419 (1998). This paper presents a clear statement of the difference between action and habit, and their neural substrates, in appetitive conditioning.

    Article  CAS  PubMed  Google Scholar 

  11. Bach, D. R. & Dayan, P. Algorithms for survival: a comparative perspective on emotions. Nat. Rev. Neurosci. 18, 311–319 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. Daw, N. D., Niv, Y. & Dayan, P. Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nat. Neurosci. 8, 1704–1711 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Dickinson, A. Action and habits: the development of behavioural autonomy. Phil. Trans. R. Soc. B Biol Sci. 308, 67–78 (1985).

    Article  Google Scholar 

  14. Dickinson, A. in Animal Learning and Cognition (ed. Mackintosh, N. J.) 45–79 (Academic Press, 1994).

    Book  Google Scholar 

  15. Mobbs, D. & Kim, J. J. Neuroethological studies of fear, anxiety, and risky decision-making in rodents and humans. Curr. Opin. Behav. Sci. 5, 8–15 (2015). This paper describes defensive behaviour in a neuroethological context.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Yeomans, J. S., Li, L., Scott, B. W. & Frankland, P. W. Tactile, acoustic and vestibular systems sum to elicit the startle reflex. Neurosci. Biobehav Rev. 26, 1–11 (2002).

    Article  PubMed  Google Scholar 

  17. Leaton, R. N. & Cranney, J. Potentiation of the acoustic startle response by a conditioned stimulus paired with acoustic startle stimulus in rats. J. Exp. Psychol. Anim. Behav. Process 16, 279–287 (1990).

    Article  CAS  PubMed  Google Scholar 

  18. Brown, J. S., Kalish, H. I. & Farber, I. E. Conditioned fear as revealed by magnitude of startle response to an auditory stimulus. J. Exp. Psych. 41, 317–328 (1951).

    Article  CAS  Google Scholar 

  19. Davis, M. in in The Amygdala: Neurobiological Aspects of Emotion, Memory, and Mental Dysfunction (ed. Aggleton, J. P.) 255–306 (Wiley-Liss, 1992).

    Google Scholar 

  20. Tinbergen, N. The Study of Instinct (Oxford Univ. Press, 1951).

    Google Scholar 

  21. Bolles, R. C. & Fanselow, M. S. A perceptual-defensive-recuperative model of fear and pain. Behav. Brain Sci. 3, 291–323 (1980).

    Article  Google Scholar 

  22. Blanchard, R. J. & Blanchard, D. C. Crouching as an index of fear. J. Comp. Physiol. Psych 67, 370–375 (1969).

    Article  CAS  Google Scholar 

  23. Gross, C. T. & Canteras, N. S. The many paths to fear. Nat. Rev. Neurosci. 13, 651–658 (2012). This is a cogent review comparing circuits underlying unlearned and learned defensive responses.

    Article  CAS  PubMed  Google Scholar 

  24. Silva, B. A., Gross, C. T. & Graff, J. The neural circuits of innate fear: detection, integration, action, and memorization. Learn. Mem. 23, 544–555 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rosen, J. B., Asok, A. & Chakraborty, T. The smell of fear: innate threat of 2,5-dihydro-2,4,5-trimethylthiazoline, a single molecule component of a predator odor. Front. Neurosci. 9, 292 (2015).

    PubMed  PubMed Central  Google Scholar 

  26. Darwin, C. The Expression of the Emotions in Man and Animals. (Fontana Press, 1872).

    Book  Google Scholar 

  27. Eibl-Eibesfeldt, I. & Sutterlin, C. in Fear and Defense (eds Brain, P. F., Parmigiani, S., Blanchard, R. & Mainardi, D.) 381–408 (Harwood, 1990).

    Google Scholar 

  28. Ekman, P. Facial expression and emotion. Am. Psychol. 48, 384–392 (1993).

    Article  CAS  PubMed  Google Scholar 

  29. Ploog, D. Neurobiology of primate audio-vocal behavior. Brain Res. 228, 35–61 (1981).

    Article  CAS  PubMed  Google Scholar 

  30. Hofer, M. A. Multiple regulators of ultrasonic vocalization in the infant rat. Psychoneuroendocrinology 21, 203–217 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. Blanchard, D. C., Griebel, G. & Blanchard, R. J. Mouse defensive behaviors: pharmacological and behavioral assays for anxiety and panic. Neurosci. Biobehav. Rev. 25, 205–218 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Owings, D. H., Rowe, M. P. & Rundus, A. S. The rattling sound of rattlesnakes (Crotalus viridis) as a communicative resource for ground squirrels (Spermophilus beecheyi) and burrowing owls (Athene cunicularia). J. Comp. Psychol. 116, 197–205 (2002).

    Article  PubMed  Google Scholar 

  33. Fanselow, M. S. & Lester, L. S. in Evolution and Learning (eds Bolles, R. C. & Beecher, M. D.) 185–211 (Erlbaum, 1988).

    Google Scholar 

  34. Bouton, M. E. & Bolles, R. C. Contextual control of the extinction of conditioned fear. Learn. Motiv. 10, 445–466 (1979).

    Article  Google Scholar 

  35. LeDoux, J. E. in Handbook of Cognitive Neuroscience (ed. Gazzaniga, M. S.) 357–368 (Plenum Publishing Corp., 1984).

    Book  Google Scholar 

  36. Fadok, J. P. et al. A competitive inhibitory circuit for selection of active and passive fear responses. Nature 542, 96–100 (2017).

    Article  CAS  PubMed  Google Scholar 

  37. LeDoux, J. E. The Emotional Brain (Simon and Schuster, 1996).

    Google Scholar 

  38. Janak, P. H. & Tye, K. M. From circuits to behaviour in the amygdala. Nature 517, 284–292 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hawkins, R. D. & Byrne, J. H. Associative learning in invertebrates. Cold Spring Harb. Perspect. Biol. 7, a021709 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Anderson, D. J. & Adolphs, R. A. Framework for studying emotions across species. Cell 157, 187–200 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Anderson, D. J. Circuit modules linking internal states and social behaviour in flies and mice. Nat. Rev. Neurosci. 17, 692–704 (2016).

    Article  CAS  PubMed  Google Scholar 

  42. Thorndike, E. L. The Elements of Psychology. (The Mason-Henry Press, 1905).

    Book  Google Scholar 

  43. Skinner, B. F. The Behavior of Organisms: An Experimental Analysis. (Appleton-Century-Crofts, 1938).

    Google Scholar 

  44. Hull, C. L. Principles of Behavior. (Appleton-Century-Crofts, 1943).

    Google Scholar 

  45. Dickinson, A. Associative learning and animal cognition. Phil. Trans. R. Soc. B Biol Sci. 367, 2733–2742 (2012).

    Article  Google Scholar 

  46. Herrnstein, R. J. & Hineline, P. N. Negative reinforcement as shock-frequency reduction. J. Exp. Anal. Behav. 9, 421–430 (1966).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Miller, N. E. in Handbook of Experimental Psychology (ed. Stevens, S. S.) 435–472 (Wiley, 1951). This article provides a classic description of the two-factor theory of fear in avoidance.

    Google Scholar 

  48. Overmier, J. B. & Brackbill, R. M. On the independence of stimulus evocation of fear and fear evocation of responses. Behav. Res. Ther. 15, 51–56 (1977).

    Article  CAS  PubMed  Google Scholar 

  49. Boeke, E. A., Moscarello, J. M., LeDoux, J. E., Phelps, E. A. & Hartley, C. A. Active avoidance: neural mechanisms and attenuation of Pavlovian conditioned responding. J. Neurosci. 37, 4808–4818 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gillan, C. M. et al. Disruption in the balance between goal-directed behavior and habit learning in obsessive-compulsive disorder. Am. J. Psychiatry 168, 718–726 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Dymond, S. & Roche, B. A contemporary behavior analysis of anxiety and avoidance. Behav. Analyst 32, 7–27 (2009).

    Article  Google Scholar 

  52. Delgado, M. R., Jou, R. L., LeDoux, J. E. & Phelps, E. A. Avoiding negative outcomes: tracking the mechanisms of avoidance learning in humans during fear conditioning. Front. Behav. Neurosci. 3, 33 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Schlund, M. W., Hudgins, C. D., Magee, S. & Dymond, S. Neuroimaging the temporal dynamics of human avoidance to sustained threat. Behav. Brain Res. 257, 148–155 (2013).

    Article  PubMed  Google Scholar 

  54. Collins, K. A., Mendelsohn, A., Cain, C. K. & Schiller, D. Taking action in the face of threat: neural synchronization predicts adaptive coping. J. Neurosci. 34, 14733–14738 (2014). This study showed that synchronization between the amygdala, striatum and medial prefrontal cortex predicts successful active coping with threats in humans.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Burguiere, E., Monteiro, P., Mallet, L., Feng, G. & Graybiel, A. M. Striatal circuits, habits, and implications for obsessive-compulsive disorder. Curr. Opin. Neurobiol. 30, 59–65 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. Packard, M. G. & Knowlton, B. J. Learning and memory functions of the basal ganglia. Annu. Rev. Neurosci. 25, 563–593 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Adams, C. D. & Dickinson, A. Instrumental responding following reinforcer devaluation. Quart. J. Exp. Psychol. Section B 33, 109–121 (1981).

    Article  Google Scholar 

  58. Adams, C. D. Variations in the sensitivity of instrumental responding to reinforcer devaluation. Quart. J. Exp. Psychol. Section B 34, 77–98 (1982).

    Article  Google Scholar 

  59. Dezfouli, A. & Balleine, B. W. Habits, action sequences and reinforcement learning. Eur. J. Neurosci. 35, 1036–1051 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Everitt, B. J. & Robbins, T. W. Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat. Neurosci. 8, 1481–1489 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Everitt, B. J. & Robbins, T. W. From the ventral to the dorsal striatum: devolving views of their roles in drug addiction. Neurosci. Biobehav. Rev. 37, 1946–1954 (2013).

    Article  PubMed  Google Scholar 

  62. Decker, J. H., Otto, A. R., Daw, N. D. & Hartley, C. A. From creatures of habit to goal-directed learners: tracking the developmental emergence of model-based reinforcement learning. Psychol. Sci. 27, 848–858 (2016). This paper presents a summary of the model-based versus model-free computational approach to actions and habits in humans.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Tolman, E. C. Cognitive maps in rats and men. Psychol. Rev. 55, 189–208 (1948).

    Article  CAS  PubMed  Google Scholar 

  64. Packard, M. G. & McGaugh, J. L. Inactivation of hippocampus or caudate nucleus with lidocaine differentially affects expression of place and response learning. Neurobiol. Learn. Mem. 65, 65–72 (1996).

    Article  CAS  PubMed  Google Scholar 

  65. Gibson, B. M. & Shettleworth, S. J. Place versus response learning revisited: tests of blocking on the radial maze. Behav. Neurosci. 119, 567–586 (2005).

    Article  PubMed  Google Scholar 

  66. Yin, H. H., Knowlton, B. J. & Balleine, B. W. Inactivation of dorsolateral striatum enhances sensitivity to changes in the action-outcome contingency in instrumental conditioning. Behav. Brain Res. 166, 189–196 (2006).

    Article  PubMed  Google Scholar 

  67. Gillan, C. M., Kosinski, M., Whelan, R., Phelps, E. A. & Daw, N. D. Characterizing a psychiatric symptom dimension related to deficits in goal-directed control. eLife 5, e11305 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Mowrer, O. H. Two-factor learning theory: summary and comment. Psychol. Rev. 58, 350–354 (1951).

    Article  CAS  PubMed  Google Scholar 

  69. Rescorla, R. A. & Solomon, R. L. Two process learning theory: relationships between Pavlovian conditioning and instrumental learning. Psych. Rev. 74, 151–182 (1967).

    Article  CAS  Google Scholar 

  70. Krypotos, A. M., Effting, M., Kindt, M. & Beckers, T. Avoidance learning: a review of theoretical models and recent developments. Front. Behav. Neurosci. 9, 189 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Lengyel, M. & Dayan, P. in in Advances in Neural Information Processing Systems 20 (eds Platt, J. C., Koller, D., Singer, Y. & Roweis, S.) 889–896 (MIT Press, 2007).

    Google Scholar 

  72. Gershman, S. J. & Daw, N. D. Reinforcement learning and episodic memory in humans and animals: an integrative framework. Annu. Rev. Psychol. 68, 101–128 (2017).

    Article  PubMed  Google Scholar 

  73. Kumaran, D., Summerfield, J. J., Hassabis, D. & Maguire, E. A. Tracking the emergence of conceptual knowledge during human decision making. Neuron 63, 889–901 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Balleine, B. W. & Dickinson, A. in Consciousness and Human Identity (ed. Cornwall, J.) 57–85 (Oxford Univ. Press, 1998).

    Google Scholar 

  75. Wimmer, G. E. & Shohamy, D. Preference by association: how memory mechanisms in the hippocampus bias decisions. Science 338, 270–273 (2012).

    Article  CAS  PubMed  Google Scholar 

  76. Shohamy, D. & Wagner, A. D. Integrating memories in the human brain: hippocampal-midbrain encoding of overlapping events. Neuron 60, 378–389 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. LeDoux, J. E. & Brown, R. A higher-order theory of emotional consciousness. Proc. Natl Acad. Sci. USA 114, E2016–E2025 (2017). This paper proposes an extension of the higher-order theory of consciousness to emotional consciousness.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Baars, B. J. Global workspace theory of consciousness: toward a cognitive neuroscience of human experience. Prog. Brain Res. 150, 45–53 (2005).

    Article  PubMed  Google Scholar 

  79. Baddeley, A. D. Working memory, thought and action. (Oxford Univ. Press, 2007).

    Book  Google Scholar 

  80. Frith, C., Perry, R. & Lumer, E. The neural correlates of conscious experience: an experimental framework. Trends Cogn. Sci. 3, 105–114 (1999).

    Article  CAS  PubMed  Google Scholar 

  81. Shallice, T. in in Consciousness in contemporary science (eds Marcel, A. & Bisiach, E.) 305–333 (Oxford Univ. Press, 1988).

    Google Scholar 

  82. Maia, T. V. & Cleeremans, A. Consciousness: converging insights from connectionist modeling and neuroscience. Trends Cogn. Sci. 9, 397–404 (2005).

    Article  PubMed  Google Scholar 

  83. Soto, D. & Silvanto, J. Reappraising the relationship between working memory and conscious awareness. Trends Cogn. Sci. 18, 520–525 (2014).

    Article  PubMed  Google Scholar 

  84. Bergstrom, F. & Eriksson, J. Maintenance of non-consciously presented information engages the prefrontal cortex. Front. Hum. Neurosci. 8, 938 (2014). This article presents evidence demonstrating nonconscious aspects of working memory.

    PubMed  PubMed Central  Google Scholar 

  85. Pan, Y., Lin, B., Zhao, Y. & Soto, D. Working memory biasing of visual perception without awareness. Atten. Percept. Psychophys. 76, 2051–2062 (2014).

    Article  PubMed  Google Scholar 

  86. Eriksson, J., Vogel, E. K., Lansner, A., Bergstrom, F. & Nyberg, L. Neurocognitive architecture of working memory. Neuron 88, 33–46 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Jacob, J., Jacobs, C. & Silvanto, J. Attention, working memory, and phenomenal experience of WM content: memory levels determined by different types of top-down modulation. Front. Psychol. 6, 1603 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Trubutschek, D. et al. A theory of working memory without consciousness or sustained activity. eLife 6, e23871 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Heyes, C. Blackboxing: social learning strategies and cultural evolution. Phil. Trans. R. Soc. B Biol Sci. 371, 20150369 (2016).

    Article  Google Scholar 

  90. Clayton, N. S., Griffiths, D. P., Emery, N. J. & Dickinson, A. Elements of episodic-like memory in animals. Phil. Trans. R. Soc. B Biol Sci. 356, 1483–1491 (2001).

    Article  CAS  Google Scholar 

  91. Kornell, N. Where is the “meta” in animal metacognition? J. Comp. Psychol. 128, 143–149 (2014).

    Article  PubMed  Google Scholar 

  92. Smith, J. D., Couchman, J. J. & Beran, M. J. The highs and lows of theoretical interpretation in animal-metacognition research. Phil. Trans. R. Soc. B Biol Sci. 367, 1297–1309 (2012).

    Article  Google Scholar 

  93. Smith, J. D., Couchman, J. J. & Beran, M. J. Animal metacognition: a tale of two comparative psychologies. J. Comp. Psychol. 128, 115–131 (2014).

    Article  PubMed  Google Scholar 

  94. Raby, C. R., Alexis, D. M., Dickinson, A. & Clayton, N. S. Planning for the future by western scrub-jays. Nature 445, 919–921 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Shettleworth, S. J. Clever animals and killjoy explanations in comparative psychology. Trends Cogn. Sci. 14, 477–481 (2010).

    Article  PubMed  Google Scholar 

  96. Suddendorf, T. & Corballis, M. C. Behavioural evidence for mental time travel in nonhuman animals. Behav. Brain Res. 215, 292–298 (2010).

    Article  PubMed  Google Scholar 

  97. Heyes, C. Animal mindreading: what's the problem? Psychon Bull. Rev. 22, 313–327 (2015).

    Article  PubMed  Google Scholar 

  98. Lashley, K. in Cerebral Mechanisms in Behavior (ed. Jeffers, L. A.) (Wiley, 1950).

    Google Scholar 

  99. Gomez-Nieto, R. et al. Origin and function of short-latency inputs to the neural substrates underlying the acoustic startle reflex. Front. Neurosci. 8, 216 (2014).

    PubMed  PubMed Central  Google Scholar 

  100. Davis, M., Gendelman, D. S., Tischler, M. D. & Gendelman, P. M. A primary acoustic startle circuit: lesion and stimulation studies. J. Neurosci. 2, 791–805 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Yeomans, J. S. & Frankland, P. W. The acoustic startle reflex: neurons and connections. Brain Res. Brain Res. Rev. 21, 301–314 (1995).

    Article  CAS  PubMed  Google Scholar 

  102. Jordan, W. P. & Leaton, R. N. Startle habituation in rats after lesions in the brachium of the inferior colliculus. Physiol. Behav. 28, 253–258 (1982).

    Article  CAS  PubMed  Google Scholar 

  103. Blanchard, D. C. & Blanchard, R. J. Innate and conditioned reactions to threat in rats with amygdaloid lesions. J. Comp. Physiol. Psych. 81, 281–290 (1972).

    Article  CAS  Google Scholar 

  104. Blanchard, R. J., Flannelly, K. J. & Blanchard, D. C. Defensive behavior of laboratory and wild Rattus norvegicus. J. Comp. Psychol. 100, 101–107 (1986).

    Article  CAS  PubMed  Google Scholar 

  105. Rosen, J. B., Pagani, J. H., Rolla, K. L. & Davis, C. Analysis of behavioral constraints and the neuroanatomy of fear to the predator odor trimethylthiazoline: a model for animal phobias. Neurosci. Biobehav. Rev. 32, 1267–1276 (2008).

    Article  CAS  PubMed  Google Scholar 

  106. Bouton, M. E. & Bolles, R. C. Conditioned fear assessed by freezing and by the suppression of three different baselines. Animal Learn. Behav. 8, 429–434 (1980).

    Article  Google Scholar 

  107. Kalin, N. H., Shelton, S. E. & Davidson, R. J. The role of the central nucleus of the amygdala in mediating fear and anxiety in the primate. J. Neurosci. 24, 5506–5515 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Fanselow, M. S. & Poulos, A. M. The neuroscience of mammalian associative learning. Annu. Rev. Psychol. 56, 207–234 (2005).

    Article  PubMed  Google Scholar 

  109. Johansen, J. P., Cain, C. K., Ostroff, L. E. & LeDoux, J. E. Molecular mechanisms of fear learning and memory. Cell 147, 509–524 (2011). This paper is a summary of the circuit, cellular and molecular mechanisms of Pavlovian aversive conditioning.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Pitkänen, A., Savander, V. & LeDoux, J. E. Organization of intra-amygdaloid circuitries in the rat: an emerging framework for understanding functions of the amygdala. Trends Neurosci. 20, 517–523 (1997).

    Article  PubMed  Google Scholar 

  111. Amaral, D. G., Price, J. L., Pitkänen, A. & Carmichael, S. T. in in The Amygdala: Neurobiological Aspects of Emotion, Memory, and Mental Dysfunction (ed. Aggleton, J. P.) 1–66 (Wiley-Liss, 1992).

    Google Scholar 

  112. Sah, P., Westbrook, R. F. & Luthi, A. Fear conditioning and long-term potentiation in the amygdala: what really is the connection? Ann. NY Acad. Sci. 1129, 88–95 (2008).

    Article  CAS  PubMed  Google Scholar 

  113. Sweatt, J. D. Neural plasticity and behavior — sixty years of conceptual advances. J. Neurochem. 139 (Suppl. 2), 179–199 (2016).

    Article  CAS  PubMed  Google Scholar 

  114. Keifer, O. P. Jr., Hurt, R. C., Ressler, K. J. & Marvar, P. J. The physiology of fear: reconceptualizing the role of the central amygdala in fear learning. Physiology 30, 389–4014 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Bocchio, M., Nabavi, S. & Capogna, M. Synaptic plasticity, engrams, and network oscillations in amygdala circuits for storage and retrieval of emotional memories. Neuron 94, 731–743 (2017).

    Article  CAS  PubMed  Google Scholar 

  116. Maren, S. Synaptic mechanisms of associative memory in the amygdala. Neuron 47, 783–786 (2005).

    Article  CAS  PubMed  Google Scholar 

  117. Ciocchi, S. et al. Encoding of conditioned fear in central amygdala inhibitory circuits. Nature 468, 277–282 (2010).

    Article  CAS  PubMed  Google Scholar 

  118. Haubensak, W. et al. Genetic dissection of an amygdala microcircuit that gates conditioned fear. Nature 468, 270–276 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Grundemann, J. & Luthi, A. Ensemble coding in amygdala circuits for associative learning. Curr. Opin. Neurobiol. 35, 200–206 (2015).

    Article  CAS  PubMed  Google Scholar 

  120. Smith, Y. & Pare, D. Intra-amygdaloid projections of the lateral nucleus in the cat: PHA-L anterograde labeling combined with postembedding GABA and glutamate immunocytochemistry. J. Comp. Neurol. 342, 232–248 (1994).

    Article  CAS  PubMed  Google Scholar 

  121. Li, H. et al. Experience-dependent modification of a central amygdala fear circuit. Nat. Neurosci. 16, 332–339 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Penzo, M. A., Robert, V. & Li, B. Fear conditioning potentiates synaptic transmission onto long-range projection neurons in the lateral subdivision of central amygdala. J. Neurosci. 34, 2432–2437 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Penzo, M. A. et al. The paraventricular thalamus controls a central amygdala fear circuit. Nature 519, 455–459 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Yu, K., Garcia da Silva, P., Albeanu, D. F. & Li, B. Central amygdala somatostatin neurons gate passive and active defensive behaviors. J. Neurosci. 36, 6488–6496 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Sanford, C. A. et al. A central amygdala CRF circuit facilitates learning about weak threats. Neuron 93, 164–178 (2017).

    Article  CAS  PubMed  Google Scholar 

  126. LeDoux, J. E., Iwata, J., Cicchetti, P. & Reis, D. J. Different projections of the central amygdaloid nucleus mediate autonomic and behavioral correlates of conditioned fear. J. Neurosci. 8, 2517–2529 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Fanselow, M. S., DeCola, J. P., De Oca, B. M. & Landeira-Fernandes, J. Ventral and dorsolateral regions of the midbrain periacqueductal gray (PAG) control different stages of defensive behavior: dorsolateral PAG lesions enhance the defensive freezing produced by massed and immediate shock. Aggressive Behav. 21, 63–77 (1995).

    Article  Google Scholar 

  128. Yu, K. et al. The central amygdala controls learning in the lateral amygdala. Nat. Neurosci. 20, 1680–1685 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Shackman, A. J. & Fox, A. S. Contributions of the central extended amygdala to fear and anxiety. J. Neurosci. 36, 8050–8063 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Fox, A. S., Oler, J. A., Tromp, D. P., Fudge, J. L. & Kalin, N. H. Extending the amygdala in theories of threat processing. Trends Neurosci. 38, 319–329 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Maren, S., Phan, K. L. & Liberzon, I. The contextual brain: implications for fear conditioning, extinction and psychopathology. Nat. Rev. Neurosci. 14, 417–428 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Giustino, T. F. & Maren, S. The role of the medial prefrontal cortex in the conditioning and extinction of fear. Front. Behav. Neurosci. 9, 298 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Do Monte, F. H., Quirk, G. J., Li, B. & Penzo, M. A. Retrieving fear memories, as time goes by. Mol. Psychiatry 21, 1027–1036 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Sotres-Bayon, F. & Quirk, G. J. Prefrontal control of fear: more than just extinction. Curr. Opin. Neurobiol. 20, 231–235 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Do-Monte, F. H., Quinones-Laracuente, K. & Quirk, G. J. A temporal shift in the circuits mediating retrieval of fear memory. Nature 519, 460–463 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Walker, D. L. & Davis, M. Role of the extended amygdala in short-duration versus sustained fear: a tribute to Dr. Lennart Heimer. Brain Struct. Funct. 213, 29–42 (2008).

    Article  PubMed  Google Scholar 

  137. Hammack, S. E., Todd, T. P., Kocho-Schellenberg, M. & Bouton, M. E. Role of the bed nucleus of the stria terminalis in the acquisition of contextual fear at long or short context-shock intervals. Behav. Neurosci. 129, 673–678 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Kim, S. Y. et al. Diverging neural pathways assemble a behavioural state from separable features in anxiety. Nature 496, 219–223 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Duvarci, S., Bauer, E. P. & Pare, D. The bed nucleus of the stria terminalis mediates inter-individual variations in anxiety and fear. J. Neurosci. 29, 10357–10361 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Waddell, J., Morris, R. W. & Bouton, M. E. Effects of bed nucleus of the stria terminalis lesions on conditioned anxiety: aversive conditioning with long-duration conditional stimuli and reinstatement of extinguished fear. Behav. Neurosci. 120, 324–336 (2006).

    Article  PubMed  Google Scholar 

  141. Hartley, C. A. & Phelps, E. A. Changing fear: the neurocircuitry of emotion regulation. Neuropsychopharmacology 35, 136–146 (2010).

    Article  PubMed  Google Scholar 

  142. Phelps, E. A. & LeDoux, J. E. Contributions of the amygdala to emotion processing: from animal models to human behavior. Neuron 48, 175–187 (2005).

    Article  CAS  PubMed  Google Scholar 

  143. Buchel, C. & Dolan, R. J. Classical fear conditioning in functional neuroimaging. Curr. Opin. Neurobiol. 10, 219–223 (2000).

    Article  CAS  PubMed  Google Scholar 

  144. LaBar, K. S., LeDoux, J. E., Spencer, D. D. & Phelps, E. A. Impaired fear conditioning following unilateral temporal lobectomy in humans. J. Neurosci. 15, 6846–6855 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Bechara, A. et al. Double dissociation of conditioning and declarative knowledge relative to the amygdala and hippocampus in humans. Science 269, 1115–1118 (1995).

    Article  CAS  PubMed  Google Scholar 

  146. LaBar, K. S., Gatenby, J. C., Gore, J. C., LeDoux, J. E. & Phelps, E. A. Human amygdala activation during conditioned fear acquisition and extinction: a mixed-trial fMRI study. Neuron 20, 937–945 (1998).

    Article  CAS  PubMed  Google Scholar 

  147. Morris, J. S., Ohman, A. & Dolan, R. J. Conscious and unconscious emotional learning in the human amygdala. Nature 393, 467–470 (1998).

    Article  CAS  PubMed  Google Scholar 

  148. Mendez-Bertolo, C. et al. A fast pathway for fear in human amygdala. Nat. Neurosci. 19, 1041–1049 (2016).

    Article  CAS  PubMed  Google Scholar 

  149. Luo, Q. et al. Emotional automaticity is a matter of timing. J. Neurosci. 30, 5825–5829 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Lebow, M. A. & Chen, A. Overshadowed by the amygdala: the bed nucleus of the stria terminalis emerges as key to psychiatric disorders. Mol. Psychiatry 21, 450–463 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Dolan, R. J. & Vuilleumier, P. Amygdala automaticity in emotional processing. Ann. NY Acad. Sci. 985, 348–355 (2003).

    Article  CAS  PubMed  Google Scholar 

  152. Pourtois, G., Schettino, A. & Vuilleumier, P. Brain mechanisms for emotional influences on perception and attention: What is magic and what is not. Biol. Psychol. 92, 492–512 (2013).

    Article  PubMed  Google Scholar 

  153. Ohman, A., Carlsson, K., Lundqvist, D. & Ingvar, M. On the unconscious subcortical origin of human fear. Physiol. Behav. 92, 180–185 (2007).

    Article  CAS  PubMed  Google Scholar 

  154. Whalen, P. J. et al. Human amygdala responsivity to masked fearful eye whites. Science 306, 2061 (2004).

    Article  CAS  PubMed  Google Scholar 

  155. Morris, J. S., Ohman, A. & Dolan, R. J. A subcortical pathway to the right amygdala mediating “unseen” fear. Proc. Natl Acad. Sci. USA 96, 1680–1685 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Liddell, B. J. et al. A direct brainstem-amygdala-cortical 'alarm' system for subliminal signals of fear. Neuroimage 24, 235–243 (2005).

    Article  PubMed  Google Scholar 

  157. Sarter, M. F. & Markowitsch, H. J. Involvement of the amygdala in learning and memory: a critical review, with emphasis on anatomical relations. Behav. Neurosci. 99, 342–380 (1985).

    Article  CAS  PubMed  Google Scholar 

  158. Nader, K., Majidishad, P., Amorapanth, P. & LeDoux, J. E. Damage to the lateral and central, but not other, amygdaloid nuclei prevents the acquisition of auditory fear conditioning. Learn. Mem. 8, 156–163 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Moscarello, J. M. & LeDoux, J. E. Active avoidance learning requires prefrontal suppression of amygdala-mediated defensive reactions. J. Neurosci. 33, 3815–3823 (2013). This paper demonstrates the contribution of the medial prefrontal cortex in switching from freezing to active avoidance.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Lazaro-Munoz, G., LeDoux, J. E. & Cain, C. K. Sidman instrumental avoidance initially depends on lateral and basal amygdala and is constrained by central amygdala-mediated Pavlovian processes. Biol. Psychiatry 67, 1120–1127 (2010). This paper demonstrates that with overtraining active avoidance comes to be amygdala-independent.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Choi, J. S., Cain, C. K. & LeDoux, J. E. The role of amygdala nuclei in the expression of auditory signaled two-way active avoidance in rats. Learn. Mem. 17, 139–147 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Bravo-Rivera, C., Roman-Ortiz, C., Brignoni-Perez, E., Sotres-Bayon, F. & Quirk, G. J. Neural structures mediating expression and extinction of platform-mediated avoidance. J. Neurosci. 34, 9736–9742 (2014). This article demonstrates the role of the amygdala and ventral striatum in a novel active avoidance paradigm.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Maren, S., Poremba, A. & Gabriel, M. Basolateral amygdaloid multi-unit neuronal correlates of discriminative avoidance learning in rabbits. Brain Res. 549, 311–316 (1991).

    Article  CAS  PubMed  Google Scholar 

  164. Poremba, A. & Gabriel, M. Amygdala neurons mediate acquisition but not maintenance of instrumental avoidance behavior in rabbits. J. Neurosci. 19, 9635–9641 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Killcross, S., Robbins, T. W. & Everitt, B. J. Different types of fear-conditioned behaviour mediated by separate nuclei within amygdala. Nature 388, 377–380 (1997).

    Article  CAS  PubMed  Google Scholar 

  166. Oleson, E. B., Gentry, R. N., Chioma, V. C. & Cheer, J. F. Subsecond dopamine release in the nucleus accumbens predicts conditioned punishment and its successful avoidance. J. Neurosci. 32, 14804–14808 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Bravo-Rivera, C., Roman-Ortiz, C., Montesinos-Cartagena, M. & Quirk, G. J. Persistent active avoidance correlates with activity in prelimbic cortex and ventral striatum. Front. Behav. Neurosci. 9, 184 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Ramirez, F., Moscarello, J. M., LeDoux, J. E. & Sears, R. M. Active avoidance requires a serial basal amygdala to nucleus accumbens shell circuit. J. Neurosci. 35, 3470–3477 (2015). This is an investigation of the role of connections from the BA to the NAcc in active avoidance using a disconnection approach.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Cain, C. K. & LeDoux, J. E. Escape from fear: a detailed behavioral analysis of two atypical responses reinforced by CS termination. J. Exp. Psychol. Anim. Behav. Process 33, 451–463 (2007).

    Article  PubMed  Google Scholar 

  170. Amorapanth, P., LeDoux, J. E. & Nader, K. Different lateral amygdala outputs mediate reactions and actions elicited by a fear-arousing stimulus. Nat. Neurosci. 3, 74–79 (2000). This early study shows the differing contributions of the CeA and the BA to Pavlovian reactions and avoidance actions, respectively.

    Article  CAS  PubMed  Google Scholar 

  171. Moscarello, J. M. & LeDoux, J. Diverse effects of conditioned threat stimuli on behavior. Cold Spring Harb. Symp. Quant. Biol. 79, 11–19 (2014).

    Article  PubMed  Google Scholar 

  172. Martinez, R. C. et al. Active versus reactive threat responding is associated with differential c-Fos expression in specific regions of amygdala and prefrontal cortex. Learn. Mem. 20, 446–452 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. LeDoux, J. E., Moscarello, J., Sears, R. & Campese, V. The birth, death and resurrection of avoidance: a reconceptualization of a troubled paradigm. Mol. Psychiatry 22, 24–36 (2017). This article summarizes how the concept of habit helps to solve controversies about avoidance that have plagued the field since the 1970s.

    Article  CAS  PubMed  Google Scholar 

  174. Lingawi, N. W. & Balleine, B. W. Amygdala central nucleus interacts with dorsolateral striatum to regulate the acquisition of habits. J. Neurosci. 32, 1073–1081 (2012). This paper presents evidence for interactions between the amygdala and the dorsolateral striatum in appetitive habit learning.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. McDannald, M., Kerfoot, E., Gallagher, M. & Holland, P. C. Amygdala central nucleus function is necessary for learning but not expression of conditioned visual orienting. Eur. J. Neurosci. 20, 240–248 (2004).

    Article  PubMed  Google Scholar 

  176. Corbit, L. H. & Balleine, B. W. Double dissociation of basolateral and central amygdala lesions on the general and outcome-specific forms of pavlovian-instrumental transfer. J. Neurosci. 25, 962–970 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Mobbs, D. et al. When fear is near: threat imminence elicits prefrontal-periaqueductal gray shifts in humans. Science 317, 1079–1083 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Seymour, B., Daw, N. D., Roiser, J. P., Dayan, P. & Dolan, R. Serotonin selectively modulates reward value in human decision-making. J. Neurosci. 32, 5833–5842 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Balleine, B. W. & O'Doherty, J. P. Human and rodent homologies in action control: corticostriatal determinants of goal-directed and habitual action. Neuropsychopharmacology 35, 48–69 (2010).

    Article  PubMed  Google Scholar 

  180. Solomon, R. L. & Wynne, L. C. Traumatic avoidance learning: the principles of anxiety conservation and partial irreversibility. Psychol. Rev. 61, 353–385 (1954).

    Article  CAS  PubMed  Google Scholar 

  181. Kihlstrom, J. F. The cognitive unconscious. Science 237, 1445–1452 (1987).

    Article  CAS  PubMed  Google Scholar 

  182. Radman, Z. Before Consciousness: In Search of the Fundamentals of Mind. (Imprint Academic, 2017).

    Book  Google Scholar 

  183. Hassin, R. R., Uleman, J. S. & Bargh, J. A. The New Unconscious. (Oxford Univ. Press, 2005).

    Google Scholar 

  184. Wilson, T. D. Strangers to Ourselves: Self-Insight and the Adaptive Unconscious. (Harvard Univ. Press, 2002).

    Google Scholar 

  185. Banaji, M. R. & Greenwald, A. G. Blind Spot: Hidden Biases of Good People. (Bantam Books, 2016).

    Google Scholar 

  186. Corbit, L. H., Ostlund, S. B. & Balleine, B. W. Sensitivity to instrumental contingency degradation is mediated by the entorhinal cortex and its efferents via the dorsal hippocampus. J. Neurosci. 22, 10976–10984 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Miller, K. J., Botvinick, M. M. & Brody, C. D. Dorsal hippocampus contributes to model-based planning. Nat. Neurosci. 20, 1269–1276 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Dusek, J. A. & Eichenbaum, H. The hippocampus and memory for orderly stimulus relations. Proc. Natl Acad. Sci. USA 94, 7109–7114 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Squire, L. Memory and Brain (Oxford, 1987).

    Google Scholar 

  190. Murray, E. A., Wise, S. P. & Graham, K. S. The Evolution of Memory Systems: Ancestors, Anatomy, and Adaptations. (Oxford Univ. Press, 2017).

    Google Scholar 

  191. Henke, K. A model for memory systems based on processing modes rather than consciousness. Nat. Rev. Neurosci. 11, 523–532 (2010).

    Article  CAS  PubMed  Google Scholar 

  192. Eichenbaum, H. A cortical-hippocampal system for declarative memory. Nat. Rev. Neurosci. 1, 41–50 (2000).

    Article  CAS  PubMed  Google Scholar 

  193. Myers, C. E. et al. Dissociating hippocampal versus basal ganglia contributions to learning and transfer. J. Cogn. Neurosci. 15, 185–193 (2003).

    Article  PubMed  Google Scholar 

  194. Talk, A. C., Gandhi, C. C. & Matzel, L. D. Hippocampal function during behaviorally silent associative learning: dissociation of memory storage and expression. Hippocampus 12, 648–656 (2002).

    Article  PubMed  Google Scholar 

  195. LeDoux, J. E. & Hofmann, S. G. The subjective experience of emotion: a fearful view. Curr. Opin. Behav. Sci. 19, 67–72 (2018).

    Article  Google Scholar 

  196. Koizumi, A., Mobbs, D. & Lau, H. Is fear perception special? Evidence at the decision-making and subjective confidence. Soc. Cogn. Affect Neurosci. 11, 1772–1782 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Collins, A. G. & Frank, M. J. How much of reinforcement learning is working memory, not reinforcement learning? A behavioral, computational, and neurogenetic analysis. Eur. J. Neurosci. 35, 1024–1035 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Otto, A. R., Gershman, S. J., Markman, A. B. & Daw, N. D. The curse of planning: dissecting multiple reinforcement-learning systems by taxing the central executive. Psychol. Sci. 24, 751–761 (2013).

    Article  PubMed  Google Scholar 

  199. Insel, T. et al. Research domain criteria (RDoC): toward a new classification framework for research on mental disorders. Am. J. Psychiatry 167, 748–751 (2010).

    Article  PubMed  Google Scholar 

  200. Mineka, S. & Zinbarg, R. A contemporary learning theory perspective on the etiology of anxiety disorders: it's not what you thought it was. Am. Psychol. 61, 10–26 (2006).

    Article  PubMed  Google Scholar 

  201. Bouton, M. E., Mineka, S. & Barlow, D. H. A modern learning theory perspective on the etiology of panic disorder. Psychol. Rev. 108, 4–32 (2001).

    Article  CAS  PubMed  Google Scholar 

  202. Craske, M. G. et al. Optimizing inhibitory learning during exposure therapy. Behav. Res. Ther. 46, 5–27 (2008).

    Article  PubMed  Google Scholar 

  203. Craske, M. G., Treanor, M., Conway, C. C., Zbozinek, T. & Vervliet, B. Maximizing exposure therapy: an inhibitory learning approach. Behav. Res. Ther. 58, 10–23 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Beck, A. T., Emery, G. & Greenberg, R. L. Anxiety Disorders and Phobias: A Cognitive Perspective. (Basic Books, 1985).

    Google Scholar 

  205. Huys, Q. J., Daw, N. D. & Dayan, P. Depression: a decision-theoretic analysis. Annu. Rev. Neurosci. 38, 1–23 (2015).

    Article  CAS  PubMed  Google Scholar 

  206. Huys, Q. J. et al. Bonsai trees in your head: how the pavlovian system sculpts goal-directed choices by pruning decision trees. PLoS Comput. Biol. 8, e1002410 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. LeDoux, J. E. & Pine, D. S. Using Neuroscience to Help Understand Fear and Anxiety: A Two-System Framework. Am. J. Psychiatry 173, 1083–1093 (2016).

    Article  PubMed  Google Scholar 

  208. LeDoux, J., Brown, R., Pine, D. S. & Hofmann, S. G. Know thyself: well-being and subjective experience. Cerebrum http://www.dana.org/Cerebrum/2018/Know_Thyself__Well_Being_and_Subjective_Experience/ (2018). This article makes the case for a more generous view of the importance of subjective experience in the clinical treatment of anxiety disorders.

  209. Mowrer, O. H. & Lamoreaux, R. R. Fear as an intervening variable in avoidance conditioning. J. Comp. Psych. 39, 29–50 (1946). This paper presents Mowrer's influential two-factor theory of avoidance, which greatly influenced the negative view of avoidance in clinical practice.

    Article  CAS  Google Scholar 

  210. Bolles, R. C. Avoidance and escape learning: simultaneous acquisition of different responses. J. Comp. Physiol. Psychol. 68, 355–358 (1969).

    Article  CAS  PubMed  Google Scholar 

  211. Bolles, R. C. in The Psychology of Learning and Motivation Vol. 6 (ed. Bower, G. H.) 97–145 (Academic Press, 1972). This article is one of Bolles's critiques of the avoidance paradigm, which suppressed interest in this form of behaviour for decades.

  212. Masterson, F. A. & Crawford, M. The defense motivation system: a theory of avoidance behavior. Behav. Brain Sci. 5, 661–696 (1982).

    Article  Google Scholar 

  213. Levis, D. J. in Contemporary Learning Theories: Pavlovian Conditioning and the Status of Traditional Learning Theory (eds Klein, S. B. & Mowrer, R. R.) 227–277 (Lawrence Erlbaum Assn, 1989).

    Google Scholar 

  214. McAllister, D. E. & McAllister, W. R. in Fear, Avoidance, and Phobias: A Fundamental Analysis (ed. Denny, M. R.) (Erlbaum, 1991).

    Google Scholar 

  215. McAllister, W. R. & McAllister, D. E. in Aversive Conditioning and Learning (ed. Brush, F. R.) 105–179 (Academic Press, 1971).

    Book  Google Scholar 

  216. Cain, C. K. & LeDoux, J. E. in in Handbook of Anxiety and Fear (eds Blanchard, R. J., Blanchard, D. C., Griebel, G. & Nutt, D.) 103–124 (Academic Press, 2008).

    Book  Google Scholar 

  217. Panksepp, J. Affective Neuroscience. (Oxford Univ. Press, 1998).

    Google Scholar 

  218. Panksepp, J., Fuchs, T. & Iacabucci, P. The basic neuroscience of emotional experiences in mammals: The case of subcortical FEAR circuitry and implications for clinical anxiety. Appl. Animal Behav. Sci. 129, 1–17 (2011).

    Article  Google Scholar 

  219. Adolphs, R. The biology of fear. Curr. Biol. 23, R79–93 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Brown, J. S. & Farber, I. E. Emotions conceptualized as intervening variables — with suggestions toward a theory of frustration. Psychol. Bull. 48, 465–495 (1951).

    Article  CAS  PubMed  Google Scholar 

  221. Rosen, J. B. & Schulkin, J. From normal fear to pathological anxiety. Psychol. Rev. 105, 325–350 (1998).

    Article  CAS  PubMed  Google Scholar 

  222. Perusini, J. N. & Fanselow, M. S. Neurobehavioral perspectives on the distinction between fear and anxiety. Learn. Mem. 22, 417–425 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Marx, M. H. Intervening variable or hypothetical construct? Psychol. Rev. 58, 235–247 (1951).

    Article  CAS  PubMed  Google Scholar 

  224. LeDoux, J. E. Semantics, surplus meaning, and the science of fear. Trends Cogn. Sci. 21, 303–306 (2017).

    Article  PubMed  Google Scholar 

  225. Barrett, L. F. How Emotions are Made. (Houghton Mifflin Harcourt, 2017).

    Google Scholar 

  226. Wegner, D. The Illusion of Conscious Will. (MIT Press, 2002).

    Book  Google Scholar 

  227. Balleine, B. W., Killcross, A. S. & Dickinson, A. The effect of lesions of the basolateral amygdala on instrumental conditioning. J. Neurosci. 23, 666–675 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Johnson, A. W., Gallagher, M. & Holland, P. C. The basolateral amygdala is critical to the expression of pavlovian and instrumental outcome-specific reinforcer devaluation effects. J. Neurosci. 29, 696–704 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Gewirtz, J. C. & Davis, M. Second-order fear conditioning prevented by blocking NMDA receptors in amygdala. Nature 388, 471–474 (1997).

    Article  CAS  PubMed  Google Scholar 

  230. Burns, L. H., Everitt, B. J. & Robbins, T. W. Effects of excitotoxic lesions of the basolateral amygdala on conditional discrimination learning with primary and conditioned reinforcement. Behav. Brain Res. 100, 123–133 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors were supported by the US National Institutes of Health (grants R56DA029053 and R01MH38774 to J.L.) and the US Army Research Office (grant W911NF-16-1-0474 to N.D.D.).

Author information

Authors and Affiliations

Authors

Contributions

J.L. and N.D.D. made substantial contributions to discussions of the content of the article, wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Joseph LeDoux.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Innate behaviours

Behaviours, such as reflexes and fixed responses, that all members of a species share as part of their heritage and that make minimal demands on learning.

Instrumental responses

Responses that are learned because of their relationship with some consequent outcome (such as safety or food) and include both actions and habits.

Habits

Learned behaviours that are acquired as a result of their initial relation to an outcome but do not depend on the value of the outcome.

Actions

Behaviours that result in an expected outcome as a consequence of a previously learned contingency between the behaviour and its outcome (action–outcome behaviours) or of deliberative cognitive forecasting (implicit or explicit) of a possible outcome.

Reactions

Behaviours — such as reflexes, fixed responses and habits — that are directly elicited by innate or learned stimuli.

Startle

A flinch-like behavioural reflex often studied in the laboratory by using sudden, loud acoustic stimuli.

Pavlovian conditioning

The process through which animals learn to associate initially arbitrary stimuli with biologically important stimuli such as threats.

World model

An internal representation of the contingencies of the environment, such as a spatial map or the steps in a task.

Appetitive conditioning

Learning based on the prediction of rewards.

Active avoidance

A type of experimental task in which organisms must produce a particular response to avoid harm.

Reward devaluation

An experimental procedure in which the value of an action's outcome is reduced; used to verify that the action is goal-directed as opposed to habitual.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

LeDoux, J., Daw, N. Surviving threats: neural circuit and computational implications of a new taxonomy of defensive behaviour. Nat Rev Neurosci 19, 269–282 (2018). https://doi.org/10.1038/nrn.2018.22

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn.2018.22

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing