Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

A distributed, hierarchical and recurrent framework for reward-based choice

Abstract

Many accounts of reward-based choice argue for distinct component processes that are serial and functionally localized. In this Opinion article, we argue for an alternative viewpoint, in which choices emerge from repeated computations that are distributed across many brain regions. We emphasize how several features of neuroanatomy may support the implementation of choice, including mutual inhibition in recurrent neural networks and the hierarchical organization of timescales for information processing across the cortex. This account also suggests that certain correlates of value are emergent rather than represented explicitly in the brain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Evidence for competition via mutual inhibition during reward-guided choice.
Figure 2: Hierarchical organization of cortical timescales and its relationship with reward-guided choice.

Similar content being viewed by others

References

  1. Glimcher, P. & Fehr, E. Neuroeconomics: Decision Making and the Brain (Academic Press, 2014).

    Google Scholar 

  2. Gold, J. I. & Shadlen, M. N. The neural basis of decision making. Annu. Rev. Neurosci. 30, 535–574 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Dolan, R. J. & Dayan, P. Goals and habits in the brain. Neuron 80, 312–325 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rangel, A., Camerer, C. & Montague, P. R. A framework for studying the neurobiology of value-based decision making. Nat. Rev. Neurosci. 9, 545–556 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kable, J. W. & Glimcher, P. W. The neurobiology of decision: consensus and controversy. Neuron 63, 733–745 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rangel, A. & Hare, T. Neural computations associated with goal-directed choice. Curr. Opin. Neurobiol. 20, 262–270 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Padoa-Schioppa, C. Neurobiology of economic choice: a good-based model. Annu. Rev. Neurosci. 34, 333–359 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Frank, M. J. in An Introduction to Model-Based Cognitive Neuroscience (eds Forstmann, B. & Wagenmakers, E.-J.) 159–177 (Springer, 2015).

    Google Scholar 

  9. Wang, X. J. Neural dynamics and circuit mechanisms of decision-making. Curr. Opin. Neurobiol. 22, 1039–1046 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pezzulo, G. & Cisek, P. Navigating the affordance landscape: feedback control as a process model of behavior and cognition. Trends Cogn. Sci. 20, 414–424 (2016).

    Article  PubMed  Google Scholar 

  11. Wang, X. J. Probabilistic decision making by slow reverberation in cortical circuits. Neuron 36, 955–968 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Rolls, E. T. Emotion and Decision Making Explained (Oxford Univ. Press, 2013).

    Book  Google Scholar 

  13. Machens, C. K., Romo, R. & Brody, C. D. Flexible control of mutual inhibition: a neural model of two-interval discrimination. Science 307, 1121–1124 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Krajbich, I., Armel, C. & Rangel, A. Visual fixations and the computation and comparison of value in simple choice. Nat. Neurosci. 13, 1292–1298 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Medler, D. A. A brief history of connectionism. Neural Comput. Surveys 1, 18–72 (1998).

    Google Scholar 

  16. Gardner, H. The Mind's New Science: A History of the Cognitive Revolution (Basic Books, 1985).

    Google Scholar 

  17. McClelland, J. L. & Rumelhart, D. E. Explorations in Parallel Distributed Processing: A Handbook of Models, Programs, and Exercises (MIT Press, 1989).

    Google Scholar 

  18. Rumelhart, D. E., Hinton, G. E. & Williams, R. J. Learning representations by back-propagating errors. Nature 323, 533–536 (1986).

    Article  Google Scholar 

  19. Hopfield, J. J. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl Acad. Sci. USA 79, 2554–2558 (1982).

    Article  CAS  PubMed  Google Scholar 

  20. Carpenter, G. A. & Grossberg, S. A massively parallel architecture for a self-organizing neural pattern recognition machine. Comput. Vision Graph. 37, 54–115 (1987).

    Article  Google Scholar 

  21. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Jbabdi, S., Sotiropoulos, S. N., Haber, S. N., Van Essen, D. C. & Behrens, T. E. Measuring macroscopic brain connections in vivo. Nat. Neurosci. 18, 1546–1555 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Fenno, L., Yizhar, O. & Deisseroth, K. The development and application of optogenetics. Annu. Rev. Neurosci. 34, 389–412 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Churchland, P. M. Eliminative materialism and the propositional attitudes. J. Philos. 78, 67 (1981).

    Google Scholar 

  25. Seeley, T. D. Honeybee Democracy (Princeton Univ. Press, 2010).

    Google Scholar 

  26. London, M. & Häusser, M. Dendritic computation. Annu. Rev. Neurosci. 28, 503–532 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Couzin, I. D. Collective cognition in animal groups. Trends Cogn. Sci. 13, 36–43 (2009).

    Article  PubMed  Google Scholar 

  28. O'Doherty, J. P. The problem with value. Neurosci. Biobehav. Rev. 43, 259–268 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Grillner, S. Neurobiological bases of rhythmic motor acts in vertebrates. Science 228, 143–149 (1985).

    Article  CAS  PubMed  Google Scholar 

  30. Kovac, M. & Davis, W. Behavioral choice: neural mechanisms in Pleurobranchaea. Science 198, 632–634 (1977).

    Article  CAS  PubMed  Google Scholar 

  31. Hunt, L. T. et al. Mechanisms underlying cortical activity during value-guided choice. Nat. Neurosci. 15, 470–476 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hunt, L. T., Behrens, T. E., Hosokawa, T., Wallis, J. D. & Kennerley, S. W. Capturing the temporal evolution of choice across prefrontal cortex. eLife 4, e11945 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Jocham, G., Hunt, L. T., Near, J. & Behrens, T. E. A mechanism for value-guided choice based on the excitation-inhibition balance in prefrontal cortex. Nat. Neurosci. 15, 960–961 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Strait, C. E., Blanchard, T. C. & Hayden, B. Y. Reward value comparison via mutual inhibition in ventromedial prefrontal cortex. Neuron 82, 1357–1366 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Strait, C. E., Sleezer, B. J. & Hayden, B. Y. Signatures of value comparison in ventral striatum neurons. PLoS Biol. 13, e1002173 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rustichini, A. & Padoa-Schioppa, C. A neuro-computational model of economic decisions. J. Neurophysiol. 114, 1382–1398 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hunt, L. T., Dolan, R. J. & Behrens, T. E. Hierarchical competitions subserving multi-attribute choice. Nat. Neurosci. 17, 1613–1622 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chau, B. K., Kolling, N., Hunt, L. T., Walton, M. E. & Rushworth, M. F. A neural mechanism underlying failure of optimal choice with multiple alternatives. Nat. Neurosci. 17, 463–470 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Louie, K. & Glimcher, P. W. Separating value from choice: delay discounting activity in the lateral intraparietal area. J. Neurosci. 30, 5498–5507 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pastor-Bernier, A. & Cisek, P. Neural correlates of biased competition in premotor cortex. J. Neurosci. 31, 7083–7088 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cisek, P. Integrated neural processes for defining potential actions and deciding between them: a computational model. J. Neurosci. 26, 9761–9770 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Soltani, A. A biophysically based neural model of matching law behavior: melioration by stochastic synapses. J. Neurosci. 26, 3731–3744 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rushworth, M. F., Kolling, N., Sallet, J. & Mars, R. B. Valuation and decision-making in frontal cortex: one or many serial or parallel systems? Curr. Opin. Neurobiol. 22, 946–955 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Cisek, P. Making decisions through a distributed consensus. Curr. Opin. Neurobiol. 22, 927–936 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Strait, C. E. et al. Neuronal selectivity for spatial positions of offers and choices in five reward regions. J. Neurophysiol. 115, 1098–1111 (2016).

    Article  PubMed  Google Scholar 

  46. Hunt, L. T., Woolrich, M. W., Rushworth, M. F. & Behrens, T. E. Trial-type dependent frames of reference for value comparison. PLoS Comput. Biol. 9, e1003225 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Passingham, R. E., Stephan, K. E. & Kötter, R. The anatomical basis of functional localization in the cortex. Nat. Rev. Neurosci. 3, 606–616 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Neubert, F. X., Mars, R. B., Sallet, J. & Rushworth, M. F. Connectivity reveals relationship of brain areas for reward-guided learning and decision making in human and monkey frontal cortex. Proc. Natl Acad. Sci. USA 112, E2695–E2704 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. Padoa-Schioppa, C. & Assad, J. A. Neurons in the orbitofrontal cortex encode economic value. Nature 441, 223–226 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hosokawa, T., Kennerley, S. W., Sloan, J. & Wallis, J. D. Single-neuron mechanisms underlying cost-benefit analysis in frontal cortex. J. Neurosci. 33, 17385–17397 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rolls, E. T., Grabenhorst, F. & Deco, G. Choice, difficulty, and confidence in the brain. Neuroimage 53, 694–706 (2010).

    Article  PubMed  Google Scholar 

  52. Hare, T. A., Schultz, W., Camerer, C. F., O'Doherty, J. P. & Rangel, A. Transformation of stimulus value signals into motor commands during simple choice. Proc. Natl Acad. Sci. USA 108, 18120–18125 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. Siegel, M., Buschman, T. J. & Miller, E. K. Cortical information flow during flexible sensorimotor decisions. Science 348, 1352–1355 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Klein-Flugge, M. C. & Bestmann, S. Time-dependent changes in human corticospinal excitability reveal value-based competition for action during decision processing. J. Neurosci. 32, 8373–8382 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. O'Reilly, J. X., Woolrich, M. W., Behrens, T. E. J., Smith, S. M. & Johansen-Berg, H. Tools of the trade: psychophysiological interactions and functional connectivity. Soc. Cogn. Affect. Neurosci. 7, 604–609 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Niv, Y. et al. Reinforcement learning in multidimensional environments relies on attention mechanisms. J. Neurosci. 35, 8145–8157 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Freidin, E. & Kacelnik, A. Rational choice, context dependence, and the value of information in European starlings (Sturnus vulgaris). Science 334, 1000–1002 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Bettman, J. R., Luce, M. F. & Payne, J. W. Constructive consumer choice processes. J. Consum. Res. 25, 187–217 (1998).

    Article  Google Scholar 

  59. Rich, E. L. & Wallis, J. D. Decoding subjective decisions from orbitofrontal cortex. Nat. Neurosci. 19, 973–980 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. LeCun, Y. et al. Backpropagation applied to handwritten ZIP code recognition. Neural Comput. 1, 541–551 (1989).

    Article  Google Scholar 

  61. Krizhevsky, A., Sutskever, I. & Hinton, G. ImageNet classification with deep convolutional neural networks. Adv. Neural Inform. Process. Systems 25, 1090–1098 (2012).

    Google Scholar 

  62. Yamins, D. L. et al. Performance-optimized hierarchical models predict neural responses in higher visual cortex. Proc. Natl Acad. Sci. USA 111, 8619–8624 (2014).

    Article  CAS  PubMed  Google Scholar 

  63. Kriegeskorte, N. Deep neural networks: a new framework for modeling biological vision and brain information processing. Annu. Rev. Vision Sci. 1, 417–446 (2015).

    Article  Google Scholar 

  64. Graves, A. Supervised Sequence Labelling with Recurrent Neural Networks (Springer, 2012).

    Book  Google Scholar 

  65. Graves, A., Mohamed, A.-r. & Hinton, G. Speech recognition with deep recurrent neural networks. eprint at arXiv http://adsabs.harvard.edu/abs/2013arXiv1303.5778G (2013).

    Google Scholar 

  66. Weston, J., Chopra, S. & Bordes, A. Memory networks. eprint at arXiv http://adsabs.harvard.edu/abs/2014arXiv1410.3916W (2014).

    Google Scholar 

  67. Amari, S.-i. Dynamics of pattern formation in lateral-inhibition type neural fields. Biol. Cybern. 27, 77–87 (1977).

    Article  CAS  PubMed  Google Scholar 

  68. Compte, A. Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model. Cereb. Cortex 10, 910–923 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. Wang, X.-J. in Principles of Frontal Lobe Function (eds Stuss, D. T. & Knight, R. T.) 226–248 (Oxford Univ. Press, 2013).

    Google Scholar 

  70. Elston, G. N. Pyramidal cells of the frontal lobe: all the more spinous to think with. J. Neurosci. 20, RC95 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Busemeyer, J. R. & Townsend, J. T. Decision field theory: a dynamic-cognitive approach to decision making in an uncertain environment. Psychol. Rev. 100, 432–459 (1993).

    Article  CAS  PubMed  Google Scholar 

  72. Bogacz, R., Brown, E., Moehlis, J., Holmes, P. & Cohen, J. D. The physics of optimal decision making: a formal analysis of models of performance in two-alternative forced-choice tasks. Psychol. Rev. 113, 700–765 (2006).

    Article  PubMed  Google Scholar 

  73. Passingham, R. E. & Wise, S. P. The Neurobiology of the Prefrontal Cortex: Anatomy, Evolution, and the Origin of Insight 1st edn (Oxford Univ. Press, 2012).

    Book  Google Scholar 

  74. Stephens, D. W. & Krebs, J. R. Foraging Theory (Princeton Univ. Press, 1986).

    Google Scholar 

  75. Kolling, N., Behrens, T. E., Mars, R. B. & Rushworth, M. F. Neural mechanisms of foraging. Science 336, 95–98 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hayden, B. Y., Pearson, J. M. & Platt, M. L. Neuronal basis of sequential foraging decisions in a patchy environment. Nat. Neurosci. 14, 933–939 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lim, S. L., O'Doherty, J. P. & Rangel, A. The decision value computations in the vmPFC and striatum use a relative value code that is guided by visual attention. J. Neurosci. 31, 13214–13223 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Harvey, C. D., Coen, P. & Tank, D. W. Choice-specific sequences in parietal cortex during a virtual-navigation decision task. Nature 484, 62–68 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Stokes, M. G. 'Activity-silent' working memory in prefrontal cortex: a dynamic coding framework. Trends Cogn. Sci. 19, 394–405 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Cavanagh, S. E., Wallis, J. D., Kennerley, S. W. & Hunt, L. T. Autocorrelation structure at rest predicts value correlates of single neurons during reward-guided choice. eLife 5, e18937 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Sussillo, D. & Abbott, L. F. Generating coherent patterns of activity from chaotic neural networks. Neuron 63, 544–557 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hennequin, G., Vogels, T. P. & Gerstner, W. Optimal control of transient dynamics in balanced networks supports generation of complex movements. Neuron 82, 1394–1406 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sussillo, D. & Barak, O. Opening the black box: low-dimensional dynamics in high-dimensional recurrent neural networks. Neural Comput. 25, 626–649 (2013).

    Article  PubMed  Google Scholar 

  84. Mante, V., Sussillo, D., Shenoy, K. V. & Newsome, W. T. Context-dependent computation by recurrent dynamics in prefrontal cortex. Nature 503, 78–84 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Song, H. F., Yang, G. R. & Wang, X. Reward-based training of recurrent neural networks for cognitive and value-based tasks. eLife 6, e21492 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Haber, S. N. & Behrens, T. E. The neural network underlying incentive-based learning: implications for interpreting circuit disruptions in psychiatric disorders. Neuron 83, 1019–1039 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Shallice, T. & Burgess, P. W. Deficits in strategy application following frontal lobe damage in man. Brain 114, 727–741 (1991).

    Article  PubMed  Google Scholar 

  88. Fuster, J. M. The prefrontal cortex — an update: time is of the essence. Neuron 30, 319–333 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Holroyd, C. B. & Yeung, N. Motivation of extended behaviors by anterior cingulate cortex. Trends Cogn. Sci. 16, 122–128 (2012).

    Article  PubMed  Google Scholar 

  90. Pascanu, R., Gulcehre, C., Cho, K. & Bengio, Y. How to construct deep recurrent neural networks. eprint at arXiv http://adsabs.harvard.edu/abs/2013arXiv1312.6026P (2013).

    Google Scholar 

  91. Karpathy, A. & Fei-Fei, L. Deep visual-semantic alignments for generating image descriptions. IEEE Trans. Pattern Anal. Mach. Intell. http://dx.doi.org/10.1109/TPAMI.2016.2598339 (2016).

  92. Bernacchia, A., Seo, H., Lee, D. & Wang, X.-J. A reservoir of time constants for memory traces in cortical neurons. Nat. Neurosci. 14, 366–372 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Behrens, T. E. J., Woolrich, M. W., Walton, M. E. & Rushworth, M. F. S. Learning the value of information in an uncertain world. Nat. Neurosci. 10, 1214–1221 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Chaudhuri, R., Knoblauch, K., Gariel, M.-A., Kennedy, H. & Wang, X.-J. A large-scale circuit mechanism for hierarchical dynamical processing in the primate cortex. Neuron 88, 419–431 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Murray, J. D. et al. A hierarchy of intrinsic timescales across primate cortex. Nat. Neurosci. 17, 1661–1663 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Purcell, B. A. & Kiani, R. Hierarchical decision processes that operate over distinct timescales underlie choice and changes in strategy. Proc. Natl Acad. Sci. USA 113, E4531–E4540 (2016).

    Article  CAS  PubMed  Google Scholar 

  97. Boorman, E. D., Rushworth, M. F. & Behrens, T. E. Ventromedial prefrontal and anterior cingulate cortex adopt choice and default reference frames during sequential multi-alternative choice. J. Neurosci. 33, 2242–2253 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wittmann, M. K. et al. Predictive decision making driven by multiple time-linked reward representations in the anterior cingulate cortex. Nat. Commun. 7, 12327 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Daw, N. D., O'Doherty, J. P., Dayan, P., Seymour, B. & Dolan, R. J. Cortical substrates for exploratory decisions in humans. Nature 441, 876–879 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Karlsson, M. P., Tervo, D. G. R. & Karpova, A. Y. Network resets in medial prefrontal cortex mark the onset of behavioral uncertainty. Science 338, 135–139 (2012).

    Article  CAS  PubMed  Google Scholar 

  101. Blanchard, T. C., Strait, C. E. & Hayden, B. Y. Ramping ensemble activity in dorsal anterior cingulate neurons during persistent commitment to a decision. J. Neurophysiol. 114, 2439–2449 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Desrochers, T. M., Chatham, C. H. & Badre, D. The necessity of rostrolateral prefrontal cortex for higher-level sequential behavior. Neuron 87, 1357–1368 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Badre, D. & D'Esposito, M. Is the rostro-caudal axis of the frontal lobe hierarchical? Nat. Rev. Neurosci. 10, 659–669 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kouneiher, F., Charron, S. & Koechlin, E. Motivation and cognitive control in the human prefrontal cortex. Nat. Neurosci. 12, 939–945 (2009).

    Article  CAS  PubMed  Google Scholar 

  105. O'Reilly, R. C. The what and how of prefrontal cortical organization. Trends Neurosci. 33, 355–361 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Zarr, N. & Brown, J. W. Hierarchical error representation in medial prefrontal cortex. Neuroimage 124, 238–247 (2016).

    Article  PubMed  Google Scholar 

  107. Nee, D. E. & Brown, J. W. Rostral–caudal gradients of abstraction revealed by multi-variate pattern analysis of working memory. Neuroimage 63, 1285–1294 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Nee, D. E. & D'Esposito, M. The hierarchical organization of the lateral prefrontal cortex. eLife 5, e12112 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Badre, D., Kayser, A. S. & D'Esposito, M. Frontal cortex and the discovery of abstract action rules. Neuron 66, 315–326 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Frank, M. J. & Badre, D. Mechanisms of hierarchical reinforcement learning in corticostriatal circuits 1: computational analysis. Cereb. Cortex 22, 509–526 (2012).

    Article  PubMed  Google Scholar 

  111. Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural Comput. 9, 1735–1780 (1997).

    Article  CAS  PubMed  Google Scholar 

  112. O'Reilly, R. C. & Frank, M. J. Making working memory work: a computational model of learning in the prefrontal cortex and basal ganglia. Neural Comput. 18, 283–328 (2006).

    Article  PubMed  Google Scholar 

  113. Dursteler, M. R., Wurtz, R. H. & Newsome, W. T. Directional pursuit deficits following lesions of the foveal representation within the superior temporal sulcus of the macaque monkey. J. Neurophysiol. 57, 1262–1287 (1987).

    Article  CAS  PubMed  Google Scholar 

  114. Barton, J. J., Press, D. Z., Keenan, J. P. & O'Connor, M. Lesions of the fusiform face area impair perception of facial configuration in prosopagnosia. Neurology 58, 71–78 (2002).

    Article  PubMed  Google Scholar 

  115. Noonan, M. P. et al. Separate value comparison and learning mechanisms in macaque medial and lateral orbitofrontal cortex. Proc. Natl Acad. Sci. USA 107, 20547–20552 (2010).

    Article  CAS  PubMed  Google Scholar 

  116. Walton, M. E., Behrens, T. E., Buckley, M. J., Rudebeck, P. H. & Rushworth, M. F. Separable learning systems in the macaque brain and the role of orbitofrontal cortex in contingent learning. Neuron 65, 927–939 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Vaidya, A. R. & Fellows, L. K. Testing necessary regional frontal contributions to value assessment and fixation-based updating. Nat. Commun. 6, 10120 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Eslinger, P. J. & Damasio, A. R. Severe disturbance of higher cognition after bilateral frontal lobe ablation: patient EVR. Neurology 35, 1731–1741 (1985).

    Article  CAS  PubMed  Google Scholar 

  119. Szczepanski, S. M. & Knight, R. T. Insights into human behavior from lesions to the prefrontal cortex. Neuron 83, 1002–1018 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Shadlen, M. N. & Shohamy, D. Decision making and sequential sampling from memory. Neuron 90, 927–939 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Plassmann, H., O'Doherty, J. & Rangel, A. Orbitofrontal cortex encodes willingness to pay in everyday economic transactions. J. Neurosci. 27, 9984–9988 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Knutson, B., Taylor, J., Kaufman, M., Peterson, R. & Glover, G. Distributed neural representation of expected value. J. Neurosci. 25, 4806–4812 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. McCoy, A. N. & Platt, M. L. Risk-sensitive neurons in macaque posterior cingulate cortex. Nat. Neurosci. 8, 1220–1227 (2005).

    Article  CAS  PubMed  Google Scholar 

  124. Kim, S., Hwang, J. & Lee, D. Prefrontal coding of temporally discounted values during intertemporal choice. Neuron 59, 161–172 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Louie, K., Grattan, L. E. & Glimcher, P. W. Reward value-based gain control: divisive normalization in parietal cortex. J. Neurosci. 31, 10627–10639 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Shuler, M. G. Reward timing in the primary visual cortex. Science 311, 1606–1609 (2006).

    Article  CAS  PubMed  Google Scholar 

  127. Philiastides, M. G., Biele, G. & Heekeren, H. R. A mechanistic account of value computation in the human brain. Proc. Natl Acad. Sci. USA 107, 9430–9435 (2010).

    Article  CAS  PubMed  Google Scholar 

  128. Peck, C. J., Lau, B. & Salzman, C. D. The primate amygdala combines information about space and value. Nat. Neurosci. 16, 340–348 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Cai, X., Kim, S. & Lee, D. Heterogeneous coding of temporally discounted values in the dorsal and ventral striatum during intertemporal choice. Neuron 69, 170–182 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Heilbronner, S. R. & Hayden, B. Y. Dorsal anterior cingulate cortex: a bottom-up view. Annu. Rev. Neurosci. 39, 149–170 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Vickery, T. J., Chun, M. M. & Lee, D. Ubiquity and specificity of reinforcement signals throughout the human brain. Neuron 72, 166–177 (2011).

    Article  CAS  PubMed  Google Scholar 

  132. Maunsell, J. H. R. Neuronal representations of cognitive state: reward or attention? Trends Cogn. Sci. 8, 261–265 (2004).

    Article  PubMed  Google Scholar 

  133. Leathers, M. L. & Olson, C. R. In monkeys making value-based decisions, LIP neurons encode cue salience and not action value. Science 338, 132–135 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Litt, A., Plassmann, H., Shiv, B. & Rangel, A. Dissociating valuation and saliency signals during decision-making. Cereb. Cortex 21, 95–102 (2010).

    Article  PubMed  Google Scholar 

  135. Vlaev, I., Chater, N., Stewart, N. & Brown, G. D. Does the brain calculate value? Trends Cogn. Sci. 15, 546–554 (2011).

    Article  PubMed  Google Scholar 

  136. Lichtenstein, S. & Slovic, P. Reversals of preference between bids and choices in gambling decisions. J. Exp. Psychol. 89, 46–55 (1971).

    Article  Google Scholar 

  137. Churchland, M. M. et al. Neural population dynamics during reaching. Nature 487, 51–56 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Shenoy, K. V., Sahani, M. & Churchland, M. M. Cortical control of arm movements: a dynamical systems perspective. Annu. Rev. Neurosci. 36, 337–359 (2013).

    Article  CAS  PubMed  Google Scholar 

  139. Hunt, L. T. What are the neural origins of choice variability? Trends Cogn. Sci. 18, 222–224 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Levy, D. J. & Glimcher, P. W. The root of all value: a neural common currency for choice. Curr. Opin. Neurobiol. 22, 1027–1038 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Svoboda, E., McKinnon, M. C. & Levine, B. The functional neuroanatomy of autobiographical memory: a meta-analysis. Neuropsychologia 44, 2189–2208 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Doeller, C. F., Barry, C. & Burgess, N. Evidence for grid cells in a human memory network. Nature 463, 657–661 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Schacter, D. L. et al. The future of memory: remembering, imagining, and the brain. Neuron 76, 677–694 (2012).

    Article  CAS  PubMed  Google Scholar 

  144. Van Overwalle, F. Social cognition and the brain: a meta-analysis. Hum. Brain Mapp. 30, 829–858 (2009).

    Article  PubMed  Google Scholar 

  145. Mansouri, F. A., Buckley, M. J. & Tanaka, K. The essential role of primate orbitofrontal cortex in conflict-induced executive control adjustment. J. Neurosci. 34, 11016–11031 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Sleezer, B. J., Castagno, M. D. & Hayden, B. Y. Rule encoding in orbitofrontal cortex and striatum guides selection. J. Neurosci. 36, 11223–11237 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Lopatina, N. et al. Lateral orbitofrontal neurons acquire responses to upshifted, downshifted, or blocked cues during unblocking. eLife 4, e11299 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  148. McDannald, M. A. et al. Orbitofrontal neurons acquire responses to 'valueless' Pavlovian cues during unblocking. eLife 3, e02653 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Tsujimoto, S., Genovesio, A. & Wise, S. P. Neuronal activity during a cued strategy task: comparison of dorsolateral, orbital, and polar prefrontal cortex. J. Neurosci. 32, 11017–11031 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Kepecs, A., Uchida, N., Zariwala, H. A. & Mainen, Z. F. Neural correlates, computation and behavioural impact of decision confidence. Nature 455, 227–231 (2008).

    Article  CAS  PubMed  Google Scholar 

  151. Genovesio, A., Tsujimoto, S., Navarra, G., Falcone, R. & Wise, S. P. Autonomous encoding of irrelevant goals and outcomes by prefrontal cortex neurons. J. Neurosci. 34, 1970–1978 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Rigotti, M. et al. The importance of mixed selectivity in complex cognitive tasks. Nature 497, 585–590 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Raposo, D., Kaufman, M. T. & Churchland, A. K. A category-free neural population supports evolving demands during decision-making. Nat. Neurosci. 17, 1784–1792 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Felleman, D. J. & Van Essen, D. C. Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1, 1–47 (1991).

    Article  CAS  PubMed  Google Scholar 

  155. Markov, N. T. et al. A weighted and directed interareal connectivity matrix for macaque cerebral cortex. Cereb. Cortex 24, 17–36 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Dombrowski, S. M., Hilgetag, C. C. & Barbas, H. Quantitative architecture distinguishes prefrontal cortical systems in the rhesus monkey. Cereb. Cortex. 11, 975–988 (2001).

    Article  CAS  PubMed  Google Scholar 

  157. Alexander, G. E., DeLong, M. R. & Strick, P. L. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu. Rev. Neurosci. 9, 357–381 (1986).

    Article  CAS  PubMed  Google Scholar 

  158. Seeley, T. D. & Buhrman, S. C. Group decision making in swarms of honey bees. Behav. Ecol. Sociobiol. 45, 19–31 (1999).

    Article  Google Scholar 

  159. Seeley, T. D. et al. Stop signals provide cross inhibition in collective decision-making by honeybee swarms. Science 335, 108–111 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to many colleagues with whom interactions have shaped ideas within this article, in particular T. Behrens, T. Blanchard, S. Kennerley, J. Pearson, S. Piantadosi, M. Platt, M. Rushworth and T. Seeley. The authors thank H. Barron, A. de Berker, R. Dolan, M. A. Noonan and T. Seow for comments on a previous draft of the manuscript. L.T.H. is supported by a Sir Henry Wellcome Fellowship from the Wellcome Trust (098830/Z/12/Z). B.Y.H. is supported by a US National Institutes of Health award (DA037229).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Laurence T. Hunt or Benjamin Y. Hayden.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hunt, L., Hayden, B. A distributed, hierarchical and recurrent framework for reward-based choice. Nat Rev Neurosci 18, 172–182 (2017). https://doi.org/10.1038/nrn.2017.7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn.2017.7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing