Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The contribution of the human posterior parietal cortex to episodic memory

Abstract

The posterior parietal cortex (PPC) is traditionally associated with attention, perceptual decision making and sensorimotor transformations, but more recent human neuroimaging studies support an additional role in episodic memory retrieval. In this Opinion article, we present a functional–anatomical model of the involvement of the PPC in memory retrieval. Parietal regions involved in perceptual attention and episodic memory are largely segregated and often show a push–pull relationship, potentially mediated by prefrontal regions. Moreover, different PPC regions carry out specific functions during retrieval — for example, representing retrieved information, recoding this information based on task demands, or accumulating evidence for memory decisions.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Perceptual attention and episodic memory retrieval in the PPC: segregation and competition.
Figure 2: Different roles for the AG and latIPS during episodic memory retrieval.
Figure 3: Distinction between perceptual and memory-based decision making.

References

  1. Colby, C. L., Duhamel, J. R. & Goldberg, M. E. Visual, presaccadic, and cognitive activation of single neurons in monkey lateral intraparietal area. J. Neurophysiol. 76, 2841–2852 (1996).

    CAS  Article  PubMed  Google Scholar 

  2. Snyder, L. H., Batista, A. P. & Andersen, R. A. Coding of intention in the posterior parietal cortex. Nature 386, 167–170 (1997).

    CAS  Article  PubMed  Google Scholar 

  3. Kastner, S. & Ungerleider, L. G. The neural basis of biased competition in human visual cortex. Neuropsychologia 39, 1263–1276 (2001).

    CAS  Article  PubMed  Google Scholar 

  4. Corbetta, M. & Shulman, G. L. Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 3, 201–215 (2002).

    CAS  Article  PubMed  Google Scholar 

  5. Vallar, G. & Perani, D. (eds) The Anatomy of Spatial Neglect in Humans (Elsevier Science Publishers, 1987).

    Book  Google Scholar 

  6. Mesulam, M. M. Spatial attention and neglect: parietal, frontal and cingulate contributions to the mental representation and attentional targeting of salient extrapersonal events. Phil. Trans. R. Soc. Lond. B 354, 1325–1346 (1999).

    CAS  Article  Google Scholar 

  7. Colby, C. L. & Goldberg, M. E. Space and attention in parietal cortex. Annu. Rev. Neurosci. 22, 319–349 (1999).

    CAS  Article  PubMed  Google Scholar 

  8. Cohen, Y. E. & Andersen, R. A. A common reference frame for movement plans in the posterior parietal cortex. Nat. Rev. Neurosci. 3, 553–562 (2002).

    CAS  Article  PubMed  Google Scholar 

  9. Gottlieb, J. From thought to action: the parietal cortex as a bridge between perception, action, and cognition. Neuron 53, 9–16 (2007).

    CAS  Article  PubMed  Google Scholar 

  10. Shadlen, M. N. & Newsome, W. T. Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. J. Neurophysiol. 86, 1916–1936 (2001).

    CAS  Article  PubMed  Google Scholar 

  11. Wagner, A. D., Shannon, B. J., Kahn, I. & Buckner, R. L. Parietal lobe contributions to episodic memory retrieval. Trends Cogn. Sci. 9, 445–453 (2005).

    Article  PubMed  Google Scholar 

  12. Cabeza, R., Ciaramelli, E., Olson, I. R. & Moscovitch, M. The parietal cortex and episodic memory: an attentional account. Nat. Rev. Neurosci. 9, 613–625 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Vilberg, K. L. & Rugg, M. D. Memory retrieval and the parietal cortex: a review of evidence from a dual-process perspective. Neuropsychologia 46, 1787–1799 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Levy, D. A. Towards an understanding of parietal mnemonic processes: some conceptual guideposts. Front. Integr. Neurosci. 6, 41 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Uncapher, M. R., Gordon, A. M. & Wagner, A. D. in The Cognitive Neurosciences (eds Mangun, G. R. & Gazzaniga, M. S.) 567–576 (MIT Press, 2014).

    Google Scholar 

  16. Guerin, S. A. & Miller, M. B. Lateralization of the parietal old/new effect: an event-related fMRI study comparing recognition memory for words and faces. Neuroimage 44, 232–242 (2009).

    Article  PubMed  Google Scholar 

  17. Shannon, B. J. & Buckner, R. L. Functional-anatomic correlates of memory retrieval that suggest nontraditional processing roles for multiple distinct regions within posterior parietal cortex. J. Neurosci. 24, 10084–10092 (2004).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Duarte, A., Henson, R. N. & Graham, K. S. Stimulus content and the neural correlates of source memory. Brain Res. 1373, 110–123 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Han, S., Huettel, S. A., Raposo, A., Adcock, R. A. & Dobbins, I. G. Functional significance of striatal responses during episodic decisions: recovery or goal attainment? J. Neurosci. 30, 4767–4775 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Wheeler, M. E. & Buckner, R. L. Functional dissociation among components of remembering: control, perceived oldness, and content. J. Neurosci. 23, 3869–3880 (2003).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Wheeler, M. E. & Buckner, R. L. Functional-anatomic correlates of remembering and knowing. Neuroimage 21, 1337–1349 (2004).

    Article  PubMed  Google Scholar 

  22. Schoo, L. A. et al. The posterior parietal paradox: why do functional magnetic resonance imaging and lesion studies on episodic memory produce conflicting results? J. Neuropsychol. 5, 15–38 (2011).

    CAS  Article  PubMed  Google Scholar 

  23. Berryhill, M. E. Insights from neuropsychology: pinpointing the role of the posterior parietal cortex in episodic and working memory. Front. Integr. Neurosci. 6, 31 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Simons, J. S., Peers, P. V., Mazuz, Y. S., Berryhill, M. E. & Olson, I. R. Dissociation between memory accuracy and memory confidence following bilateral parietal lesions. Cereb. Cortex 20, 479–485 (2010).

    Article  PubMed  Google Scholar 

  25. O'Connor, A. R., Han, S. & Dobbins, I. G. The inferior parietal lobule and recognition memory: expectancy violation or successful retrieval? J. Neurosci. 30, 2924–2934 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Shimamura, A. P. Episodic retrieval and the cortical binding of relational activity. Cogn. Affect. Behav. Neurosci. 11, 277–291 (2011).

    Article  PubMed  Google Scholar 

  27. Donaldson, D. I., Wheeler, M. E. & Petersen, S. E. Remember the source: dissociating frontal and parietal contributions to episodic memory. J. Cogn. Neurosci. 22, 377–391 (2010).

    Article  PubMed  Google Scholar 

  28. Nelson, S. M. et al. A parcellation scheme for human left lateral parietal cortex. Neuron 67, 156–170 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Sestieri, C., Corbetta, M., Romani, G. L. & Shulman, G. L. Episodic memory retrieval, parietal cortex, and the default mode network: functional and topographic analyses. J. Neurosci. 31, 4407–4420 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Hutchinson, J. B., Uncapher, M. R. & Wagner, A. D. Posterior parietal cortex and episodic retrieval: convergent and divergent effects of attention and memory. Learn. Mem. 16, 343–356 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sestieri, C., Shulman, G. L. & Corbetta, M. Attention to memory and the environment: functional specialization and dynamic competition in human posterior parietal cortex. J. Neurosci. 30, 8445–8456 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Shulman, G. L. et al. Common blood flow changes across visual tasks: II. Decreases in cerebral cortex. J. Cogn. Neurosci. 9, 648–663 (1997).

    CAS  Article  PubMed  Google Scholar 

  33. Raichle, M. E. et al. A default mode of brain function. Proc. Natl Acad. Sci. USA 98, 676–682 (2001).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Corbetta, M., Patel, G. & Shulman, G. L. The reorienting system of the human brain: from environment to theory of mind. Neuron 58, 306–324 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Capotosto, P. et al. Task and regions specific top-down modulation of alpha rhythms in parietal cortex. Cereb. Cortex http://dx.doi.org/10.1093/cercor/bhw278 (2016).

  36. Capotosto, P., Babiloni, C., Romani, G. L. & Corbetta, M. Frontoparietal cortex controls spatial attention through modulation of anticipatory alpha rhythms. J. Neurosci. 29, 5863–5872 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. Capotosto, P., Babiloni, C., Romani, G. L. & Corbetta, M. Differential contribution of right and left parietal cortex to the control of spatial attention: a simultaneous EEG–rTMS study. Cereb. Cortex 22, 446–454 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Cabeza, R. et al. Overlapping parietal activity in memory and perception: evidence for the attention to memory model. J. Cogn. Neurosci. 23, 3209–3217 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ciaramelli, E., Grady, C. L. & Moscovitch, M. Top-down and bottom-up attention to memory: a hypothesis (AtoM) on the role of the posterior parietal cortex in memory retrieval. Neuropsychologia 46, 1828–1851 (2008).

    Article  PubMed  Google Scholar 

  40. Kragel, J. E. & Polyn, S. M. Functional interactions between large-scale networks during memory search. Cereb. Cortex 25, 667–679 (2015).

    Article  PubMed  Google Scholar 

  41. Summerfield, J. J., Lepsien, J., Gitelman, D. R., Mesulam, M. M. & Nobre, A. C. Orienting attention based on long-term memory experience. Neuron 49, 905–916 (2006).

    CAS  Article  PubMed  Google Scholar 

  42. Rosen, M. L., Stern, C. E., Michalka, S. W., Devaney, K. J. & Somers, D. C. Cognitive control network contributions to memory-guided visual attention. Cereb. Cortex 26, 2059–2073 (2016).

    Article  PubMed  Google Scholar 

  43. Cabeza, R., Ciaramelli, E. & Moscovitch, M. Cognitive contributions of the ventral parietal cortex: an integrative theoretical account. Trends Cogn. Sci. 16, 338–352 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Nelson, S. M., McDermott, K. B. & Petersen, S. E. In favor of a 'fractionation' view of ventral parietal cortex: comment on Cabeza et al. Trends Cogn. Sci. 16, 399–400 (2012).

    Article  PubMed  Google Scholar 

  45. Hutchinson, J. B. et al. Functional heterogeneity in posterior parietal cortex across attention and episodic memory retrieval. Cereb. Cortex 24, 49–66 (2014).

    Article  PubMed  Google Scholar 

  46. Liu, T., Hospadaruk, L., Zhu, D. C. & Gardner, J. L. Feature-specific attentional priority signals in human cortex. J. Neurosci. 31, 4484–4495 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Greenberg, A. S., Esterman, M., Wilson, D., Serences, J. T. & Yantis, S. Control of spatial and feature-based attention in frontoparietal cortex. J. Neurosci. 30, 14330–14339 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. Liu, T. & Hou, Y. A hierarchy of attentional priority signals in human frontoparietal cortex. J. Neurosci. 33, 16606–16616 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. Ruff, C. C. et al. Concurrent TMS-fMRI and psychophysics reveal frontal influences on human retinotopic visual cortex. Curr. Biol. 16, 1479–1488 (2006).

    CAS  Article  PubMed  Google Scholar 

  50. Bressler, S. L., Tang, W., Sylvester, C. M., Shulman, G. L. & Corbetta, M. Top-down control of human visual cortex by frontal and parietal cortex in anticipatory visual spatial attention. J. Neurosci. 28, 10056–10061 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. Ciaramelli, E., Grady, C., Levine, B., Ween, J. & Moscovitch, M. Top-down and bottom-up attention to memory are dissociated in posterior parietal cortex: neuroimaging and neuropsychological evidence. J. Neurosci. 30, 4943–4956 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. Jaeger, A., Konkel, A. & Dobbins, I. G. Unexpected novelty and familiarity orienting responses in lateral parietal cortex during recognition judgment. Neuropsychologia 51, 1061–1076 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Hester, R. L. et al. Predicting success: patterns of cortical activation and deactivation prior to response inhibition. J. Cogn. Neurosci. 16, 776–785 (2004).

    Article  PubMed  Google Scholar 

  54. Weissman, D. H., Roberts, K. C., Visscher, K. M. & Woldorff, M. G. The neural bases of momentary lapses in attention. Nat. Neurosci. 9, 971–978 (2006).

    CAS  Article  PubMed  Google Scholar 

  55. Guerin, S. A., Robbins, C. A., Gilmore, A. W. & Schacter, D. L. Interactions between visual attention and episodic retrieval: dissociable contributions of parietal regions during gist-based false recognition. Neuron 75, 1122–1134 (2012).

    CAS  Article  PubMed  Google Scholar 

  56. Craik, F. I., Govoni, R., Naveh-Benjamin, M. & Anderson, N. D. The effects of divided attention on encoding and retrieval processes in human memory. J. Exp. Psychol. Gen. 125, 159–180 (1996).

    CAS  Article  PubMed  Google Scholar 

  57. Sestieri, C., Capotosto, P., Tosoni, A., Luca Romani, G. & Corbetta, M. Interference with episodic memory retrieval following transcranial stimulation of the inferior but not the superior parietal lobule. Neuropsychologia 51, 900–906 (2013).

    Article  PubMed  Google Scholar 

  58. Desimone, R. & Duncan, J. Neural mechanisms of selective visual attention. Annu. Rev. Neurosci. 18, 193–222 (1995).

    CAS  Article  PubMed  Google Scholar 

  59. Higo, T., Mars, R. B., Boorman, E. D., Buch, E. R. & Rushworth, M. F. Distributed and causal influence of frontal operculum in task control. Proc. Natl Acad. Sci. USA 108, 4230–4235 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  60. Chadick, J. Z. & Gazzaley, A. Differential coupling of visual cortex with default or frontal-parietal network based on goals. Nat. Neurosci. 14, 830–832 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  61. Sestieri, C., Corbetta, M., Spadone, S., Romani, G. L. & Shulman, G. L. Domain-general signals in the cingulo-opercular network for visuospatial attention and episodic memory. J. Cogn. Neurosci. 26, 551–568 (2014).

    Article  PubMed  Google Scholar 

  62. Dosenbach, N. U. et al. A core system for the implementation of task sets. Neuron 50, 799–812 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. Spreng, R. N., Stevens, W. D., Chamberlain, J. P., Gilmore, A. W. & Schacter, D. L. Default network activity, coupled with the frontoparietal control network, supports goal-directed cognition. Neuroimage 53, 303–317 (2010).

    Article  PubMed  Google Scholar 

  64. Vincent, J. L., Kahn, I., Snyder, A. Z., Raichle, M. E. & Buckner, R. L. Evidence for a frontoparietal control system revealed by intrinsic functional connectivity. J. Neurophysiol. 100, 3328–3342 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Spreng, R. N., Sepulcre, J., Turner, G. R., Stevens, W. D. & Schacter, D. L. Intrinsic architecture underlying the relations among the default, dorsal attention, and frontoparietal control networks of the human brain. J. Cogn. Neurosci. 25, 74–86 (2013).

    Article  PubMed  Google Scholar 

  66. Dosenbach, N. U., Fair, D. A., Cohen, A. L., Schlaggar, B. L. & Petersen, S. E. A dual-networks architecture of top-down control. Trends Cogn. Sci. 12, 99–105 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Sridharan, D., Levitin, D. J. & Menon, V. A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proc. Natl Acad. Sci. USA 105, 12569–12574 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  68. Sadaghiani, S. & D'Esposito, M. Functional characterization of the cingulo-opercular network in the maintenance of tonic alertness. Cereb. Cortex 25, 2763–2773 (2015).

    Article  PubMed  Google Scholar 

  69. Coste, C. P. & Kleinschmidt, A. Cingulo-opercular network activity maintains alertness. Neuroimage 128, 264–272 (2016).

    Article  PubMed  Google Scholar 

  70. Baddeley, A. The episodic buffer: a new component of working memory? Trends Cogn. Sci. 4, 417–423 (2000).

    CAS  Article  PubMed  Google Scholar 

  71. Vilberg, K. L. & Rugg, M. D. Dissociation of the neural correlates of recognition memory according to familiarity, recollection, and amount of recollected information. Neuropsychologia 45, 2216–2225 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Kuhl, B. A. & Chun, M. M. Successful remembering elicits event-specific activity patterns in lateral parietal cortex. J. Neurosci. 34, 8051–8060 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  73. Berryhill, M. E., Phuong, L., Picasso, L., Cabeza, R. & Olson, I. R. Parietal lobe and episodic memory: bilateral damage causes impaired free recall of autobiographical memory. J. Neurosci. 27, 14415–14423 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  74. Davidson, P. S. et al. Does lateral parietal cortex support episodic memory? Evidence from focal lesion patients. Neuropsychologia 46, 1743–1755 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Binder, J. R., Desai, R. H., Graves, W. W. & Conant, L. L. Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cereb. Cortex 19, 2767–2796 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Kim, H. Default network activation during episodic and semantic memory retrieval: a selective meta-analytic comparison. Neuropsychologia 80, 35–46 (2016).

    Article  PubMed  Google Scholar 

  77. Binder, J. R. & Desai, R. H. The neurobiology of semantic memory. Trends Cogn. Sci. 15, 527–536 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Tulving, E. Elements of Episodic Memory (Oxford Univ. Press, 1983).

    Google Scholar 

  79. Schacter, D. L., Addis, D. R. & Buckner, R. L. Remembering the past to imagine the future: the prospective brain. Nat. Rev. Neurosci. 8, 657–661 (2007).

    CAS  Article  PubMed  Google Scholar 

  80. Vilberg, K. L. & Rugg, M. D. The neural correlates of recollection: transient versus sustained fMRI effects. J. Neurosci. 32, 15679–15687 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  81. Vincent, J. L. et al. Coherent spontaneous activity identifies a hippocampal-parietal memory network. J. Neurophysiol. 96, 3517–3531 (2006).

    Article  PubMed  Google Scholar 

  82. Andreasen, N. C. et al. Remembering the past: two facets of episodic memory explored with positron emission tomography. Am. J. Psychiatry 152, 1576–1585 (1995).

    CAS  Article  PubMed  Google Scholar 

  83. Buckner, R. L., Andrews-Hanna, J. R. & Schacter, D. L. The brain's default network: anatomy, function, and relevance to disease. Ann. NY Acad. Sci. 1124, 1–38 (2008).

    Article  PubMed  Google Scholar 

  84. Andrews-Hanna, J. R., Reidler, J. S., Sepulcre, J., Poulin, R. & Buckner, R. L. Functional-anatomic fractionation of the brain's default network. Neuron 65, 550–562 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  85. Yeo, B. T. et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165 (2011).

    Article  PubMed  Google Scholar 

  86. Van Essen, D. C. & Dierker, D. L. Surface-based and probabilistic atlases of primate cerebral cortex. Neuron 56, 209–225 (2007).

    CAS  Article  PubMed  Google Scholar 

  87. Templer, V. L. & Hampton, R. R. Episodic memory in nonhuman animals. Curr. Biol. 23, R801–R806 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  88. Clower, D. M., West, R. A., Lynch, J. C. & Strick, P. L. The inferior parietal lobule is the target of output from the superior colliculus, hippocampus, and cerebellum. J. Neurosci. 21, 6283–6291 (2001).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  89. Lewis, J. W. & Van Essen, D. C. Corticocortical connections of visual, sensorimotor, and multimodal processing areas in the parietal lobe of the macaque monkey. J. Comp. Neurol. 428, 112–137 (2000).

    CAS  Article  PubMed  Google Scholar 

  90. Uddin, L. Q. et al. Dissociable connectivity within human angular gyrus and intraparietal sulcus: evidence from functional and structural connectivity. Cereb. Cortex 20, 2636–2646 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Miyashita, Y. Inferior temporal cortex: where visual perception meets memory. Annu. Rev. Neurosci. 16, 245–263 (1993).

    CAS  Article  PubMed  Google Scholar 

  92. Higuchi, S. & Miyashita, Y. Formation of mnemonic neuronal responses to visual paired associates in inferotemporal cortex is impaired by perirhinal and entorhinal lesions. Proc. Natl Acad. Sci. USA 93, 739–743 (1996).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  93. Miyamoto, K. et al. Functional differentiation of memory retrieval network in macaque posterior parietal cortex. Neuron 77, 787–799 (2013).

    CAS  Article  PubMed  Google Scholar 

  94. Gold, J. I. & Shadlen, M. N. The neural basis of decision making. Annu. Rev. Neurosci. 30, 535–574 (2007).

    CAS  Article  PubMed  Google Scholar 

  95. Ratcliff, R. & McKoon, G. The diffusion decision model: theory and data for two-choice decision tasks. Neural Comput. 20, 873–922 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Ratcliff, R. A theory of memory retrieval. Psychol. Rev. 85, 59–108 (1978).

    Article  Google Scholar 

  97. Kahn, I., Davachi, L. & Wagner, A. D. Functional-neuroanatomic correlates of recollection: implications for models of recognition memory. J. Neurosci. 24, 4172–4180 (2004).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  98. Sestieri, C. et al. Memory accumulation mechanisms in human cortex are independent of motor intentions. J. Neurosci. 34, 6993–7006 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  99. Rugg, M. D. & Curran, T. Event-related potentials and recognition memory. Trends Cogn. Sci. 11, 251–257 (2007).

    Article  PubMed  Google Scholar 

  100. Nyhus, E. & Curran, T. Functional role of gamma and theta oscillations in episodic memory. Neurosci. Biobehav. Rev. 34, 1023–1035 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Seibert, T. M., Gimbel, S. I., Hagler, D. J. Jr & Brewer, J. B. Parietal activity in episodic retrieval measured by fMRI and MEG. Neuroimage 55, 788–793 (2011).

    Article  PubMed  Google Scholar 

  102. Gonzalez, A. et al. Electrocorticography reveals the temporal dynamics of posterior parietal cortical activity during recognition memory decisions. Proc. Natl Acad. Sci. USA 112, 11066–11071 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  103. Tosoni, A., Galati, G., Romani, G. L. & Corbetta, M. Sensory-motor mechanisms in human parietal cortex underlie arbitrary visual decisions. Nat. Neurosci. 11, 1446–1453 (2008).

    CAS  Article  PubMed  Google Scholar 

  104. Donner, T. H., Siegel, M., Fries, P. & Engel, A. K. Buildup of choice-predictive activity in human motor cortex during perceptual decision making. Curr. Biol. 19, 1581–1585 (2009).

    CAS  Article  PubMed  Google Scholar 

  105. Gould, I. C., Nobre, A. C., Wyart, V. & Rushworth, M. F. Effects of decision variables and intraparietal stimulation on sensorimotor oscillatory activity in the human brain. J. Neurosci. 32, 13805–13818 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  106. Sereno, M. I., Pitzalis, S. & Martinez, A. Mapping of contralateral space in retinotopic coordinates by a parietal cortical area in humans. Science 294, 1350–1354 (2001).

    CAS  Article  PubMed  Google Scholar 

  107. Patel, G. H. et al. Topographic organization of macaque area LIP. Proc. Natl Acad. Sci. USA 107, 4728–4733 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  108. Galletti, C., Fattori, P., Kutz, D. F. & Gamberini, M. Brain location and visual topography of cortical area V6A in the macaque monkey. Eur. J. Neurosci. 11, 575–582 (1999).

    CAS  Article  PubMed  Google Scholar 

  109. Connolly, J. D., Andersen, R. A. & Goodale, M. A. FMRI evidence for a 'parietal reach region' in the human brain. Exp. Brain Res. 153, 140–145 (2003).

    Article  PubMed  Google Scholar 

  110. Guerin, S. A. & Miller, M. B. Parietal cortex tracks the amount of information retrieved even when it is not the basis of a memory decision. Neuroimage 55, 801–807 (2011).

    Article  PubMed  Google Scholar 

  111. Power, J. D. et al. Functional network organization of the human brain. Neuron 72, 665–678 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  112. Eichenbaum, H., Yonelinas, A. P. & Ranganath, C. The medial temporal lobe and recognition memory. Annu. Rev. Neurosci. 30, 123–152 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  113. Badre, D. & Wagner, A. D. Left ventrolateral prefrontal cortex and the cognitive control of memory. Neuropsychologia 45, 2883–2901 (2007).

    Article  PubMed  Google Scholar 

  114. Scimeca, J. M. & Badre, D. Striatal contributions to declarative memory retrieval. Neuron 75, 380–392 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  115. Smith, P. L. & Ratcliff, R. Psychology and neurobiology of simple decisions. Trends Neurosci. 27, 161–168 (2004).

    CAS  Article  PubMed  Google Scholar 

  116. Ho, T. C., Brown, S. & Serences, J. T. Domain general mechanisms of perceptual decision making in human cortex. J. Neurosci. 29, 8675–8687 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  117. Kayser, A. S., Buchsbaum, B. R., Erickson, D. T. & D'Esposito, M. The functional anatomy of a perceptual decision in the human brain. J. Neurophysiol. 103, 1179–1194 (2010).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the J. S. McDonnell Foundation and by US National Institutes of Health (grant RO1 NS095741) to M.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Sestieri.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sestieri, C., Shulman, G. & Corbetta, M. The contribution of the human posterior parietal cortex to episodic memory. Nat Rev Neurosci 18, 183–192 (2017). https://doi.org/10.1038/nrn.2017.6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn.2017.6

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing