Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Neural circuits underlying thirst and fluid homeostasis

Abstract

Thirst motivates animals to find and consume water. More than 40 years ago, a set of interconnected brain structures known as the lamina terminalis was shown to govern thirst. However, owing to the anatomical complexity of these brain regions, the structure and dynamics of their underlying neural circuitry have remained obscure. Recently, the emergence of new tools for neural recording and manipulation has reinvigorated the study of this circuit and prompted re-examination of longstanding questions about the neural origins of thirst. Here, we review these advances, discuss what they teach us about the control of drinking behaviour and outline the key questions that remain unanswered.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the neural circuits underlying thirst and fluid homeostasis in mammals.
Figure 2: Anticipatory and homeostatic regulation of the thirst circuit.
Figure 3: The thirst circuit monitors and controls feeding behaviour.

Similar content being viewed by others

References

  1. Cannon, W. B. The physiological basis of thirst. Proc. R. Soc. B Biol. Sci. 90, 283–301 (1918).

    Article  CAS  Google Scholar 

  2. Montgomery, M. F. The role of the salivary glands in the thirst mechanism. Am. J. Physiol. 96, 221–227 (1931).

    Article  Google Scholar 

  3. Leschke, E. Ueber die durstempfindung [German]. Arch. Psychiatrie Nervenkrankheiten 59, 773–781 (1918).

    Article  Google Scholar 

  4. Gilman, A. The relation between blood osmotic pressure, fluid distribution and voluntary water intake. Am. J. Physiol. 120, 323–328 (1937).

    Article  CAS  Google Scholar 

  5. Wolf, A. V. Osmometric analysis of thirst in man and dog. Am. J. Physiol. 161, 75–86 (1950).

    Article  PubMed  CAS  Google Scholar 

  6. Fitzsimons, J. T. The effects of slow infusions of hypertonic solutions on drinking and drinking thresholds in rats. J. Physiol. 167, 344–354 (1963).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Fitzsimons, J. T. Drinking by rats depleted of body fluid without increase in osmotic pressure. J. Physiol. 159, 297–309 (1961).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Stricker, E. M. Extracellular fluid volume and thirst. Am. J. Physiol. 211, 232–238 (1966).

    Article  PubMed  CAS  Google Scholar 

  9. Lehr, D., Mallow, J. & Krukowski, M. Copious drinking and simultaneous inhibition of urine flow elicited by β-adrenergic stimulation and contrary effect of α-adrenergic stimulation. J. Pharmacol. Exp. Ther. 158, 150–163 (1967).

    PubMed  CAS  Google Scholar 

  10. Fitzsimons, J. T. Angiotensin, thirst, and sodium appetite. Physiol. Rev. 78, 583–686 (1998).

    Article  PubMed  CAS  Google Scholar 

  11. Bourque, C. W. Central mechanisms of osmosensation and systemic osmoregulation. Nat. Rev. Neurosci. 9, 519–531 (2008).

    Article  PubMed  CAS  Google Scholar 

  12. Leib, D. E., Zimmerman, C. A. & Knight, Z. A. Thirst. Curr. Biol. 26, R1260–R1265 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Oka, Y., Ye, M. & Zuker, C. S. Thirst driving and suppressing signals encoded by distinct neural populations in the brain. Nature 520, 349–352 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Betley, J. N. et al. Neurons for hunger and thirst transmit a negative-valence teaching signal. Nature 521, 180–185 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Nation, H. L., Nicoleau, M., Kinsman, B. J., Browning, K. N. & Stocker, S. D. DREADD-induced activation of subfornical organ neurons stimulates thirst and salt appetite. J. Neurophysiol. 115, 3123–3129 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Zimmerman, C. A. et al. Thirst neurons anticipate the homeostatic consequences of eating and drinking. Nature 537, 680–684 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Abbott, S. B. G., Machado, N. L. S., Geerling, J. C. & Saper, C. B. Reciprocal control of drinking behavior by median preoptic neurons in mice. J. Neurosci. 36, 8228–8237 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Gizowski, C., Zaelzer, C. & Bourque, C. W. Clock-driven vasopressin neurotransmission mediates anticipatory thirst prior to sleep. Nature 537, 685–688 (2016).

    Article  PubMed  CAS  Google Scholar 

  19. Mandelblat-Cerf, Y. et al. Bidirectional anticipation of future osmotic challenges by vasopressin neurons. Neuron 93, 57–65 (2017).

    Article  PubMed  CAS  Google Scholar 

  20. Jarvie, B. C. & Palmiter, R. D. HSD2 neurons in the hindbrain drive sodium appetite. Nat. Neurosci. 20, 167–169 (2017).

    Article  PubMed  CAS  Google Scholar 

  21. Matsuda, T. et al. Distinct neural mechanisms for the control of thirst and salt appetite in the subfornical organ. Nat. Neurosci. 20, 230–241 (2017).

    Article  PubMed  CAS  Google Scholar 

  22. Andersson, B. Polydipsia caused by intrahypothalamic injections of hypertonic NaCl-solutions. Experientia 8, 157–158 (1952).

    Article  PubMed  CAS  Google Scholar 

  23. Andersson, B. The effect of injections of hypertonic NaCl-solutions into different parts of the hypothalamus of goats. Acta Physiol. Scand. 28, 188–201 (1953).

    Article  PubMed  CAS  Google Scholar 

  24. Andersson, B. & McCann, S. M. A further study of polydipsia evoked by hypothalamic stimulation of the goat. Acta Physiol. Scand. 33, 333–346 (1955).

    Article  PubMed  CAS  Google Scholar 

  25. Epstein, A. N., Fitzsimons, J. T. & Rolls, B. J. Drinking induced by injection of angiotensin into the brain of the rat. J. Physiol. 210, 457–474 (1970).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Fitzsimons, J. T. The effect on drinking of peptide precursors and of shorter chain peptide fragments of angiotensin II injected into the rat's diencephalon. J. Physiol. 214, 295–303 (1971).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Andersson, B. & McCann, S. M. The effect of hypothalamic lesions on the water intake of the dog. Acta Physiol. Scand. 35, 312–320 (1955).

    Article  Google Scholar 

  28. Simpson, J. B. & Routtenberg, A. Subfornical organ: site of drinking elicitation by angiotensin II. Science 181, 1172–1175 (1973).

    Article  PubMed  CAS  Google Scholar 

  29. Andersson, B., Leksell, L. G. & Lishajko, F. Perturbations in fluid balance induced by medially placed forebrain lesions. Brain Res. 99, 261–275 (1975).

    Article  PubMed  CAS  Google Scholar 

  30. Buggy, J. & Jonhson, A. K. Preoptic-hypothalamic periventricular lesions: thirst deficits and hypernatremia. Am. J. Physiol. Regul. Integr. Comp. Physiol. 233, R44–R52 (1977).

    Article  CAS  Google Scholar 

  31. McKinley, M. J., Denton, D. A. & Weisinger, R. S. Sensors for antidiuresis and thirst: osmoreceptors or CSF sodium detectors? Brain Res. 141, 89–103 (1978).

    Article  PubMed  CAS  Google Scholar 

  32. McKinley, M. J. et al. Osmoregulatory thirst in sheep is disrupted by ablation of the anterior wall of the optic recess. Brain Res. 236, 210–215 (1982).

    Article  PubMed  CAS  Google Scholar 

  33. Thrasher, T. N., Keil, L. C. & Ramsay, D. J. Lesions of the organum vasculosum of the lamina terminalis (OVLT) attenuate osmotically-induced drinking and vasopressin secretion in the dog. Endocrinology 110, 1837–1839 (1982).

    Article  PubMed  CAS  Google Scholar 

  34. McKinley, M. J. et al. The sensory circumventricular organs of the mammalian brain. Adv. Anat. Embryol. Cell Biol. 172, 1–127 (2003).

    Article  Google Scholar 

  35. Sayer, R. J., Hubbard, J. I. & Sirett, N. E. Rat organum vasculosum laminae terminalis in vitro: responses to transmitters. Am. J. Physiol. Regul. Integr. Comp. Physiol. 247, R374–R379 (1984).

    Article  CAS  Google Scholar 

  36. Sibbald, J. R., Hubbard, J. I. & Sirett, N. E. Responses from osmosensitive neurons of the rat subfornical organ in vitro. Brain Res. 461, 205–214 (1988).

    Article  PubMed  CAS  Google Scholar 

  37. Vivas, L., Chiaraviglio, E. & Carrer, H. F. Rat organum vasculosum laminae terminalis in vitro: responses to changes in sodium concentration. Brain Res. 519, 294–300 (1990).

    Article  PubMed  CAS  Google Scholar 

  38. Anderson, J. W., Washburn, D. L. S. & Ferguson, A. V. Intrinsic osmosensitivity of subfornical organ neurons. Neuroscience 100, 539–547 (2000).

    Article  PubMed  CAS  Google Scholar 

  39. Felix, D. & Akert, K. The effect of angiotensin II on neurones of the cat subfornical organ. Brain Res. 76, 350–353 (1974).

    Article  PubMed  CAS  Google Scholar 

  40. Knowles, W. D. & Phillips, M. I. Angiotensin II responsive cells in the organum vasculosum lamina terminalis (OVLT) recorded in hypothalamic brain slices. Brain Res. 197, 256–259 (1980).

    Article  PubMed  CAS  Google Scholar 

  41. Gutman, M. B., Ciriello, J. & Mogenson, G. J. Effects of plasma angiotensin II and hypernatremia on subfornical organ neurons. Am. J. Physiol. Regul. Integr. Comp. Physiol. 254, R746–R754 (1988).

    Article  CAS  Google Scholar 

  42. McKinley, M. J., Badoer, E. & Oldfield, B. J. Intravenous angiotensin II induces Fos-immunoreactivity in circumventricular organs of the lamina terminalis. Brain Res. 594, 295–300 (1992).

    Article  PubMed  CAS  Google Scholar 

  43. Gebke, E., Müller, A. R., Jurzak, M. & Gerstberger, R. Angiotensin II-induced calcium signalling in neurons and astrocytes of rat circumventricular organs. Neuroscience 85, 509–520 (1998).

    Article  PubMed  CAS  Google Scholar 

  44. Babic, T., Roder, S. & Ciriello, J. Direct projections from caudal ventrolateral medullary depressor sites to the subfornical organ. Brain Res. 1003, 113–121 (2004).

    Article  PubMed  CAS  Google Scholar 

  45. Ciriello, J. Caudal ventrolateral medulla mediates baroreceptor afferent inputs to subfornical organ angiotensin II responsive neurons. Brain Res. 1491, 127–135 (2013).

    Article  PubMed  CAS  Google Scholar 

  46. McKinley, M. J. et al. The median preoptic nucleus: front and centre for the regulation of body fluid, sodium, temperature, sleep and cardiovascular homeostasis. Acta Physiol. 214, 8–32 (2015).

    Article  CAS  Google Scholar 

  47. Swanson, L. W. An autoradiographic study of the efferent connections of the preoptic region in the rat. J. Comp. Neurol. 167, 227–256 (1976).

    Article  PubMed  CAS  Google Scholar 

  48. Miselis, R. R., Shapiro, R. E. & Hand, P. J. Subfornical organ efferents to neural systems for control of body water. Science 205, 1022–1025 (1979).

    Article  PubMed  CAS  Google Scholar 

  49. Camacho, A. & Phillips, M. I. Horseradish peroxidase study in rat of the neural connections of the organum vasculosum of the lamina terminalis. Neurosci. Lett. 25, 201–204 (1981).

    Article  PubMed  CAS  Google Scholar 

  50. Lind, R. W., van Hoesen, G. W. & Johnson, A. K. An HRP study of the connections of the subfornical organ of the rat. J. Comp. Neurol. 210, 265–277 (1982).

    Article  PubMed  CAS  Google Scholar 

  51. Saper, C. B. & Levisohn, D. Afferent connections of the median preoptic nucleus in the rat: anatomical evidence for a cardiovascular integrative mechanism in the anteroventral third ventricular (AV3V) region. Brain Res. 288, 21–31 (1983).

    Article  PubMed  CAS  Google Scholar 

  52. Buggy, J. & Fisher, A. E. Evidence for a dual central role for angiotensin in water and sodium intake. Nature 250, 733–735 (1974).

    Article  PubMed  CAS  Google Scholar 

  53. Robertson, A., Kucharczyk, J. & Mogenson, G. J. Drinking behavior following electrical stimulation of the subfornical organ in the rat. Brain Res. 274, 197–200 (1983).

    Article  PubMed  CAS  Google Scholar 

  54. Fluharty, S. J. & Epstein, A. N. Sodium appetite elicited by intracerebroventricular infusion of angiotensin II in the rat: II. Synergistic interaction with systemic mineralocorticoids. Behav. Neurosci. 97, 746–758 (1983).

    Article  PubMed  CAS  Google Scholar 

  55. Mangiapane, M. L. & Simpson, J. B. Subfornical organ: forebrain site of pressor and dipsogenic action of angiotensin II. Am. J. Physiol. Regul. Integr. Comp. Physiol. 239, R382–R389 (1980).

    Article  CAS  Google Scholar 

  56. Ishibashi, S. & Nicolaïdis, S. Hypertension induced by electrical stimulation of the subfornical organ (SFO). Brain Res. Bull. 6, 135–139 (1981).

    Article  PubMed  CAS  Google Scholar 

  57. Ferguson, A. V. & Kasting, N. W. Electrical stimulation in subfornical organ increases plasma vasopressin concentrations in the conscious rat. Am. J. Physiol. Regul. Integr. Comp. Physiol. 251, R425–R428 (1986).

    Article  CAS  Google Scholar 

  58. Ferguson, A. V. & Kasting, N. W. Activation of subfornical organ efferents stimulates oxytocin secretion in the rat. Regul. Pept. 18, 93–100 (1987).

    Article  PubMed  CAS  Google Scholar 

  59. Verbalis, J. G., Mangione, M. P. & Stricker, E. M. Oxytocin produces natriuresis in rats at physiological plasma concentrations. Endocrinology 128, 1317–1322 (1991).

    Article  PubMed  CAS  Google Scholar 

  60. Huang, W., Lee, S. L. & Sjöquist, M. Natriuretic role of endogenous oxytocin in male rats infused with hypertonic NaCl. Am. J. Physiol. Regul. Integr. Comp. Physiol. 268, R634–R640 (1995).

    Article  CAS  Google Scholar 

  61. Rasmussen, M. S., Simonsen, J. A., Sandgaard, N. C. F., Høilund-Carlsen, P. F. & Bie, P. Mechanisms of acute natriuresis in normal humans on low sodium diet. J. Physiol. 546, 591–603 (2003).

    Article  PubMed  CAS  Google Scholar 

  62. Rasmussen, M. S., Simonsen, J. A., Sandgaard, N. C. F., Høilund-Carlsen, P. F. & Bie, P. Effects of oxytocin in normal man during low and high sodium diets. Acta Physiol. Scand. 181, 247–257 (2004).

    Article  PubMed  CAS  Google Scholar 

  63. Verney, E. B. The antidiuretic hormone and the factors which determine its release. Proc. R. Soc. B Biol. Sci. 135, 25–106 (1947).

    Article  CAS  Google Scholar 

  64. Antunes-Rodrigues, J., de Castro, M., Elias, L. L. K., Valença, M. M. & McCann, S. M. Neuroendocrine control of body fluid metabolism. Physiol. Rev. 84, 169–208 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Abdelaal, A. E., Assaf, S. Y., Kucharczyk, J. & Mogenson, G. J. Effect of ablation of the subfornical organ on water intake elicited by systemically administered angiotensin-II. Can. J. Physiol. Pharmacol. 52, 1217–1220 (1974).

    Article  PubMed  CAS  Google Scholar 

  66. Simpson, J. B. & Routtenberg, A. Subfornical organ lesions reduce intravenous angiotensin-induced drinking. Brain Res. 88, 154–161 (1975).

    Article  PubMed  CAS  Google Scholar 

  67. Buggy, J. & Fisher, A. E. Anteroventral third ventricle site of action for angiotensin induced thirst. Pharmacol. Biochem. Behav. 4, 651–660 (1976).

    Article  PubMed  CAS  Google Scholar 

  68. Simpson, J. B., Epstein, A. N. & Camardo, J. S. Localization of receptors for the dipsogenic action of angiotensin II in the subfornical organ of rat. J. Comp. Physiol. Psychol. 92, 581–601 (1978).

    Article  PubMed  CAS  Google Scholar 

  69. Lind, R. W., Thunhorst, R. L. & Johnson, A. K. The subfornical organ and the integration of multiple factors in thirst. Physiol. Behav. 32, 69–74 (1984).

    Article  PubMed  CAS  Google Scholar 

  70. Mangiapane, M. L., Thrasher, T. N., Keil, L. C., Simpson, J. B. & Ganong, W. F. Role for the subfornical organ in vasopressin release. Brain Res. Bull. 13, 43–47 (1984).

    Article  PubMed  CAS  Google Scholar 

  71. Weisinger, R. S. et al. Subfornical organ lesion decreases sodium appetite in the sodium-depleted rat. Brain Res. 526, 23–30 (1990).

    Article  PubMed  CAS  Google Scholar 

  72. McKinley, M. J., Mathai, M. L., Pennington, G., Rundgren, M. & Vivas, L. Effect of individual or combined ablation of the nuclear groups of the lamina terminalis on water drinking in sheep. Am. J. Physiol. Regul. Integr. Comp. Physiol. 276, R673–R683 (1999).

    Article  CAS  Google Scholar 

  73. Thunhorst, R. L., Beltz, T. G. & Johnson, A. K. Effects of subfornical organ lesions on acutely induced thirst and salt appetite. Am. J. Physiol. Regul. Integr. Comp. Physiol. 277, R56–R65 (1999).

    Article  CAS  Google Scholar 

  74. Guyenet, P. G. The sympathetic control of blood pressure. Nat. Rev. Neurosci. 7, 335–346 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Adolph, E. F. Measurements of water drinking in dogs. Am. J. Physiol. 125, 75–86 (1938).

    Article  Google Scholar 

  76. Bellows, R. T. Time factors in water drinking in dogs. Am. J. Physiol. 125, 87–97 (1938).

    Article  Google Scholar 

  77. Adolph, E. F., Barker, J. P. & Hoy, P. A. Multiple factors in thirst. Am. J. Physiol. 178, 538–562 (1954).

    Article  PubMed  CAS  Google Scholar 

  78. Rolls, B. J. et al. Thirst following water deprivation in humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 239, R476–R482 (1980).

    Article  CAS  Google Scholar 

  79. Figaro, M. K. & Mack, G. W. Regulation of fluid intake in dehydrated humans: role of oropharyngeal stimulation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 272, R1740–R1746 (1997).

    Article  CAS  Google Scholar 

  80. Hoffmann, M. L., DenBleyker, M., Smith, J. C. & Stricker, E. M. Inhibition of thirst when dehydrated rats drink water or saline. Am. J. Physiol. Regul. Integr. Comp. Physiol. 290, R1199–R1207 (2006).

    Article  PubMed  CAS  Google Scholar 

  81. Denton, D. et al. Correlation of regional cerebral blood flow and change of plasma sodium concentration during genesis and satiation of thirst. Proc. Natl Acad. Sci. USA 96, 2532–2537 (1999).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Denton, D. et al. Neuroimaging of genesis and satiation of thirst and an interoceptor-driven theory of origins of primary consciousness. Proc. Natl Acad. Sci. USA 96, 5304–5309 (1999).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Egan, G. et al. Neural correlates of the emergence of consciousness of thirst. Proc. Natl Acad. Sci. USA 100, 15241–15246 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Farrell, M. J. et al. Cortical activation and lamina terminalis functional connectivity during thirst and drinking in humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 301, R623–R631 (2011).

    Article  PubMed  CAS  Google Scholar 

  85. Saker, P. et al. Regional brain responses associated with drinking water during thirst and after its satiation. Proc. Natl Acad. Sci. USA 111, 5379–5384 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Saker, P., Farrell, M. J., Egan, G. F., McKinley, M. J. & Denton, D. A. Overdrinking, swallowing inhibition, and regional brain responses prior to swallowing. Proc. Natl Acad. Sci. USA 113, 12274–12279 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Mendelson, J. & Chillag, D. Tongue cooling: a new reward for thirsty rodents. Science 170, 1418–1421 (1970).

    Article  PubMed  CAS  Google Scholar 

  88. Kapatos, G. & Gold, R. M. Tongue cooling during drinking: a regulator of water intake in rats. Science 176, 685–686 (1972).

    Article  PubMed  CAS  Google Scholar 

  89. Deaux, E. Thirst satiation and the temperature of ingested water. Science 181, 1166–1167 (1973).

    Article  PubMed  CAS  Google Scholar 

  90. Boulze, D., Montastruc, P. & Cabanac, M. Water intake, pleasure and water temperature in humans. Physiol. Behav. 30, 97–102 (1983).

    Article  PubMed  CAS  Google Scholar 

  91. Salata, R. A., Verbalis, J. G. & Robinson, A. G. Cold water stimulation of oropharyngeal receptors in man inhibits release of vasopressin. J. Clin. Endocrinol. Metab. 65, 561–567 (1987).

    Article  PubMed  CAS  Google Scholar 

  92. Peyrot des Gachons, C. et al. Oral cooling and carbonation increase the perception of drinking and thirst quenching in thirsty adults. PLoS ONE 11, e0162261 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Conchon, M. F. & Fonseca, L. F. Efficacy of an ice popsicle on thirst management in the immediate postoperative period: a randomized clinical trial. J. PeriAnesthesia Nurs. http://dx.doi.org/10.1016/j.jopan.2016.03.009 (2017).

  94. McKemy, D. D., Neuhausser, W. M. & Julius, D. Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416, 52–58 (2002).

    Article  PubMed  CAS  Google Scholar 

  95. Dhaka, A., Earley, T. J., Watson, J. & Patapoutian, A. Visualizing cold spots: TRPM8-expressing sensory neurons and their projections. J. Neurosci. 28, 566–575 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Yarmolinsky, D. A. et al. Coding and plasticity in the mammalian thermosensory system. Neuron 92, 1079–1092 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Bott, E., Denton, D. A. & Weller, S. Water drinking in sheep with oesophageal fistulae. J. Physiol. 176, 323–336 (1965).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Maddison, S., Wod, R. J., Rolls, E. T., Rolls, B. J. & Gibbs, J. Drinking in the rhesus monkeys: peripheral factors. J. Comp. Physiol. Psychol. 94, 365–374 (1980).

    Article  PubMed  CAS  Google Scholar 

  99. Kraly, F. S., Kim, Y.-M., Dunham, L. M. & Tribuzio, R. A. Drinking after intragastric NaCl without increase in systemic plasma osmolality in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 269, R1085–R1092 (1995).

    Article  CAS  Google Scholar 

  100. Stricker, E. M., Callahan, J. B., Huang, W. & Sved, A. F. Early osmoregulatory stimulation of neurohypophyseal hormone secretion and thirst after gastric NaCl loads. Am. J. Physiol. Regul. Integr. Comp. Physiol. 282, R1710–R1717 (2002).

    Article  PubMed  CAS  Google Scholar 

  101. Hyde, T. M. & Miselis, R. R. Area postrema and adjacent nucleus of the solitary tract in water and sodium balance. Am. J. Physiol. Regul. Integr. Comp. Physiol. 247, R173–R182 (1984).

    Article  CAS  Google Scholar 

  102. Curtis, K. S., Verbalis, J. G. & Stricker, E. M. Area postrema lesions in rats appear to disrupt rapid feedback inhibition of fluid intake. Brain Res. 726, 31–38 (1996).

    Article  PubMed  CAS  Google Scholar 

  103. Krashes, M. J. Forecast for water balance. Nature 537, 626–627 (2016).

    Article  PubMed  CAS  Google Scholar 

  104. Thrasher, T. N., Nistal-Herrera, J. F., Keil, L. C. & Ramsay, D. J. Satiety and inhibition of vasopressin secretion after drinking in dehydrated dogs. Am. J. Physiol. Endocrinol. Metab. 240, E394–E401 (1981).

    Article  CAS  Google Scholar 

  105. Arnauld, E. & du Pont, J. Vasopressin release and firing of supraoptic neurosecretory neurones during drinking in the dehydrated monkey. Pflügers Arch. 394, 195–201 (1982).

    Article  PubMed  CAS  Google Scholar 

  106. Geelen, G. et al. Inhibition of plasma vasopressin after drinking in dehydrated humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 247, R968–R971 (1984).

    Article  CAS  Google Scholar 

  107. Huang, W., Sved, A. F. & Stricker, E. M. Water ingestion provides an early signal inhibiting osmotically stimulated vasopressin secretion in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 279, R756–R760 (2000).

    Article  PubMed  CAS  Google Scholar 

  108. Vincent, J. D., Arnauld, E. & Bioulac, B. Activity of osmosensitive single cells in the hypothalamus of the behaving monkey during drinking. Brain Res. 44, 371–384 (1972).

    Article  PubMed  CAS  Google Scholar 

  109. Bellisle, F. & Le Magnen, J. The structure of meals in humans: eating and drinking patterns in lean and obese subjects. Physiol. Behav. 27, 649–658 (1981).

    Article  PubMed  CAS  Google Scholar 

  110. Phillips, P. A., Rolls, B. J., Ledingham, J. G. G. & Morton, J. J. Body fluid changes, thirst and drinking in man during free access to water. Physiol. Behav. 33, 357–363 (1984).

    Article  PubMed  CAS  Google Scholar 

  111. Cizek, L. J. & Nocenti, M. R. Relationship between water and food ingestion in the rat. Am. J. Physiol. 208, 615–620 (1965).

    Article  PubMed  CAS  Google Scholar 

  112. Fitzsimons, J. T. & Le Magnen, J. Eating as a regulatory control of drinking in the rat. J. Comp. Physiol. Psychol. 67, 273–283 (1969).

    Article  PubMed  CAS  Google Scholar 

  113. Kissileff, H. R. Food-associated drinking in the rat. J. Comp. Physiol. Psychol. 67, 284–300 (1969).

    Article  PubMed  CAS  Google Scholar 

  114. Epstein, A. N., Spector, D., Samman, A. & Goldblum, C. Exaggerated prandial drinking in the rat without salivary glands. Nature 201, 1342–1343 (1964).

    Article  PubMed  CAS  Google Scholar 

  115. Kissileff, H. R. Oropharyngeal control of prandial drinking. J. Comp. Physiol. Psychol. 67, 309–319 (1969).

    Article  PubMed  CAS  Google Scholar 

  116. Lepkovsky, S., Lyman, R., Fleming, D., Nagumo, M. & Dimick, M. M. Gastrointestinal regulation of water and its effect on food intake and rate of digestion. Am. J. Physiol. 188, 237–231 (1957).

    Article  Google Scholar 

  117. Gutman, Y. & Krausz, M. Regulation of food and water intake in rats as related to plasma osmolarity and volume. Physiol. Behav. 4, 311–313 (1969).

    Article  Google Scholar 

  118. Pernice, B. & Scagliosi, G. Ueber die wirkung der wasserentziehung auf thiere [German]. Arch. Pathol. Anatomie Physiol. Klinische Med. 139, 155–184 (1895).

    Google Scholar 

  119. Bing, F. C. & Mendel, L. B. The relationship between food and water intakes in mice. Am. J. Physiol. 98, 169–179 (1931).

    Article  CAS  Google Scholar 

  120. Adolph, E. F. Urges to eat and drink in rats. Am. J. Physiol. 151, 110–125 (1947).

    Article  PubMed  CAS  Google Scholar 

  121. Ørskov, C., Poulsen, S. S., Møller, M. & Holst, J. J. Glucagon-like peptide-1 receptors in the subfornical organ and the area postrema are accessible to circulating glucagon-like peptide-1. Diabetes 45, 832–835 (1996).

    Article  PubMed  Google Scholar 

  122. Samson, W. K., White, M. M., Price, C. & Ferguson, A. V. Obestatin acts in brain to inhibit thirst. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, R637–R643 (2007).

    Article  PubMed  CAS  Google Scholar 

  123. Fry, M., Hoyda, T. D. & Ferguson, A. V. Making sense of it: roles of the sensory circumventricular organs in feeding and regulation of energy homeostasis. Exp. Biol. Med. 232, 14–26 (2007).

    CAS  Google Scholar 

  124. Ahmed, A.-S. F., Dai, L., Ho, W., Ferguson, A. V. & Sharkey, K. A. The subfornical organ: a novel site of action of cholecystokinin. Am. J. Physiol. Regul. Integr. Comp. Physiol. 306, R363–R373 (2014).

    Article  PubMed  CAS  Google Scholar 

  125. Riediger, T., Rauch, M. & Schmid, H. A. Actions of amylin on subfornical organ neurons and on drinking behavior in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 276, R514–R521 (1999).

    Article  CAS  Google Scholar 

  126. Riediger, T., Schmid, H. A., Young, A. A. & Simon, E. Pharmacological characterisation of amylin-related peptides activating subfornical organ neurones. Brain Res. 837, 161–168 (1999).

    Article  PubMed  CAS  Google Scholar 

  127. Barth, S. W., Riediger, T., Lutz, T. A. & Rechkemmer, G. Peripheral amylin activates circumventricular organs expressing calcitonin receptor a/b subtypes and receptor-activity modifying proteins in the rat. Brain Res. 997, 97–102 (2004).

    Article  PubMed  CAS  Google Scholar 

  128. Pulman, K. J., Fry, W. M., Cottrell, G. T. & Ferguson, A. V. The subfornical organ: a central target for circulating feeding signals. J. Neurosci. 26, 2022–2030 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Lakhi, S., Snow, W. & Fry, M. Insulin modulates the electrical activity of subfornical organ neurons. Neuroreport 24, 329–334 (2013).

    Article  PubMed  CAS  Google Scholar 

  130. Smith, P. M. et al. The subfornical organ: a central nervous system site for actions of circulating leptin. Am. J. Physiol. Regul. Integr. Comp. Physiol. 296, R512–R520 (2009).

    Article  PubMed  CAS  Google Scholar 

  131. Alim, I., Fry, W. M., Walsh, M. H. & Ferguson, A. V. Actions of adiponectin on the excitability of subfornical organ neurons are altered by food deprivation. Brain Res. 1330, 72–82 (2010).

    Article  PubMed  CAS  Google Scholar 

  132. Dai, L., Smith, P. M., Kuksis, M. & Ferguson, A. V. Apelin acts in the subfornical organ to influence neuronal excitability and cardiovascular function. J. Physiol. 591, 3421–3432 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Zucker, I. Light-dark rhythms in rat eating and drinking behavior. Physiol. Behav. 6, 115–126 (1971).

    Article  PubMed  CAS  Google Scholar 

  134. Reppert, S. M. & Weaver, D. R. Coordination of circadian timing in mammals. Nature 418, 935–941 (2002).

    Article  PubMed  CAS  Google Scholar 

  135. Dibner, C., Schibler, U. & Albrecht, U. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu. Rev. Physiol. 72, 517–549 (2010).

    Article  PubMed  CAS  Google Scholar 

  136. Stephan, F. K. & Zucker, I. Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc. Natl Acad. Sci. USA 69, 1583–1586 (1972).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Trudel, E. & Bourque, C. W. Central clock excites vasopressin neurons by waking osmosensory afferents during late sleep. Nat. Neurosci. 13, 467–474 (2010).

    Article  PubMed  CAS  Google Scholar 

  138. Geerling, J. C. & Loewy, A. D. Central regulation of sodium appetite. Exp. Physiol. 93, 177–209 (2008).

    Article  PubMed  CAS  Google Scholar 

  139. Crews, E. C. & Rowland, N. E. Role of angiotensin in body fluid homeostasis of mice: effect of losartan on water and NaCl intakes. Am. J. Physiol. Regul. Integr. Comp. Physiol. 288, R638–R644 (2005).

    Article  PubMed  CAS  Google Scholar 

  140. Richter, C. P. Increased salt appetite in adrenalectomized rats. Am. J. Physiol. 115, 155–161 (1936).

    Article  CAS  Google Scholar 

  141. Rice, K. K. & Richter, C. P. Increased sodium chloride and water intake of normal rats treated with desoxycorticosterone acetate. Endocrinology 33, 106–115 (1943).

    Article  CAS  Google Scholar 

  142. Wolf, G. Sodium appetite elicited by aldosterone. Psychonom. Sci. 1, 211–212 (1964).

    Article  Google Scholar 

  143. Sakai, R. R., Nicolaïdis, S. & Epstein, A. N. Salt appetite is suppressed by interference with angiotensin II and aldosterone. Am. J. Physiol. Regul. Integr. Comp. Physiol. 251, R762–R768 (1986).

    Article  CAS  Google Scholar 

  144. Simpson, S. A. et al. Isolierung eines neuen kristallisierten hormons aus nebennieren mit besonders hoher wirksamkeit auf den mineralstoffwechsel [German]. Experientia 9, 333–335 (1953).

    Article  PubMed  CAS  Google Scholar 

  145. Vander, A. J. et al. Effects of adrenalectomy and aldosterone on proximal and distal tubular sodium reabsorption. Proc. Soc. Exp. Biol. Med. 99, 323–325 (1958).

    Article  PubMed  CAS  Google Scholar 

  146. Funder, J. W., Pearce, P. T., Smith, R. & Smith, A. I. Mineralocorticoid action: target tissue specificity is enzyme, not receptor, mediated. Science 242, 583–585 (1988).

    Article  PubMed  CAS  Google Scholar 

  147. Geerling, J. C., Chimenti, P. C. & Loewy, A. D. Phox2b expression in the aldosterone-sensitive HSD2 neurons of the NTS. Brain Res. 1226, 82–88 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Geerling, J. C., Kawata, M. & Loewy, A. D. Aldosterone-sensitive neurons in the rat central nervous system. J. Comp. Neurol. 494, 515–527 (2006).

    Article  PubMed  Google Scholar 

  149. Geerling, J. C., Engeland, W. C., Kawata, M. & Loewy, A. D. Aldosterone target neurons in the nucleus tractus solitarius drive sodium appetite. J. Neurosci. 26, 411–417 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Geerling, J. C. & Loewy, A. D. Aldosterone-sensitive neurons in the nucleus of the solitary tract: efferent projections. J. Comp. Neurol. 497, 223–250 (2006).

    Article  PubMed  CAS  Google Scholar 

  151. Geerling, J. C. et al. FoxP2 expression defines dorsolateral pontine neurons activated by sodium deprivation. Brain Res. 1375, 19–27 (2011).

    Article  PubMed  CAS  Google Scholar 

  152. Davis, J. O., Carpenter, C. C. J., Ayers, C. R., Holman, J. E. & Bahn, R. C. Evidence for secretion of an aldosterone-stimulating hormone by the kidney. J. Clin. Invest. 40, 684–696 (1961).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Blair-West, J. R. et al. Humoral stimulation of adrenal cortical secretion. J. Clin. Invest. 41, 1606–1627 (1962).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Ames, R. P., Borkowski, A. J., Sicinski, A. M. & Laragh, J. H. Prolonged infusions of angiotensin II and norepinephrine and blood pressure, electrolyte balance, and aldosterone and cortisol secretion in normal man and in cirrhosis with ascites. J. Clin. Invest. 44, 1171–1186 (1965).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Thunhorst, R. L., Ehrlich, K. J. & Simpson, J. B. Subfornical organ participates in salt appetite. Behav. Neurosci. 104, 637–642 (1990).

    Article  PubMed  CAS  Google Scholar 

  156. Ruhf, A. A., Starbuck, E. M. & Fitts, D. A. Effects of SFO lesions on salt appetite during multiple sodium depletions. Physiol. Behav. 74, 629–636 (2001).

    Article  PubMed  CAS  Google Scholar 

  157. Wilson, W. L., Starbuck, E. M. & Fitts, D. A. Salt appetite of adrenalectomized rats after a lesion of the SFO. Behav. Brain Res. 136, 449–453 (2002).

    Article  PubMed  CAS  Google Scholar 

  158. Galaverna, O. G. et al. Lesions of the central nucleus of the amygdala I: effects on taste reactivity, taste aversion learning and sodium appetite. Behav. Brain Res. 59, 11–17 (1993).

    Article  PubMed  CAS  Google Scholar 

  159. Zardetto-Smith, A. M., Beltz, T. G. & Johnson, A. K. Role of the central nucleus of the amygdala and bed nucleus of the stria terminalis in experimentally-induced salt appetite. Brain Res. 645, 123–134 (1994).

    Article  PubMed  CAS  Google Scholar 

  160. Johnson, A. K., de Olmos, J., Pastuskovas, C. V., Zardetto-Smith, A. M. & Vivas, L. The extended amygdala and salt appetite. Ann. NY Acad. Sci. 877, 258–280 (1999).

    Article  PubMed  CAS  Google Scholar 

  161. Cameron, P., Hiroi, M., Ngai, J. & Scott, K. The molecular basis for water taste in Drosophila. Nature 465, 91–95 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Lindemann, B. Taste reception. Physiol. Rev. 76, 719–766 (1996).

    Article  PubMed  CAS  Google Scholar 

  163. Ciura, S. & Bourque, C. W. Transient receptor potential vanilloid 1 is required for intrinsic osmoreception in organum vasculosum lamina terminalis neurons and for normal thirst responses to systemic hyperosmolality. J. Neurosci. 26, 9069–9075 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Sharif-Naeini, R., Witty, M.-F., Séguéla, P. & Bourque, C. W. An N-terminal variant of Trpv1 channel is required for osmosensory transduction. Nat. Neurosci. 9, 93–98 (2006).

    Article  PubMed  CAS  Google Scholar 

  165. Liedtke, W. et al. Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell 103, 525–535 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Liedtke, W. & Friedman, J. M. Abnormal osmotic regulation in trpv4−/− mice. Proc. Natl Acad. Sci. USA 100, 13698–13703 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Lechner, S. G. et al. The molecular and cellular identity of peripheral osmoreceptors. Neuron 69, 332–344 (2011).

    Article  CAS  PubMed  Google Scholar 

  168. Watanabe, E. et al. Nav2/NaG channel is involved in control of salt-intake behavior in the CNS. J. Neurosci. 20, 7743–7751 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Hiyama, T. Y. et al. Nax channel involved in CNS sodium-level sensing. Nat. Neurosci. 5, 511–512 (2002).

    Article  PubMed  CAS  Google Scholar 

  170. Drummond, H. A., Price, M. P., Welsh, M. J. & Abboud, F. M. A molecular component of the arterial baroreceptor mechanotransducer. Neuron 21, 1435–1441 (1998).

    Article  PubMed  CAS  Google Scholar 

  171. Lu, Y. et al. The ion channel ASIC2 is required for baroreceptor and autonomic control of the circulation. Neuron 64, 885–897 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Taylor, A. C., McCarthy, J. J. & Stocker, S. D. Mice lacking the transient receptor vanilloid potential 1 channel display normal thirst responses and central Fos activation to hypernatremia. Am. J. Physiol. Regul. Integr. Comp. Physiol. 294, 1285–1293 (2008).

    Article  CAS  Google Scholar 

  173. Kinsman, B. et al. Osmoregulatory thirst in mice lacking the transient receptor potential vanilloid type 1 (TRPV1) and/or type 4 (TRPV4) receptor. Am. J. Physiol. Regul. Integr. Comp. Physiol. 307, R1092–R1100 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Sakuta, H., Nishihara, E., Hiyama, T. Y., Lin, C.-H. & Noda, M. Nax signaling evoked by an increase in [Na+] in CSF induces water intake via EET-mediated TRPV4 activation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 311, R299–R306 (2016).

    Article  PubMed  Google Scholar 

  175. Tucker, A. B. & Stocker, S. D. Hypernatremia-induced vasopressin secretion is not altered in TRPV1−/− rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 311, R451–R456 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Roza, C. et al. Knockout of the ASIC2 channel in mice does not impair cutaneous mechanosensation, visceral mechanonociception and hearing. J. Physiol. 558, 659–669 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Zhao, Q. et al. Ion permeation and mechanotransduction mechanisms of mechanosensitive piezo channels. Neuron 89, 1248–1263 (2016).

    Article  PubMed  CAS  Google Scholar 

  178. Berridge, K. C. Motivation concepts in behavioral neuroscience. Physiol. Behav. 81, 179–209 (2004).

    Article  PubMed  CAS  Google Scholar 

  179. Travers, J. B., Dinardo, L. A. & Karimnamazi, H. Motor and premotor mechanisms of licking. Neurosci. Biobehav. Rev. 21, 631–647 (1997).

    Article  PubMed  CAS  Google Scholar 

  180. Rossi, M. A. et al. A GABAergic nigrotectal pathway for coordination of drinking behavior. Nat. Neurosci. 19, 742–748 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Abdelaal, A. E., Mercer, P. F. & Mogenson, G. J. Plasma angiotensin II levels and water intake following β-adrenergic stimulation, hypovolemia, cellular dehydration and water deprivation. Pharmacol. Biochem. Behav. 4, 317–321 (1976).

    Article  PubMed  CAS  Google Scholar 

  182. Thrasher, T. N., Keil, L. C. & Ramsay, D. J. Drinking, oropharyngeal signals, and inhibition of vasopressin secretion in dogs. Am. J. Physiol. Regul. Integr. Comp. Physiol. 253, R509–R515 (1987).

    Article  CAS  Google Scholar 

  183. Appelgren, B. H., Thrasher, T. N., Keil, L. C. & Ramsay, D. J. Mechanism of drinking-induced inhibition of vasopressin secretion in dehydrated dogs. Am. J. Physiol. Regul. Integr. Comp. Physiol. 261, R1226–R1233 (1991).

    Article  CAS  Google Scholar 

  184. Watts, A. G. & Boyle, C. N. The functional architecture of dehydration-anorexia. Physiol. Behav. 100, 472–477 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  185. Zocchi, D., Wennemuth G. & Oka Y. The cellular mechanism for water detection in the mammalian taste system. Nat. Neurosci. http://dx.doi.org/10.1038/nn.4575 (2017).

Download references

Acknowledgements

The authors thank members of the Knight laboratory for comments and discussion. C.A.Z. acknowledges support from the Genentech Foundation Predoctoral Fellowship, the University of California San Francisco (UCSF) Discovery Fellowship and the US National Science Foundation Graduate Research Fellowship (1144247). D.E.L. acknowledges support from the Achievement Rewards for College Scientists (ARCS) Foundation Scholarship, the UCSF Discovery Fellowship and the US National Institutes of Health (NIH) (F31-HL131463). Z.A.K. is a New York Stem Cell Foundation (NYSCF)–Robertson Investigator. Z.A.K. acknowledges support from the NYSCF, the American Diabetes Association Pathway Program, the Rita Allen Foundation, the McKnight Foundation, the Alfred P. Sloan Foundation, the Brain & Behavior Research Foundation, the Esther A. & Joseph Klingenstein Foundation, the Program for Breakthrough Biological Research and the UCSF Diabetes and Endocrinology Research Center (P30-DK06372) and Nutrition and Obesity Research Center (P30-DK098722). This work was supported by an NIH Director's New Innovator Award (DP2-DK109533), R01-NS094781 and R01-DK106399.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zachary A. Knight.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zimmerman, C., Leib, D. & Knight, Z. Neural circuits underlying thirst and fluid homeostasis. Nat Rev Neurosci 18, 459–469 (2017). https://doi.org/10.1038/nrn.2017.71

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn.2017.71

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing