Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Dendritic structural plasticity and neuropsychiatric disease

Key Points

  • The development of dendritic branches and spines, which host the excitatory postsynaptic machinery, is atypical in neuropsychiatric disorders.

  • Genetic risk factors for neuropsychiatric disease converge on genes that encode proteins present in excitatory postsynaptic termini with known roles in dendritic structural plasticity.

  • Risk variants in genes regulating structural plasticity may explain the atypical dendrite and spine development observed in individuals with neuropsychiatric disorders.

  • Drug discovery efforts targeting the genetic risk factors affecting the structural plasticity of dendritic spines have been successful in improving patient outcomes. Genetics may facilitate the prioritization, or elucidation, of drug targets within neuropsychiatric disorders.

  • Stem cell models can be used to model the structural deficits in individuals with neuropsychiatric disease, offering an avenue for screening personalized treatments.

Abstract

The structure of neuronal circuits that subserve cognitive functions in the brain is shaped and refined throughout development and into adulthood. Evidence from human and animal studies suggests that the cellular and synaptic substrates of these circuits are atypical in neuropsychiatric disorders, indicating that altered structural plasticity may be an important part of the disease biology. Advances in genetics have redefined our understanding of neuropsychiatric disorders and have revealed a spectrum of risk factors that impact pathways known to influence structural plasticity. In this Review, we discuss the importance of recent genetic findings on the different mechanisms of structural plasticity and propose that these converge on shared pathways that can be targeted with novel therapeutics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spine and dendrite development in health and disease.
Figure 2: Mechanisms of structural plasticity.
Figure 3: Neuropsychiatric risk factors and biological pathways regulating structural plasticity.
Figure 4: Pharmacological targets and associated structural pathways within the dendritic spine.

Similar content being viewed by others

References

  1. Tau, G. Z. & Peterson, B. S. Normal development of brain circuits. Neuropsychopharmacology 35, 147–168 (2010).

    Article  PubMed  Google Scholar 

  2. Wefelmeyer, W., Puhl, C. J. & Burrone, J. Homeostatic plasticity of subcellular neuronal structures: from inputs to outputs. Trends Neurosci. 39, 656–667 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Penzes, P., Cahill, M. E., Jones, K. A., VanLeeuwen, J. E. & Woolfrey, K. M. Dendritic spine pathology in neuropsychiatric disorders. Nat. Neurosci. 14, 285–293 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Taber, K. H., Hurley, R. A. & Yudofsky, S. C. Diagnosis and treatment of neuropsychiatric disorders. Annu. Rev. Med. 61, 121–133 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Kirov, G. et al. De novo CNV analysis implicates specific abnormalities of postsynaptic signalling complexes in the pathogenesis of schizophrenia. Mol. Psychiatry 17, 142–153 (2012). This study shows a critical role for postsynaptic signalling in the genetic aetiology of schizophrenia.

    Article  CAS  PubMed  Google Scholar 

  6. Sanders, S. J. et al. Insights into autism spectrum disorder genomic architecture and biology from 71 risk loci. Neuron 87, 1215–1233 (2015). This genetic study of de novo variants in ASD finds an enrichment of postsynaptic risk factors among the 71 disease loci it identifies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hamdan, F. F. et al. Excess of de novo deleterious mutations in genes associated with glutamatergic systems in nonsyndromic intellectual disability. Am. J. Hum. Genet. 88, 306–316 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hall, J., Trent, S., Thomas, K. L., O'Donovan, M. C. & Owen, M. J. Genetic risk for schizophrenia: convergence on synaptic pathways involved in plasticity. Biol. Psychiatry 77, 52–58 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Epi4K Consortium et al. De novo mutations in epileptic encephalopathies. Nature 501, 217–221 (2013).

  10. Kanner, A. M. Management of psychiatric and neurological comorbidities in epilepsy. Nat. Rev. Neurol. 12, 106–116 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Spruston, N. Pyramidal neurons: dendritic structure and synaptic integration. Nat. Rev. Neurosci. 9, 206–221 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Koleske, A. J. Molecular mechanisms of dendrite stability. Nat. Rev. Neurosci. 14, 536–550 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen, Y. & Sabatini, B. L. Signaling in dendritic spines and spine microdomains. Curr. Opin. Neurobiol. 22, 389–396 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Berry, K. P. & Nedivi, E. Spine dynamics: are they all the same? Neuron 96, 43–55 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tonnesen, J. & Nagerl, U. V. Dendritic spines as tunable regulators of synaptic signals. Front. Psychiatry 7, 101 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Mrzljak, L. & Uylings, H. B., Kostovic, I. & Van Eden, C. G. Prenatal development of neurons in the human prefrontal cortex: I. A qualitative Golgi study. J. Comp. Neurol. 271, 355–386 (1988).

    Article  CAS  PubMed  Google Scholar 

  17. Petanjek, Z. et al. Extraordinary neoteny of synaptic spines in the human prefrontal cortex. Proc. Natl Acad. Sci. USA 108, 13281–13286 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tamnes, C. K. et al. Development of the cerebral cortex across adolescence: a multisample study of inter-related longitudinal changes in cortical volume, surface area, and thickness. J. Neurosci. 37, 3402–3412 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zuo, Y., Lin, A., Chang, P. & Gan, W. B. Development of long-term dendritic spine stability in diverse regions of cerebral cortex. Neuron 46, 181–189 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Caroni, P., Donato, F. & Muller, D. Structural plasticity upon learning: regulation and functions. Nat. Rev. Neurosci. 13, 478–490 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Yang, G., Pan, F. & Gan, W. B. Stably maintained dendritic spines are associated with lifelong memories. Nature 462, 920–924 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bourne, J. & Harris, K. M. Do thin spines learn to be mushroom spines that remember? Curr. Opin. Neurobiol. 17, 381–386 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Zenke, F., Gerstner, W. & Ganguli, S. The temporal paradox of Hebbian learning and homeostatic plasticity. Curr. Opin. Neurobiol. 43, 166–176 (2017).

    Article  CAS  PubMed  Google Scholar 

  24. Bosch, M. & Hayashi, Y. Structural plasticity of dendritic spines. Curr. Opin. Neurobiol. 22, 383–388 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Herring, B. E. & Nicoll, R. A. Long-term potentiation: from CaMKII to AMPA receptor trafficking. Annu. Rev. Physiol. 78, 351–365 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Turrigiano, G. Homeostatic synaptic plasticity: local and global mechanisms for stabilizing neuronal function. Cold Spring Harb. Perspect. Biol. 4, a005736 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wallace, W. & Bear, M. F. A morphological correlate of synaptic scaling in visual cortex. J. Neurosci. 24, 6928–6938 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Matsuzaki, M. et al. Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nat. Neurosci. 4, 1086–1092 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kirov, S. A., Goddard, C. A. & Harris, K. M. Age-dependence in the homeostatic upregulation of hippocampal dendritic spine number during blocked synaptic transmission. Neuropharmacology 47, 640–648 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Hofer, S. B., Mrsic-Flogel, T. D., Bonhoeffer, T. & Hubener, M. Experience leaves a lasting structural trace in cortical circuits. Nature 457, 313–317 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Keck, T. et al. Synaptic scaling and homeostatic plasticity in the mouse visual cortex in vivo. Neuron 80, 327–334 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Barnes, S. J. et al. Deprivation-induced homeostatic spine scaling in vivo is localized to dendritic branches that have undergone recent spine loss. Neuron 96, 871–882.e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jiang, M., Lee, C. L., Smith, K. L. & Swann, J. W. Spine loss and other persistent alterations of hippocampal pyramidal cell dendrites in a model of early-onset epilepsy. J. Neurosci. 18, 8356–8368 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wong, M. & Guo, D. Dendritic spine pathology in epilepsy: cause or consequence? Neuroscience 251, 141–150 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Chen, C. C., Bajnath, A. & Brumberg, J. C. The impact of development and sensory deprivation on dendritic protrusions in the mouse barrel cortex. Cereb. Cortex 25, 1638–1653 (2015).

    Article  PubMed  Google Scholar 

  36. Zhou, Y., Lai, B. & Gan, W. B. Monocular deprivation induces dendritic spine elimination in the developing mouse visual cortex. Sci. Rep. 7, 4977 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Sigler, A. et al. Formation and maintenance of functional spines in the absence of presynaptic glutamate release. Neuron 94, 304–311.e4 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. McCullumsmith, R. E., Hammond, J. H., Shan, D. & Meador-Woodruff, J. H. Postmortem brain: an underutilized substrate for studying severe mental illness. Neuropsychopharmacology 40, 1307 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Purpura, D. P. Dendritic spine “dysgenesis” and mental retardation. Science 186, 1126–1128 (1974). This seminal study observes the presence of microstructural pathology in the brains of individuals with intellectual disability.

    Article  CAS  PubMed  Google Scholar 

  40. Kaufmann, W. E. & Moser, H. W. Dendritic anomalies in disorders associated with mental retardation. Cereb. Cortex 10, 981–991 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Hutsler, J. J. & Zhang, H. Increased dendritic spine densities on cortical projection neurons in autism spectrum disorders. Brain Res. 1309, 83–94 (2010). This study reports spine abnormalities in ASD.

    Article  CAS  PubMed  Google Scholar 

  42. Tang, G. et al. Loss of mTOR-dependent macroautophagy causes autistic-like synaptic pruning deficits. Neuron 83, 1131–1143 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hazlett, H. C. et al. Early brain development in infants at high risk for autism spectrum disorder. Nature 542, 348–351 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Schumann, C. M. et al. Longitudinal magnetic resonance imaging study of cortical development through early childhood in autism. J. Neurosci. 30, 4419–4427 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Multani, P., Myers, R. H., Blume, H. W., Schomer, D. L. & Sotrel, A. Neocortical dendritic pathology in human partial epilepsy: a quantitative Golgi study. Epilepsia 35, 728–736 (1994).

    Article  CAS  PubMed  Google Scholar 

  46. Bothwell, S. et al. Neuronal hypertrophy in the neocortex of patients with temporal lobe epilepsy. J. Neurosci. 21, 4789–4800 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Glausier, J. R. & Lewis, D. A. Dendritic spine pathology in schizophrenia. Neuroscience 251, 90–107 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Glantz, L. A. & Lewis, D. A. Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch. Gen. Psychiatry 57, 65–73 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. MacDonald, M. L. et al. Selective loss of smaller spines in schizophrenia. Am. J. Psychiatry 174, 586–594 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kalus, P., Muller, T. J., Zuschratter, W. & Senitz, D. The dendritic architecture of prefrontal pyramidal neurons in schizophrenic patients. Neuroreport 11, 3621–3625 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Broadbelt, K., Byne, W. & Jones, L. B. Evidence for a decrease in basilar dendrites of pyramidal cells in schizophrenic medial prefrontal cortex. Schizophr. Res. 58, 75–81 (2002).

    Article  PubMed  Google Scholar 

  52. Konopaske, G. T., Lange, N., Coyle, J. T. & Benes, F. M. Prefrontal cortical dendritic spine pathology in schizophrenia and bipolar disorder. JAMA Psychiatry 71, 1323–1331 (2014). This study compares dendritic pathology in schizophrenia and bipolar disorder.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Tobe, B. T. D. et al. Probing the lithium-response pathway in hiPSCs implicates the phosphoregulatory set-point for a cytoskeletal modulator in bipolar pathogenesis. Proc. Natl Acad. Sci. USA 114, E4462–E4471 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Moyer, C. E., Shelton, M. A. & Sweet, R. A. Dendritic spine alterations in schizophrenia. Neurosci. Lett. 601, 46–53 (2015).

    Article  CAS  PubMed  Google Scholar 

  55. Dietsche, B., Kircher, T. & Falkenberg, I. Structural brain changes in schizophrenia at different stages of the illness: a selective review of longitudinal magnetic resonance imaging studies. Aust. N. Z. J. Psychiatry 51, 500–508 (2017).

    Article  PubMed  Google Scholar 

  56. Mollon, J. & Reichenberg, A. Cognitive development prior to onset of psychosis. Psychol. Med. 48, 392–403 (2018).

    Article  CAS  PubMed  Google Scholar 

  57. Phillips, M. & Pozzo-Miller, L. Dendritic spine dysgenesis in autism related disorders. Neurosci. Lett. 601, 30–40 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Levenga, J. & Willemsen, R. Perturbation of dendritic protrusions in intellectual disability. Prog. Brain Res. 197, 153–168 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. Sullivan, P. F., Daly, M. J. & O'Donovan, M. Genetic architectures of psychiatric disorders: the emerging picture and its implications. Nat. Rev. Genet. 13, 537–551 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature 511, 421–427 (2014). This landmark study in schizophrenia identifies over 100 genome-wide significant risk factors, including several with excitatory postsynaptic functions.

  61. Psychiatric GWAS Consortium Bipolar Disorder Working Group. Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4. Nat. Genet. 43, 977–983 (2011).

  62. Kirov, G. CNVs in neuropsychiatric disorders. Hum. Mol. Genet. 24, R45–R49 (2015).

    Article  CAS  PubMed  Google Scholar 

  63. Fromer, M. et al. De novo mutations in schizophrenia implicate synaptic networks. Nature 506, 179–184 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Yuen, R. K. C. et al. Whole genome sequencing resource identifies 18 new candidate genes for autism spectrum disorder. Nat. Neurosci. 20, 602–611 (2017).

    Article  CAS  PubMed Central  Google Scholar 

  65. Lelieveld, S. H. et al. Meta-analysis of 2,104 trios provides support for 10 new genes for intellectual disability. Nat. Neurosci. 19, 1194–1196 (2016).

    Article  CAS  PubMed  Google Scholar 

  66. Epi4K Consortium. De novo mutations in SLC1A2 and CACNA1A are important causes of epileptic encephalopathies. Am. J. Hum. Genet. 99, 287–298 (2016).

  67. Deciphering Developmental Disorders Study. Prevalence and architecture of de novo mutations in developmental disorders. Nature 542, 433–438 (2017). This exome sequencing, the largest ever performed for developmental disorders, is the first to discover genome-wide significant risk genes from analysis of rare de novo mutations.

  68. Chang, J., Gilman, S. R., Chiang, A. H., Sanders, S. J. & Vitkup, D. Genotype to phenotype relationships in autism spectrum disorders. Nat. Neurosci. 18, 191–198 (2015).

    Article  CAS  PubMed  Google Scholar 

  69. Gilman, S. R. et al. Rare de novo variants associated with autism implicate a large functional network of genes involved in formation and function of synapses. Neuron 70, 898–907 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. De Rubeis, S. et al. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature 515, 209–215 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. McCarthy, S. E. et al. De novo mutations in schizophrenia implicate chromatin remodeling and support a genetic overlap with autism and intellectual disability. Mol. Psychiatry 19, 652–658 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kochinke, K. et al. Systematic phenomics analysis deconvolutes genes mutated in intellectual disability into biologically coherent modules. Am. J. Hum. Genet. 98, 149–164 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Dalva, M. B., McClelland, A. C. & Kayser, M. S. Cell adhesion molecules: signalling functions at the synapse. Nat. Rev. Neurosci. 8, 206–220 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Rujescu, D. et al. Disruption of the neurexin 1 gene is associated with schizophrenia. Hum. Mol. Genet. 18, 988–996 (2009).

    Article  CAS  PubMed  Google Scholar 

  75. Jamain, S. et al. Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nat. Genet. 34, 27–29 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zweier, C. et al. CNTNAP2 and NRXN1 are mutated in autosomal-recessive Pitt-Hopkins-like mental retardation and determine the level of a common synaptic protein in Drosophila. Am. J. Hum. Genet. 85, 655–666 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Moller, R. S. et al. Exon-disrupting deletions of NRXN1 in idiopathic generalized epilepsy. Epilepsia 54, 256–264 (2013).

    Article  CAS  PubMed  Google Scholar 

  78. Graf, E. R., Zhang, X., Jin, S. X., Linhoff, M. W. & Craig, A. M. Neurexins induce differentiation of GABA and glutamate postsynaptic specializations via neuroligins. Cell 119, 1013–1026 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Quinn, D. P. et al. Pan-neurexin perturbation results in compromised synapse stability and a reduction in readily releasable synaptic vesicle pool size. Sci. Rep. 7, 42920 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Chih, B., Engelman, H. & Scheiffele, P. Control of excitatory and inhibitory synapse formation by neuroligins. Science 307, 1324–1328 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Isshiki, M. et al. Enhanced synapse remodelling as a common phenotype in mouse models of autism. Nat. Commun. 5, 4742 (2014). This important study finds similar deficits in spine dynamics in multiple genetic mouse models of neuropsychiatric disease, suggesting that different risk factors can lead to common perturbations.

    Article  CAS  PubMed  Google Scholar 

  82. Etherton, M. et al. Autism-linked neuroligin-3 R451C mutation differentially alters hippocampal and cortical synaptic function. Proc. Natl Acad. Sci. USA 108, 13764–13769 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Rodenas-Cuadrado, P. et al. Characterisation of CASPR2 deficiency disorder — a syndrome involving autism, epilepsy and language impairment. BMC Med. Genet. 17, 8 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Bakkaloglu, B. et al. Molecular cytogenetic analysis and resequencing of contactin associated protein-like 2 in autism spectrum disorders. Am. J. Hum. Genet. 82, 165–173 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Friedman, J. I. et al. CNTNAP2 gene dosage variation is associated with schizophrenia and epilepsy. Mol. Psychiatry 13, 261–266 (2008).

    Article  CAS  PubMed  Google Scholar 

  86. Varea, O. et al. Synaptic abnormalities and cytoplasmic glutamate receptor aggregates in contactin associated protein-like 2/Caspr2 knockout neurons. Proc. Natl Acad. Sci. USA 112, 6176–6181 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Gdalyahu, A. et al. The autism related protein contactin-associated protein-like 2 (CNTNAP2) stabilizes new spines: an in vivo mouse study. PLoS ONE 10, e0125633 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Anderson, G. R. et al. Candidate autism gene screen identifies critical role for cell-adhesion molecule CASPR2 in dendritic arborization and spine development. Proc. Natl Acad. Sci. USA 109, 18120–18125 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. McKinney, R. A., Capogna, M., Durr, R., Gahwiler, B. H. & Thompson, S. M. Miniature synaptic events maintain dendritic spines via AMPA receptor activation. Nat. Neurosci. 2, 44–49 (1999).

    Article  CAS  PubMed  Google Scholar 

  90. Richards, D. A. et al. Glutamate induces the rapid formation of spine head protrusions in hippocampal slice cultures. Proc. Natl Acad. Sci. USA 102, 6166–6171 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hayashi, Y. et al. Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science 287, 2262–2267 (2000).

    Article  CAS  PubMed  Google Scholar 

  92. Zhang, Y., Cudmore, R. H., Lin, D. T., Linden, D. J. & Huganir, R. L. Visualization of NMDA receptor-dependent AMPA receptor synaptic plasticity in vivo. Nat. Neurosci. 18, 402–407 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kopec, C. D., Real, E., Kessels, H. W. & Malinow, R. GluR1 links structural and functional plasticity at excitatory synapses. J. Neurosci. 27, 13706–13718 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Luscher, C. & Malenka, R. C. NMDA receptor-dependent long-term potentiation and long-term depression (LTP/LTD). Cold Spring Harb. Perspect. Biol. 4, a005710 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Luthi, A., Schwyzer, L., Mateos, J. M., Gahwiler, B. H. & McKinney, R. A. NMDA receptor activation limits the number of synaptic connections during hippocampal development. Nat. Neurosci. 4, 1102–1107 (2001).

    Article  CAS  PubMed  Google Scholar 

  96. Alvarez, V. A., Ridenour, D. A. & Sabatini, B. L. Distinct structural and ionotropic roles of NMDA receptors in controlling spine and synapse stability. J. Neurosci. 27, 7365–7376 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Liu, S. et al. A rare variant identified within the GluN2B C-terminus in a patient with autism affects NMDA receptor surface expression and spine density. J. Neurosci. 37, 4093–4102 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Brigman, J. L. et al. Loss of GluN2B-containing NMDA receptors in CA1 hippocampus and cortex impairs long-term depression, reduces dendritic spine density, and disrupts learning. J. Neurosci. 30, 4590–4600 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kannangara, T. S. et al. Deletion of the NMDA receptor GluN2A subunit significantly decreases dendritic growth in maturing dentate granule neurons. PLoS ONE 9, e103155 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Sanz-Clemente, A., Nicoll, R. A. & Roche, K. W. Diversity in NMDA receptor composition: many regulators, many consequences. Neuroscientist 19, 62–75 (2013).

    Article  CAS  PubMed  Google Scholar 

  101. Zhu, J., Shang, Y. & Zhang, M. Mechanistic basis of MAGUK-organized complexes in synaptic development and signalling. Nat. Rev. Neurosci. 17, 209–223 (2016).

    Article  CAS  PubMed  Google Scholar 

  102. Monteiro, P. & Feng, G. SHANK proteins: roles at the synapse and in autism spectrum disorder. Nat. Rev. Neurosci. 18, 147–157 (2017).

    Article  CAS  PubMed  Google Scholar 

  103. Yi, F. et al. Autism-associated SHANK3 haploinsufficiency causes Ih channelopathy in human neurons. Science 352, aaf2669 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Wang, W. et al. Striatopallidal dysfunction underlies repetitive behavior in Shank3-deficient model of autism. J. Clin. Invest. 127, 1978–1990 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Mei, Y. et al. Adult restoration of Shank3 expression rescues selective autistic-like phenotypes. Nature 530, 481–484 (2016). This work suggests that certain early neurodevelopment defects can be reversed in adults to improve disease outcome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Zhou, Y. et al. Mice with Shank3 mutations associated with ASD and schizophrenia display both shared and distinct defects. Neuron 89, 147–162 (2016).

    Article  CAS  PubMed  Google Scholar 

  107. Durand, C. M. et al. SHANK3 mutations identified in autism lead to modification of dendritic spine morphology via an actin-dependent mechanism. Mol. Psychiatry 17, 71–84 (2012).

    Article  CAS  PubMed  Google Scholar 

  108. Smith, K. R. et al. Psychiatric risk factor ANK3/ankyrin-G nanodomains regulate the structure and function of glutamatergic synapses. Neuron 84, 399–415 (2014). This publication reports a role for bipolar risk factor ANK3 in the activity-dependent structural plasticity of dendritic spines.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Nanavati, D. et al. The effects of chronic treatment with mood stabilizers on the rat hippocampal post-synaptic density proteome. J. Neurochem. 119, 617–629 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Gottschalk, M. G. et al. Lithium reverses behavioral and axonal transport-related changes associated with ANK3 bipolar disorder gene disruption. Eur. Neuropsychopharmacol. 27, 274–288 (2017).

    Article  CAS  PubMed  Google Scholar 

  111. Kang, M. G. et al. A functional AMPA receptor-calcium channel complex in the postsynaptic membrane. Proc. Natl Acad. Sci. USA 103, 5561–5566 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Wong, R. O. & Ghosh, A. Activity-dependent regulation of dendritic growth and patterning. Nat. Rev. Neurosci. 3, 803–812 (2002).

    Article  CAS  PubMed  Google Scholar 

  113. Higley, M. J. & Sabatini, B. L. Calcium signaling in dendritic spines. Cold Spring Harb. Perspect. Biol. 4, a005686 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Cross-Disorder Group of the Psychiatric Genomics Consortium. Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet 381, 1371–1379 (2013).

  115. Purcell, S. M. et al. A polygenic burden of rare disruptive mutations in schizophrenia. Nature 506, 185–190 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Heyes, S. et al. Genetic disruption of voltage-gated calcium channels in psychiatric and neurological disorders. Prog. Neurobiol. 134, 36–54 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Splawski, I. et al. CaV1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell 119, 19–31 (2004).

    Article  CAS  PubMed  Google Scholar 

  118. Obermair, G. J., Szabo, Z., Bourinet, E. & Flucher, B. E. Differential targeting of the L-type Ca2+ channel alpha 1C (CaV1.2) to synaptic and extrasynaptic compartments in hippocampal neurons. Eur. J. Neurosci. 19, 2109–2122 (2004).

    Article  PubMed  Google Scholar 

  119. Soeiro- de-Souza, M. G. et al. The CACNA1C risk allele rs1006737 is associated with age-related prefrontal cortical thinning in bipolar I disorder. Transl Psychiatry 7, e1086 (2017).

    Article  CAS  Google Scholar 

  120. Tian, X., Kai, L., Hockberger, P. E., Wokosin, D. L. & Surmeier, D. J. MEF-2 regulates activity-dependent spine loss in striatopallidal medium spiny neurons. Mol. Cell Neurosci. 44, 94–108 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Krey, J. F. et al. Timothy syndrome is associated with activity-dependent dendritic retraction in rodent and human neurons. Nat. Neurosci. 16, 201–209 (2013). This key study shows altered activity-dependent structural plasticity in genetically defined patient-derived neurons related to autism.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Stephenson, J. R. et al. A novel human CAMK2A mutation disrupts dendritic morphology and synaptic transmission, and causes ASD-related behaviors. J. Neurosci. 37, 2216–2233 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Penzes, P. et al. Rapid induction of dendritic spine morphogenesis by trans-synaptic ephrinB-EphB receptor activation of the Rho-GEF kalirin. Neuron 37, 263–274 (2003).

    Article  CAS  PubMed  Google Scholar 

  124. Tashiro, A. & Yuste, R. Regulation of dendritic spine motility and stability by Rac1 and Rho kinase: evidence for two forms of spine motility. Mol. Cell Neurosci. 26, 429–440 (2004).

    Article  CAS  PubMed  Google Scholar 

  125. Tashiro, A., Minden, A. & Yuste, R. Regulation of dendritic spine morphology by the rho family of small GTPases: antagonistic roles of Rac and Rho. Cereb. Cortex 10, 927–938 (2000).

    Article  CAS  PubMed  Google Scholar 

  126. Woolfrey, K. M. et al. Epac2 induces synapse remodeling and depression and its disease-associated forms alter spines. Nat. Neurosci. 12, 1275–1284 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Stornetta, R. L. & Zhu, J. J. Ras and Rap signaling in synaptic plasticity and mental disorders. Neuroscientist 17, 54–78 (2011).

    Article  CAS  PubMed  Google Scholar 

  128. San Martin, A. & Pagani, M. R. Understanding intellectual disability through RASopathies. J. Physiol. 108, 232–239 (2014).

    Google Scholar 

  129. Kim, M. J., Dunah, A. W., Wang, Y. T. & Sheng, M. Differential roles of NR2A- and NR2B-containing NMDA receptors in Ras-ERK signaling and AMPA receptor trafficking. Neuron 46, 745–760 (2005).

    Article  CAS  PubMed  Google Scholar 

  130. Berryer, M. H. et al. Mutations in SYNGAP1 cause intellectual disability, autism, and a specific form of epilepsy by inducing haploinsufficiency. Hum. Mutat. 34, 385–394 (2013).

    Article  CAS  PubMed  Google Scholar 

  131. Clement, J. P. et al. Pathogenic SYNGAP1 mutations impair cognitive development by disrupting maturation of dendritic spine synapses. Cell 151, 709–723 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Vazquez, L. E., Chen, H. J., Sokolova, I., Knuesel, I. & Kennedy, M. B. SynGAP regulates spine formation. J. Neurosci. 24, 8862–8872 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Komiyama, N. H. et al. SynGAP regulates ERK/MAPK signaling, synaptic plasticity, and learning in the complex with postsynaptic density 95 and NMDA receptor. J. Neurosci. 22, 9721–9732 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Aceti, M. et al. Syngap1 haploinsufficiency damages a postnatal critical period of pyramidal cell structural maturation linked to cortical circuit assembly. Biol. Psychiatry 77, 805–815 (2015). This paper identifies a critical window in development, suggesting a time frame for pharmacological intervention that is beneficial in genetic disease arising from SYNGAP1 mutation.

    Article  CAS  PubMed  Google Scholar 

  135. Gutmann, D. H. et al. Neurofibromatosis type 1. Nat. Rev. Dis. Primers 3, 17004 (2017).

    Article  PubMed  Google Scholar 

  136. Wang, H. F. et al. Valosin-containing protein and neurofibromin interact to regulate dendritic spine density. J. Clin. Invest. 121, 4820–4837 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Tavazoie, S. F., Alvarez, V. A., Ridenour, D. A., Kwiatkowski, D. J. & Sabatini, B. L. Regulation of neuronal morphology and function by the tumor suppressors Tsc1 and Tsc2. Nat. Neurosci. 8, 1727–1734 (2005).

    Article  CAS  PubMed  Google Scholar 

  138. Jones, A. C. et al. Comprehensive mutation analysis of TSC1 and TSC2-and phenotypic correlations in 150 families with tuberous sclerosis. Am. J. Hum. Genet. 64, 1305–1315 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Xie, Z. et al. Kalirin-7 controls activity-dependent structural and functional plasticity of dendritic spines. Neuron 56, 640–656 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Herring, B. E. & Nicoll, R. A. Kalirin and Trio proteins serve critical roles in excitatory synaptic transmission and LTP. Proc. Natl Acad. Sci. USA 113, 2264–2269 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Russell, T. A. et al. A sequence variant in human KALRN impairs protein function and coincides with reduced cortical thickness. Nat. Commun. 5, 4858 (2014).

    Article  CAS  PubMed  Google Scholar 

  142. Kushima, I. et al. Resequencing and association analysis of the KALRN and EPHB1 genes and their contribution to schizophrenia susceptibility. Schizophr. Bull. 38, 552–560 (2012).

    Article  PubMed  Google Scholar 

  143. Russell, T. A. et al. A schizophrenia-linked KALRN coding variant alters neuron morphology, protein function, and transcript stability. Biol. Psichiatry 83, 499–508 (2018).

    Article  CAS  Google Scholar 

  144. Makrythanasis, P. et al. Exome sequencing discloses KALRN homozygous variant as likely cause of intellectual disability and short stature in a consanguineous pedigree. Hum. Genom. 10, 26 (2016).

    Article  CAS  Google Scholar 

  145. Pengelly, R. J. et al. Mutations specific to the Rac-GEF domain of TRIO cause intellectual disability and microcephaly. J. Med. Genet. 53, 735–742 (2016).

    Article  CAS  PubMed  Google Scholar 

  146. Ba, W. et al. TRIO loss of function is associated with mild intellectual disability and affects dendritic branching and synapse function. Hum. Mol. Genet. 25, 892–902 (2016).

    Article  CAS  PubMed  Google Scholar 

  147. Hill, J. J., Hashimoto, T. & Lewis, D. A. Molecular mechanisms contributing to dendritic spine alterations in the prefrontal cortex of subjects with schizophrenia. Mol. Psychiatry 11, 557–566 (2006).

    Article  CAS  PubMed  Google Scholar 

  148. Rubio, M. D., Haroutunian, V. & Meador-Woodruff, J. H. Abnormalities of the Duo/Ras-related C3 botulinum toxin substrate 1/p21-activated kinase 1 pathway drive myosin light chain phosphorylation in frontal cortex in schizophrenia. Biol. Psychiatry 71, 906–914 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Deo, A. J. et al. Increased expression of Kalirin-9 in the auditory cortex of schizophrenia subjects: its role in dendritic pathology. Neurobiol. Dis. 45, 796–803 (2012).

    Article  CAS  PubMed  Google Scholar 

  150. Datta, D., Arion, D., Corradi, J. P. & Lewis, D. A. Altered expression of CDC42 signaling pathway components in cortical layer 3 pyramidal cells in schizophrenia. Biol. Psychiatry 78, 775–785 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Sadybekov, A., Tian, C., Arnesano, C., Katritch, V. & Herring, B. E. An autism spectrum disorder-related de novo mutation hotspot discovered in the GEF1 domain of Trio. Nat. Commun. 8, 601 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Ma, X. M., Huang, J. P., Eipper, B. A. & Mains, R. E. Expression of Trio, a member of the Dbl family of Rho GEFs in the developing rat brain. J. Comp. Neurol. 482, 333–348 (2005).

    Article  CAS  PubMed  Google Scholar 

  153. McPherson, C. E., Eipper, B. A. & Mains, R. E. Genomic organization and differential expression of Kalirin isoforms. Gene 284, 41–51 (2002).

    Article  CAS  PubMed  Google Scholar 

  154. Billuart, P. et al. Oligophrenin-1 encodes a rhoGAP protein involved in X-linked mental retardation. Nature 392, 923–926 (1998).

    Article  CAS  PubMed  Google Scholar 

  155. Govek, E. E. et al. The X-linked mental retardation protein oligophrenin-1 is required for dendritic spine morphogenesis. Nat. Neurosci. 7, 364–372 (2004).

    Article  CAS  PubMed  Google Scholar 

  156. Ramakers, G. J. et al. Dysregulation of Rho GTPases in the alphaPix/Arhgef6 mouse model of X-linked intellectual disability is paralleled by impaired structural and synaptic plasticity and cognitive deficits. Hum. Mol. Genet. 21, 268–286 (2012).

    Article  CAS  PubMed  Google Scholar 

  157. Allen, K. M. et al. PAK3 mutation in nonsyndromic X-linked mental retardation. Nat. Genet. 20, 25–30 (1998).

    Article  CAS  PubMed  Google Scholar 

  158. Boda, B. et al. The mental retardation protein PAK3 contributes to synapse formation and plasticity in hippocampus. J. Neurosci. 24, 10816–10825 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Zhang, H., Webb, D. J., Asmussen, H. & Horwitz, A. F. Synapse formation is regulated by the signaling adaptor GIT1. J. Cell Biol. 161, 131–142 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Menon, P. et al. Impaired spine formation and learning in GPCR kinase 2 interacting protein-1 (GIT1) knockout mice. Brain Res. 1317, 218–226 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Kim, M. J. et al. Functional analysis of rare variants found in schizophrenia implicates a critical role for GIT1-PAK3 signaling in neuroplasticity. Mol. Psychiatry 22, 417–429 (2017).

    Article  CAS  PubMed  Google Scholar 

  162. Morris, D. W. et al. An inherited duplication at the gene p21 protein-activated kinase 7 (PAK7) is a risk factor for psychosis. Hum. Mol. Genet. 23, 3316–3326 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Mulle, J. G. et al. Microdeletions of 3q29 confer high risk for schizophrenia. Am. J. Hum. Genet. 87, 229–236 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Kang, M. G., Guo, Y. & Huganir, R. L. AMPA receptor and GEF-H1/Lfc complex regulates dendritic spine development through RhoA signaling cascade. Proc. Natl Acad. Sci. USA 106, 3549–3554 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Endris, V. et al. The novel Rho-GTPase activating gene MEGAP/ srGAP3 has a putative role in severe mental retardation. Proc. Natl Acad. Sci. USA 99, 11754–11759 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Carlson, B. R. et al. WRP/srGAP3 facilitates the initiation of spine development by an inverse F-BAR domain, and its loss impairs long-term memory. J. Neurosci. 31, 2447–2460 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Vaswani, M., Linda, F. K. & Ramesh, S. Role of selective serotonin reuptake inhibitors in psychiatric disorders: a comprehensive review. Prog. Neuropsychopharmacol. Biol. Psychiatry 27, 85–102 (2003).

    Article  CAS  PubMed  Google Scholar 

  168. Forray, C. & Buller, R. Challenges and opportunities for the development of new antipsychotic drugs. Biochem. Pharmacol. 143, 10–24 (2017).

    Article  CAS  PubMed  Google Scholar 

  169. Yamatogi, Y. Principles of antiepileptic drug treatment of epilepsy. Psychiatry Clin. Neurosci. 58, S3–S6 (2004).

    Article  PubMed  Google Scholar 

  170. Al-Harbi, K. S. Treatment-resistant depression: therapeutic trends, challenges, and future directions. Patient Prefer. Adherence 6, 369–388 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Gonda, X. Basic pharmacology of NMDA receptors. Curr. Pharm. Des. 18, 1558–1567 (2012).

    Article  CAS  PubMed  Google Scholar 

  172. Pirotte, B., Francotte, P., Goffin, E. & de Tullio, P. AMPA receptor positive allosteric modulators: a patent review. Expert Opin. Ther. Pat. 23, 615–628 (2013).

    Article  CAS  PubMed  Google Scholar 

  173. Phoumthipphavong, V., Barthas, F., Hassett, S. & Kwan, A. C. Longitudinal effects of ketamine on dendritic architecture in vivo in the mouse medial frontal cortex. eNeuro 3, ENEURO.0133-15.2016 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Li, N. et al. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science 329, 959–964 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Berman, R. M. et al. Antidepressant effects of ketamine in depressed patients. Biol. Psychiatry 47, 351–354 (2000). This paper ignited the depression field, offering a novel therapeutic approach that was not only effective but also far more rapid than traditional treatments, although the mechanism remains controversial.

    Article  CAS  PubMed  Google Scholar 

  176. Kavalali, E. T. & Monteggia, L. M. How does ketamine elicit a rapid antidepressant response? Curr. Opin. Pharmacol. 20, 35–39 (2015).

    Article  CAS  PubMed  Google Scholar 

  177. Duman, C. H. & Duman, R. S. Spine synapse remodeling in the pathophysiology and treatment of depression. Neurosci. Lett. 601, 20–29 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Magarinos, A. M. et al. Effect of brain-derived neurotrophic factor haploinsufficiency on stress-induced remodeling of hippocampal neurons. Hippocampus 21, 253–264 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Conrad, C. D., McLaughlin, K. J., Huynh, T. N., El-Ashmawy, M. & Sparks, M. Chronic stress and a cyclic regimen of estradiol administration separately facilitate spatial memory: relationship with hippocampal CA1 spine density and dendritic complexity. Behav. Neurosci. 126, 142–156 (2012).

    Article  CAS  PubMed  Google Scholar 

  180. Liu, R. J. et al. GLYX-13 produces rapid antidepressant responses with key synaptic and behavioral effects distinct from ketamine. Neuropsychopharmacology 42, 1231–1242 (2017).

    Article  CAS  PubMed  Google Scholar 

  181. Abelaira, H. M. et al. Effects of ketamine administration on mTOR and reticulum stress signaling pathways in the brain after the infusion of rapamycin into prefrontal cortex. J. Psychiatr. Res. 87, 81–87 (2017).

    Article  PubMed  Google Scholar 

  182. Breier, A., Malhotra, A. K., Pinals, D. A., Weisenfeld, N. I. & Pickar, D. Association of ketamine-induced psychosis with focal activation of the prefrontal cortex in healthy volunteers. Am. J. Psychiatry 154, 805–811 (1997).

    Article  CAS  PubMed  Google Scholar 

  183. Malhotra, A. K. et al. Ketamine-induced exacerbation of psychotic symptoms and cognitive impairment in neuroleptic-free schizophrenics. Neuropsychopharmacology 17, 141–150 (1997).

    Article  CAS  PubMed  Google Scholar 

  184. Honey, G. D. et al. Individual differences in psychotic effects of ketamine are predicted by brain function measured under placebo. J. Neurosci. 28, 6295–6303 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Maeng, S. et al. Cellular mechanisms underlying the antidepressant effects of ketamine: role of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors. Biol. Psychiatry 63, 349–352 (2008).

    Article  CAS  PubMed  Google Scholar 

  186. Aligny, C. et al. Ketamine alters cortical integration of GABAergic interneurons and induces long-term sex-dependent impairments in transgenic Gad67-GFP mice. Cell Death Dis. 5, e1311 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Suzuki, K., Nosyreva, E., Hunt, K. W., Kavalali, E. T. & Monteggia, L. M. Effects of a ketamine metabolite on synaptic NMDAR function. Nature 546, E1–E3 (2017).

    Article  CAS  PubMed  Google Scholar 

  188. Zanos, P. et al. NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature 533, 481–486 (2016). Metabolism to an active metabolite is found to underlie many of the beneficial effects of ketamine in sufferers of depression, suggesting that NMDAR-independent mechanisms are novel, druggable disease targets.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Abdallah, C. G., Sanacora, G., Duman, R. S. & Krystal, J. H. Ketamine and rapid-acting antidepressants: a window into a new neurobiology for mood disorder therapeutics. Annu. Rev. Med. 66, 509–523 (2015).

    Article  CAS  PubMed  Google Scholar 

  190. Aleksandrova, L. R., Phillips, A. G. & Wang, Y. T. Antidepressant effects of ketamine and the roles of AMPA glutamate receptors and other mechanisms beyond NMDA receptor antagonism. J. Psychiatry Neurosci. 42, 222–229 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Song, M., Martinowich, K. & Lee, F. S. BDNF at the synapse: why location matters. Mol. Psychiatry 22, 1370–1375 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Bjorkholm, C. & Monteggia, L. M. BDNF — a key transducer of antidepressant effects. Neuropharmacology 102, 72–79 (2016).

    Article  CAS  PubMed  Google Scholar 

  193. Goff, D. C. & Evins, A. E. Negative symptoms in schizophrenia: neurobiological models and treatment response. Harv. Rev. Psychiatry 6, 59–77 (1998).

    Article  CAS  PubMed  Google Scholar 

  194. Goff, D. C. et al. Once-weekly D-cycloserine effects on negative symptoms and cognition in schizophrenia: an exploratory study. Schizophr. Res. 106, 320–327 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Tuominen, H. J., Tiihonen, J. & Wahlbeck, K. Glutamatergic drugs for schizophrenia: a systematic review and meta-analysis. Schizophr. Res. 72, 225–234 (2005).

    Article  PubMed  Google Scholar 

  196. Wink, L. K. et al. D-Cycloserine enhances durability of social skills training in autism spectrum disorder. Mol. Autism 8, 2 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  197. Moskal, J. R. et al. GLYX-13: a monoclonal antibody-derived peptide that acts as an N-methyl-D-aspartate receptor modulator. Neuropharmacology 49, 1077–1087 (2005).

    Article  CAS  PubMed  Google Scholar 

  198. Preskorn, S. et al. Randomized proof of concept trial of GLYX-13, an N-methyl-D-aspartate receptor glycine site partial agonist, in major depressive disorder nonresponsive to a previous antidepressant agent. J. Psychiatr. Pract. 21, 140–149 (2015).

    Article  PubMed  Google Scholar 

  199. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02951988 (2018).

  200. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02943564 (2018).

  201. Moskal, J. R., Burgdorf, J., Kroes, R. A., Brudzynski, S. M. & Panksepp, J. A novel NMDA receptor glycine-site partial agonist, GLYX-13, has therapeutic potential for the treatment of autism. Neurosci. Biobehav Rev. 35, 1982–1988 (2011). The remarkable progression of GLYX-13 through clinical trials and the wide range of potential applications, including autism, as outlined within this preclinical work, support NMDAR glycine site regulators as potent tools in regulating human neurodevelopmental disorders.

    Article  CAS  PubMed  Google Scholar 

  202. Santini, A. C. et al. Glix 13, a new drug acting on glutamatergic pathways in children and animal models of autism spectrum disorders. Biomed. Res. Int. 2014, 234295 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Zhang, X. L., Sullivan, J. A., Moskal, J. R. & Stanton, P. K. A. NMDA receptor glycine site partial agonist, GLYX-13, simultaneously enhances LTP and reduces LTD at Schaffer collateral-CA1 synapses in hippocampus. Neuropharmacology 55, 1238–1250 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Burgdorf, J. et al. The long-lasting antidepressant effects of rapastinel (GLYX-13) are associated with a metaplasticity process in the medial prefrontal cortex and hippocampus. Neuroscience 308, 202–211 (2015).

    Article  CAS  PubMed  Google Scholar 

  205. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02067793 (2016).

  206. Nisenbaum, E. S. & Witkin, J. M. in Glutamate-Based Therapies for Psychiatric Disorders (ed. Skolnick, P.) 39–56 (2010).

    Book  Google Scholar 

  207. O'Neill, M. J. & Dix, S. AMPA receptor potentiators as cognitive enhancers. IDrugs 10, 185–192 (2007).

    CAS  PubMed  Google Scholar 

  208. Lauterborn, J. C. et al. Chronic ampakine treatments stimulate dendritic growth and promote learning in middle-aged rats. J. Neurosci. 36, 1636–1646 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Baudry, M. et al. Ampakines promote spine actin polymerization, long-term potentiation, and learning in a mouse model of Angelman syndrome. Neurobiol. Dis. 47, 210–215 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Lipina, T., Weiss, K. & Roder, J. The ampakine CX546 restores the prepulse inhibition and latent inhibition deficits in mGluR5-deficient mice. Neuropsychopharmacology 32, 745–756 (2007).

    Article  CAS  PubMed  Google Scholar 

  211. Chang, P. K., Prenosil, G. A., Verbich, D., Gill, R. & McKinney, R. A. Prolonged ampakine exposure prunes dendritic spines and increases presynaptic release probability for enhanced long-term potentiation in the hippocampus. Eur. J. Neurosci. 40, 2766–2776 (2014).

    Article  PubMed  Google Scholar 

  212. Nations, K. R. et al. Examination of Org 26576, an AMPA receptor positive allosteric modulator, in patients diagnosed with major depressive disorder: an exploratory, randomized, double-blind, placebo-controlled trial. J. Psychopharmacol 26, 1525–1539 (2012).

    Article  CAS  PubMed  Google Scholar 

  213. Nations, K. R. et al. Maximum tolerated dose evaluation of the AMPA modulator Org 26576 in healthy volunteers and depressed patients: a summary and method analysis of bridging research in support of phase II dose selection. Drugs R. D. 12, 127–139 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Goff, D. C. et al. A placebo-controlled add-on trial of the Ampakine, CX516, for cognitive deficits in schizophrenia. Neuropsychopharmacology 33, 465–472 (2008).

    Article  CAS  PubMed  Google Scholar 

  215. Gao, R. & Penzes, P. Common mechanisms of excitatory and inhibitory imbalance in schizophrenia and autism spectrum disorders. Curr. Mol. Med. 15, 146–167 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Krauss, G. L. Perampanel: a selective AMPA antagonist for treating seizures. Epilepsy Curr. 13, 269–272 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  217. Ko, D., Yang, H., Williams, B., Xing, D. & Laurenza, A. Perampanel in the treatment of partial seizures: time to onset and duration of most common adverse events from pooled Phase III and extension studies. Epilepsy Behav. 48, 45–52 (2015).

    Article  PubMed  Google Scholar 

  218. Kato, A. S. et al. Forebrain-selective AMPA-receptor antagonism guided by TARP gamma-8 as an antiepileptic mechanism. Nat. Med. 22, 1496–1501 (2016).

    Article  CAS  PubMed  Google Scholar 

  219. Maher, M. P. et al. Discovery and characterization of AMPA receptor modulators selective for TARP-gamma8. J. Pharmacol. Exp. Ther. 357, 394–414 (2016).

    Article  CAS  PubMed  Google Scholar 

  220. Drummond, J. B., Tucholski, J., Haroutunian, V. & Meador-Woodruff, J. H. Transmembrane AMPA receptor regulatory protein (TARP) dysregulation in anterior cingulate cortex in schizophrenia. Schizophr. Res. 147, 32–38 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  221. Sumioka, A., Yan, D. & Tomita, S. TARP phosphorylation regulates synaptic AMPA receptors through lipid bilayers. Neuron 66, 755–767 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Ortner, N. J. & Striessnig, J. L-Type calcium channels as drug targets in CNS disorders. Channels 10, 7–13 (2016).

    Article  PubMed  Google Scholar 

  223. Kabir, Z. D., Martinez-Rivera, A. & Rajadhyaksha, A. M. From gene to behavior: L-type calcium channel mechanisms underlying neuropsychiatric symptoms. Neurotherapeutics 14, 588–613 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Hollister, L. E. & Trevino, E. S. Calcium channel blockers in psychiatric disorders: a review of the literature. Can. J. Psychiatry 44, 658–664 (1999).

    Article  CAS  PubMed  Google Scholar 

  225. Cipriani, A. et al. A systematic review of calcium channel antagonists in bipolar disorder and some considerations for their future development. Mol. Psychiatry 21, 1324–1332 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Lencz, T. & Malhotra, A. K. Targeting the schizophrenia genome: a fast track strategy from GWAS to clinic. Mol. Psychiatry 20, 820–826 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01658150 (2017).

  228. Ostacher, M. J. et al. Pilot investigation of isradipine in the treatment of bipolar depression motivated by genome-wide association. Bipolar Disord. 16, 199–203 (2014).

    Article  CAS  PubMed  Google Scholar 

  229. Kang, S. et al. CaV1.3-selective L-type calcium channel antagonists as potential new therapeutics for Parkinson's disease. Nat. Commun. 3, 1146 (2012).

    Article  CAS  PubMed  Google Scholar 

  230. Basso, A. D., Kirschmeier, P. & Bishop, W. R. Lipid posttranslational modifications. Farnesyl transferase inhibitors. J. Lipid Res. 47, 15–31 (2006).

    Article  CAS  PubMed  Google Scholar 

  231. Costa, R. M. et al. Mechanism for the learning deficits in a mouse model of neurofibromatosis type 1. Nature 415, 526–530 (2002).

    Article  CAS  PubMed  Google Scholar 

  232. Li, W. et al. The HMG-CoA reductase inhibitor lovastatin reverses the learning and attention deficits in a mouse model of neurofibromatosis type 1. Curr. Biol. 15, 1961–1967 (2005). Lovastatin shows promise in preclinical models of neurofibromatosis type 1, suggesting that the vast range of RAS inhibitors developed for cancer may be suitable for repurposing for Rasopathies within the developing brain.

    Article  CAS  PubMed  Google Scholar 

  233. Widemann, B. C. et al. Phase 2 randomized, flexible crossover, double-blinded, placebo-controlled trial of the farnesyltransferase inhibitor tipifarnib in children and young adults with neurofibromatosis type 1 and progressive plexiform neurofibromas. Neuro Oncol. 16, 707–718 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Mainberger, F. et al. Lovastatin improves impaired synaptic plasticity and phasic alertness in patients with neurofibromatosis type 1. BMC Neurol. 13, 131 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  235. Acosta, M. T. et al. Lovastatin as treatment for neurocognitive deficits in neurofibromatosis type 1: phase I study. Pediatr. Neurol. 45, 241–245 (2011).

    Article  PubMed  Google Scholar 

  236. Bearden, C. E. et al. A randomized placebo-controlled lovastatin trial for neurobehavioral function in neurofibromatosis I. Ann. Clin. Transl Neurol. 3, 266–279 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Payne, J. M. et al. Randomized placebo-controlled study of lovastatin in children with neurofibromatosis type 1. Neurology 87, 2575–2584 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Yan, Z., Kim, E., Datta, D., Lewis, D. A. & Soderling, S. H. Synaptic actin dysregulation, a convergent mechanism of mental disorders? J. Neurosci. 36, 11411–11417 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Packer, A. Enrichment of factors regulating canonical Wnt signaling among autism risk genes. Mol. Psychiatry 22, 492–493 (2018).

    Article  CAS  Google Scholar 

  240. Marin, O. Developmental timing and critical windows for the treatment of psychiatric disorders. Nat. Med. 22, 1229–1238 (2016).

    Article  CAS  PubMed  Google Scholar 

  241. Robinson, L. et al. Morphological and functional reversal of phenotypes in a mouse model of Rett syndrome. Brain 135, 2699–2710 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  242. Boda, B., Mendez, P., Boury-Jamot, B., Magara, F. & Muller, D. Reversal of activity-mediated spine dynamics and learning impairment in a mouse model of Fragile X syndrome. Eur. J. Neurosci. 39, 1130–1137 (2014).

    Article  PubMed  Google Scholar 

  243. Ehninger, D., Li, W., Fox, K., Stryker, M. P. & Silva, A. J. Reversing neurodevelopmental disorders in adults. Neuron 60, 950–960 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Wegel, E. et al. Imaging cellular structures in super-resolution with SIM, STED and localisation microscopy: a practical comparison. Sci. Rep. 6, 27290 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Lam, F., Cladiere, D., Guillaume, C., Wassmann, K. & Bolte, S. Super-resolution for everybody: an image processing workflow to obtain high-resolution images with a standard confocal microscope. Methods 115, 17–27 (2017).

    Article  CAS  PubMed  Google Scholar 

  246. Younts, T. J. et al. Presynaptic protein synthesis is required for long-term plasticity of GABA release. Neuron 92, 479–492 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Andreska, T., Aufmkolk, S., Sauer, M. & Blum, R. High abundance of BDNF within glutamatergic presynapses of cultured hippocampal neurons. Front. Cell. Neurosci. 8, 107 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  248. Tønnenson, J., Katona, G., Rózsa, B. & Näggerl, U. V. Spine neck plasticity regulates compartmentalization of synapses. Nat. Neurosci. 17, 678–685 (2014).

    Article  CAS  Google Scholar 

  249. Bar, J., Kobler, O., van Bommel, B. & Mikhaylova, M. Periodic F-actin structures shape the neck of dendritic spines. Sci. Rep. 6, 37136 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  250. Urban, N. T., Willig, K. I., Hell, S. W. & Nagerl, U. V. STED nanoscopy of actin dynamics in synapses deep inside living brain slices. Biophys. J. 101, 1277–1284 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Shim, S. H. et al. Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes. Proc. Natl Acad. Sci. USA 109, 13978–13983 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Frost, N. A., Kerr, J. M., Lu, H. E. & Blanpied, T. A. A network of networks: cytoskeletal control of compartmentalized function within dendritic spines. Curr. Opin. Neurobiol. 20, 578–587 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Izeddin, I. et al. Super-resolution dynamic imaging of dendritic spines using a low-affinity photoconvertible actin probe. PLOS ONE 6, e15611 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Wen, P. J. et al. Actin dynamics provides membrane tension to merge fusing vesicles into the plasma membrane. Nat. Commun. 7, 12604 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Hoze, N. et al. Heterogeneity of AMPA receptor trafficking and molecular interactions revealed by superresolution analysis of live cell imaging. Proc. Natl Acad. Sci. USA 109, 17052–17057 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. MacGillavry, H. D., Song, Y., Raghavachari, S. & Blanpied, T. A. Nanoscale scaffolding domains within the postsynaptic density concentrate synaptic AMPA receptors. Neuron 78, 615–622 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Nair, D. et al. Super-resolution imaging reveals that AMPA receptors inside synapses are dynamically organized in nanodomains regulated by PSD95. J. Neurosci. 33, 13204–13224 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Forrest, M. P. et al. Open chromatin profiling in hiPSC-derived neurons prioritizes functional noncoding psychiatric risk variants and highlights neurodevelopmental loci. Cell Stem Cell 21, 305–318.e8 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Chailangkarn, T. et al. A human neurodevelopmental model for Williams syndrome. Nature 536, 338–343 (2016). This is a highly impactful study showing similar dendritic deficits in induced pluripotent stem-cell- derived neurons and Golgi-impregnated brain from patients with the autism related 7q11.23 deletion.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Marchetto, M. C. et al. A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell 143, 527–539 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Nageshappa, S. et al. Altered neuronal network and rescue in a human MECP2 duplication model. Mol. Psychiatry 21, 178–188 (2016).

    Article  CAS  PubMed  Google Scholar 

  262. Ricciardi, S. et al. CDKL5 ensures excitatory synapse stability by reinforcing NGL-1-PSD95 interaction in the postsynaptic compartment and is impaired in patient iPSC-derived neurons. Nat. Cell Biol. 14, 911–923 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Pak, C. et al. Human neuropsychiatric disease modeling using conditional deletion reveals synaptic transmission defects caused by heterozygous mutations in NRXN1. Cell Stem Cell 17, 316–328 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Silbereis, J. C., Pochareddy, S., Zhu, Y., Li, M. & Sestan, N. The cellular and molecular landscapes of the developing human central nervous system. Neuron 89, 248–268 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Moeschler, J. B., Shevell, M. & Committee on Genetics. Comprehensive evaluation of the child with intellectual disability or global developmental delays. Pediatrics 134, e903–e918 (2014).

    Article  PubMed  Google Scholar 

  266. Neubauer, B. A., Gross, S. & Hahn, A. Epilepsy in childhood and adolescence. Dtsch. Arztebl Int. 105, 319–328 (2008).

    PubMed  PubMed Central  Google Scholar 

  267. Jones, E. J., Gliga, T., Bedford, R., Charman, T. & Johnson, M. H. Developmental pathways to autism: a review of prospective studies of infants at risk. Neurosci. Biobehav. Rev. 39, 1–33 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  268. Leboyer, M., Henry, C., Paillere-Martinot, M. L. & Bellivier, F. Age at onset in bipolar affective disorders: a review. Bipolar Disord. 7, 111–118 (2005).

    Article  PubMed  Google Scholar 

  269. Jones, P. B. Adult mental health disorders and their age at onset. Br. J. Psychiatry 202, S5–S10 (2013).

    Article  Google Scholar 

  270. Bayes, A. et al. Characterization of the proteome, diseases and evolution of the human postsynaptic density. Nat. Neurosci. 14, 19–21 (2011).

    Article  CAS  PubMed  Google Scholar 

  271. Turner, T. N. et al. de novo-db: a compendium of human de novo variants. Nucleic Acids Res. 45, D804–D811 (2017).

    Article  CAS  PubMed  Google Scholar 

  272. Xu, B. et al. De novo gene mutations highlight patterns of genetic and neural complexity in schizophrenia. Nat. Genet. 44, 1365–1369 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Xu, B. et al. Exome sequencing supports a de novo mutational paradigm for schizophrenia. Nat. Genet. 43, 864–868 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Girard, S. L. et al. Increased exonic de novo mutation rate in individuals with schizophrenia. Nat. Genet. 43, 860–863 (2011).

    Article  CAS  PubMed  Google Scholar 

  275. Genovese, G. et al. Increased burden of ultra-rare protein-altering variants among 4,877 individuals with schizophrenia. Nat. Neurosci. 19, 1433–1441 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Huganir, R. L. & Nicoll, R. A. AMPARs and synaptic plasticity: the last 25 years. Neuron 80, 704–717 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Lepack, A. E., Fuchikami, M., Dwyer, J. M., Banasr, M. & Duman, R. S. BDNF release is required for the behavioral actions of ketamine. Int. J. Neuropsychopharmacol. 18, pyu033 (2015).

    Article  CAS  Google Scholar 

  278. Lee, S. J., Escobedo-Lozoya, Y., Szatmari, E. M. & Yasuda, R. Activation of CaMKII in single dendritic spines during long-term potentiation. Nature 458, 299–304 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Yoshii, A. & Constantine-Paton, M. Postsynaptic BDNF-TrkB signaling in synapse maturation, plasticity, and disease. Dev. Neurobiol. 70, 304–322 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  280. Marshall, C. R. et al. Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects. Nat. Genet. 49, 27–35 (2017).

    Article  CAS  PubMed  Google Scholar 

  281. Maynard, K. R. & Stein, E. DSCAM contributes to dendrite arborization and spine formation in the developing cerebral cortex. J. Neurosci. 32, 16637–16650 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Schoch, H. et al. Sociability deficits and altered amygdala circuits in mice lacking Pcdh10, an autism associated gene. Biol. Psychiatry 81, 193–202 (2017).

    Article  CAS  PubMed  Google Scholar 

  283. Liu, Y. T. et al. PRRT2 mutations lead to neuronal dysfunction and neurodevelopmental defects. Oncotarget 7, 39184–39196 (2016).

    PubMed  PubMed Central  Google Scholar 

  284. Heron, S. E. et al. PRRT2 mutations cause benign familial infantile epilepsy and infantile convulsions with choreoathetosis syndrome. Am. J. Hum. Genet. 90, 152–160 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Hamad, M. I. et al. Type I TARPS promote dendritic growth of early postnatal neocortical pyramidal cells in organotypic cultures. Development 141, 1737–1748 (2014).

    Article  CAS  PubMed  Google Scholar 

  286. Lemke, J. R. et al. Mutations in GRIN2A cause idiopathic focal epilepsy with rolandic spikes. Nat. Genet. 45, 1067–1072 (2013).

    Article  CAS  PubMed  Google Scholar 

  287. Durand, C. M. et al. Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat. Genet. 39, 25–27 (2007).

    Article  CAS  PubMed  Google Scholar 

  288. El-Husseini, A. E., Schnell, E., Chetkovich, D. M., Nicoll, R. A. & Bredt, D. S. PSD-95 involvement in maturation of excitatory synapses. Science 290, 1364–1368 (2000).

    CAS  PubMed  Google Scholar 

  289. Wu, Q., Sun, M., Bernard, L. P. & Zhang, H. Postsynaptic density 95 (PSD-95) serine 561 phosphorylation regulates a conformational switch and bidirectional dendritic spine structural plasticity. J. Biol. Chem. 292, 16150–16160 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Stessman, H. A. et al. Targeted sequencing identifies 91 neurodevelopmental-disorder risk genes with autism and developmental-disability biases. Nat. Genet. 49, 515–526 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Hung, A. Y., Sung, C. C., Brito, I. L. & Sheng, M. Degradation of postsynaptic scaffold GKAP and regulation of dendritic spine morphology by the TRIM3 ubiquitin ligase in rat hippocampal neurons. PLOS ONE 5, e9842 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  292. Chao, H. W., Hong, C. J., Huang, T. N., Lin, Y. L. & Hsueh, Y. P. SUMOylation of the MAGUK protein CASK regulates dendritic spinogenesis. J. Cell Biol. 182, 141–155 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Jourdain, P., Fukunaga, K. & Muller, D. Calcium/calmodulin-dependent protein kinase II contributes to activity-dependent filopodia growth and spine formation. J. Neurosci. 23, 10645–10649 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Fink, C. C. et al. Selective regulation of neurite extension and synapse formation by the beta but not the alpha isoform of CaMKII. Neuron 39, 283–297 (2003).

    Article  CAS  PubMed  Google Scholar 

  295. Kury, S. et al. De novo mutations in protein kinase genes CAMK2A and CAMK2B cause intellectual disability. Am. J. Hum. Genet. 101, 768–788 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Araki, Y., Zeng, M., Zhang, M. & Huganir, R. L. Rapid dispersion of SynGAP from synaptic spines triggers AMPA receptor insertion and spine enlargement during LTP. Neuron 85, 173–189 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Johns Hopkins University. OMIM, online mendelian inheritance in man. OMIM https://omim.org/ (2018).

  298. Wang, M. et al. Distinct defects in spine formation or pruning in two gene duplication mouse models of autism. Neurosci. Bull. 33, 143–152 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Blizinsky, K. D. et al. Reversal of dendritic phenotypes in 16p11.2 microduplication mouse model neurons by pharmacological targeting of a network hub. Proc. Natl Acad. Sci. USA 113, 8520–8525 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Moutin, E. et al. Palmitoylation of cdc42 promotes spine stabilization and rescues spine density deficit in a mouse model of 22q11.2 deletion syndrome. Cereb. Cortex 27, 3618–3629 (2017).

    CAS  PubMed  Google Scholar 

  301. Fenelon, K. et al. The pattern of cortical dysfunction in a mouse model of a schizophrenia-related microdeletion. J. Neurosci. 33, 14825–14839 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank M. D. Martin-de-Saavedra and K. Myczek for lively discussions and critical input on preparing the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

M.P.F., E.P. and P.P. researched data for the article, made substantial contributions to discussions of the content, wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Peter Penzes.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Supplementary information

Supplementary Table S1

Neuropsychiatric risk loci with a reported effect on structural plasticity (PDF 555 kb)

Glossary

Dendritic spines

Micrometre protrusions on dendritic branches of neurons that host the majority of excitatory synapses in the brain.

Genetic risk factors

DNA sequence variants that are associated with increased disease susceptibility.

Synaptic input field

The total number and spatial arrangement of a neurons postsynaptic receptors. This postsynaptic field is determined by the architecture of the dendritic tree and the number and size of receptor domains contained within dendritic spines.

Postsynaptic density

(PSD). A specialization on excitatory dendritic spines, originally identified by electron microscopy, which contains glutamate receptors and many associated scaffolding and trafficking proteins that are crucial for excitatory synaptic transmission.

Long-term potentiation

(LTP). Long-lasting increase in synaptic strength between neurons, usually resulting from synchronous or temporally coordinated presynaptic and postsynaptic activity.

Long-term depression

(LTD). Long-lasting weakening of synaptic strength between neurons, often resulting from asynchronous presynaptic and postsynaptic activity.

Cell reprogramming technologies

Techniques in biotechnology used to convert one cell type into another using defined biological factors; for example, transcription factors can be introduced into adult somatic cells to reprogramme them into induced pluripotent stem cells or induced neurons.

Common variants

Alterations in a DNA sequence, often with small effect on disease risk, which are present in large proportion of the general population (> 1%). These are typically single-nucleotide polymorphisms that are identified in genome-wide association study (GWAS).

Rare variants

Mutations in a DNA sequence, often with a large effect on disease risk, which occur only in a small fraction of the general population (< 1%). These types of variants are usually identified in family, exome sequencing or copy number variant (CNV) studies.

Genome-wide association studies

(GWAS). Genetic studies designed to identify variants in the genome that associate with a disease or trait. Large-scale GWAS have been especially successful in identifying many common risk variants in schizophrenia and bipolar disorder.

Exome sequencing

Genomic sequencing technique used to sequence all of the protein-coding regions (exons) of the genome.

Enrichment analyses

Bioinformatic technique used to identify over-represented gene sets or biological processes from large omic data sets. This method is typically used to understand the concerted function of hundreds of genes and/or proteins from genomic and proteomic data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Forrest, M., Parnell, E. & Penzes, P. Dendritic structural plasticity and neuropsychiatric disease. Nat Rev Neurosci 19, 215–234 (2018). https://doi.org/10.1038/nrn.2018.16

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn.2018.16

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing