Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Non-motor features of Parkinson disease

An Erratum to this article was published on 13 July 2017

Key Points

  • Non-motor symptoms are common in Parkinson disease (PD) and can appear before motor features and progress in both severity and diversity as the disease evolves.

  • Both dopaminergic and non-dopaminergic pathology underlie the non-motor features, and this pathology involves the central and autonomic nervous systems.

  • There is no accurate toxin-induced or genetic animal model of PD pathology, and models for the study of non-motor features are limited.

  • A combination of non-motor features with additional biochemical and/or imaging studies may provide a means to identify prodromal, pre-motor PD.

  • There is accumulating evidence that α-synuclein pathology may spread along neuronal pathways and that this may originate in the gastrointestinal tract autonomic plexi.

  • Therapies designed to slow the course of PD will need to address pathology in non-dopaminergic neurons so as to influence non-motor, as well as motor, features of the disease.

Abstract

Many of the motor symptoms of Parkinson disease (PD) can be preceded, sometimes for several years, by non-motor symptoms that include hyposmia, sleep disorders, depression and constipation. These non-motor features appear across the spectrum of patients with PD, including individuals with genetic causes of PD. The neuroanatomical and neuropharmacological bases of non-motor abnormalities in PD remain largely undefined. Here, we discuss recent advances that have helped to establish the presence, severity and effect on the quality of life of non-motor symptoms in PD, and the neuroanatomical and neuropharmacological mechanisms involved. We also discuss the potential for the non-motor features to define a prodrome that may enable the early diagnosis of PD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Time courses of the onset of the motor and non-motor features of Parkinson disease.
Figure 2: Potential non-motor features in Parkinson disease.
Figure 3: Lewy bodies in Parkinson disease.
Figure 4: Schema representing the hypothesis of pathology spread via the intestine in Parkinson disease.

Similar content being viewed by others

References

  1. Berardelli, A. et al. EFNS/MDS-ES/ENS [corrected] recommendations for the diagnosis of Parkinson's disease. Eur. J. Neurol. 20, 16–34 (2013). This is a definitive and practical recommendation for the diagnostic process in PD.

    Article  CAS  PubMed  Google Scholar 

  2. Schapira, A. H., Emre, M., Jenner, P. & Poewe, W. Levodopa in the treatment of Parkinson's disease. Eur. J. Neurol. 16, 982–989 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Schapira, A. H. & Tolosa, E. Molecular and clinical prodrome of Parkinson disease: implications for treatment. Nat. Rev. Neurol. 6, 309–317 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Chahine, L. M. et al. Cognition in individuals at risk for Parkinson's: Parkinson associated risk syndrome (PARS) study findings. Mov. Disord. 31, 86–94 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Kempster, P. A., O'Sullivan, S. S., Holton, J. L., Revesz, T. & Lees, A. J. Relationships between age and late progression of Parkinson's disease: a clinico-pathological study. Brain 133, 1755–1762 (2010).

    Article  PubMed  Google Scholar 

  6. Chaudhuri, K. R., Healy, D. G. & Schapira, A. H. Non-motor symptoms of Parkinson's disease: diagnosis and management. Lancet Neurol. 5, 235–245 (2006). This article details the importance of comprehensive assessment of non-motor symptoms PD and management outline.

    Article  PubMed  Google Scholar 

  7. Marras, C. & Chaudhuri, K. R. Nonmotor features of Parkinson's disease subtypes. Mov. Disord. 31, 1095–1102 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Zesiewicz, T. A. et al. Practice parameter: treatment of nonmotor symptoms of Parkinson disease: report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 74, 924–931 (2010). This is the first consensus-based attempt for management of a range of relevant non-motor symptoms of PD.

    Article  CAS  PubMed  Google Scholar 

  9. Bohnen, N. I., Studenski, S. A., Constantine, G. M. & Moore, R. Y. Diagnostic performance of clinical motor and non-motor tests of Parkinson disease: a matched case-control study. Eur. J. Neurol. 15, 685–691 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Ponsen, M. M. et al. Idiopathic hyposmia as a preclinical sign of Parkinson's disease. Ann. Neurol. 56, 173–181 (2004). This study highlights the importance of hyposmia as an often missed non-motor symptom in what we now know as prodromal PD.

    Article  PubMed  Google Scholar 

  11. Iranzo, A. et al. Decreased striatal dopamine transporter uptake and substantia nigra hyperechogenicity as risk markers of synucleinopathy in patients with idiopathic rapid-eye-movement sleep behaviour disorder: a prospective study [corrected]. Lancet Neurol. 9, 1070–1077 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Gaenslen, A. et al. Prodromal features for Parkinson's disease — baseline data from the TREND study. Eur. J. Neurol. 21, 766–772 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Doty, R. L. Olfaction in Parkinson's disease and related disorders. Neurobiol. Dis. 46, 527–552 (2012).

    Article  PubMed  Google Scholar 

  14. Baba, T. et al. Association of olfactory dysfunction and brain. Metabolism in Parkinson's disease. Mov. Disord. 26, 621–628 (2011).

    Article  PubMed  Google Scholar 

  15. Braak, H. et al. Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol. Aging 24, 197–211 (2003). This is a seminal paper on Braak staging in PD.

    Article  PubMed  Google Scholar 

  16. Bohnen, N. I. et al. Olfactory dysfunction, central cholinergic integrity and cognitive impairment in Parkinson's disease. Brain 133, 1747–1754 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bohnen, N. I. & Muller, M. L. In vivo neurochemical imaging of olfactory dysfunction in Parkinson's disease. J. Neural Transm. (Vienna) 120, 571–576 (2013).

    Article  Google Scholar 

  18. Witt, M. et al. Biopsies of olfactory epithelium in patients with Parkinson's disease. Mov. Disord. 24, 906–914 (2009).

    Article  PubMed  Google Scholar 

  19. Wang, J. et al. Association of olfactory bulb volume and olfactory sulcus depth with olfactory function in patients with Parkinson disease. AJNR Am. J. Neuroradiol. 32, 677–681 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Harding, A. J., Stimson, E., Henderson, J. M. & Halliday, G. M. Clinical correlates of selective pathology in the amygdala of patients with Parkinson's disease. Brain 125, 2431–2445 (2002).

    Article  PubMed  Google Scholar 

  21. Silveira-Moriyama, L. et al. Regional differences in the severity of Lewy body pathology across the olfactory cortex. Neurosci. Lett. 453, 77–80 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Ferrer, I. et al. Neurochemistry and the non-motor aspects of PD. Neurobiol. Dis. 46, 508–526 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Mundinano, I. C. et al. Increased dopaminergic cells and protein aggregates in the olfactory bulb of patients with neurodegenerative disorders. Acta Neuropathol. 122, 61–74 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Dluzen, D. E. 1-Methyl-4-phenyl-1,2,3,6- tetrahydropyridine (MPTP) reduces norepinephrine concentrations in the olfactory bulbs of male mice. Brain Res. 586, 144–147 (1992).

    Article  CAS  PubMed  Google Scholar 

  25. Prediger, R. D. et al. Single intranasal administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in C57BL/6 mice models early preclinical phase of Parkinson's disease. Neurotox. Res. 17, 114–129 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Kurtenbach, S., Wewering, S., Hatt, H., Neuhaus, E. M. & Lubbert, H. Olfaction in three genetic and two MPTP-induced Parkinson's disease mouse models. PLoS ONE 8, e77509 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Magen, I. & Chesselet, M. F. Genetic mouse models of Parkinson's disease: the state of the art. Prog. Brain Res. 184, 53–87 (2010). This is a comprehensive review of genetic models in PD.

    Article  CAS  PubMed  Google Scholar 

  28. McDowell, K. & Chesselet, M. F. Animal models of the non-motor features of Parkinson's disease. Neurobiol. Dis. 46, 597–606 (2012). This is one of the earliest papers on non-motor animal models of PD, which is still a key unmet need.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Fleming, S. M. et al. Olfactory deficits in mice overexpressing human wildtype α-synuclein. Eur. J. Neurosci. 28, 247–256 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Hansen, C. et al. A novel α-synuclein-GFP mouse model displays progressive motor impairment, olfactory dysfunction and accumulation of α-synuclein-GFP. Neurobiol. Dis. 56, 145–155 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Petit, G. H. et al. Rasagiline ameliorates olfactory deficits in an α-synuclein mouse model of Parkinson's disease. PLoS ONE 8, e60691 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nuber, S. et al. Environmental neurotoxic challenge of conditional α-synuclein transgenic mice predicts a dopaminergic olfactory-striatal interplay in early PD. Acta Neuropathol. 127, 477–494 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ubeda-Banon, I., Saiz-Sanchez, D., Rosa-Prieto, C. & Martinez-Marcos, A. α-Synuclein in the olfactory system of a mouse model of Parkinson's disease: correlation with olfactory projections. Brain Struct. Funct. 217, 447–458 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Schreglmann, S. R. et al. The temporal expression pattern of α-synuclein modulates olfactory neurogenesis in transgenic mice. PLoS ONE 10, e0126261 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Archibald, N. K., Clarke, M. P., Mosimann, U. P. & Burn, D. J. Visual symptoms in Parkinson's disease and Parkinson's disease dementia. Mov. Disord. 26, 2387–2395 (2011).

    Article  PubMed  Google Scholar 

  36. Armstrong, R. A. Visual symptoms in Parkinson's disease. Parkinsons Dis. 2011, 908306 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Chaudhuri, K. R. et al. International multicenter pilot study of the first comprehensive self-completed nonmotor symptoms questionnaire for Parkinson's disease: the NMSQuest study. Mov. Disord. 21, 916–923 (2006).

    Article  PubMed  Google Scholar 

  38. Nebe, A. & Ebersbach, G. Selective diplopia in Parkinson's disease: a special subtype of visual hallucination? Mov. Disord. 22, 1175–1178 (2007).

    Article  PubMed  Google Scholar 

  39. Baker, W. L. et al. Dopamine agonists in the treatment of early Parkinson's disease: a meta-analysis. Parkinsonism Relat. Disord. 15, 287–294 (2009).

    Article  PubMed  Google Scholar 

  40. Bodis-Wollner, I. Retinopathy in Parkinson disease. J. Neural Transm. 116, 1493–1501 (2009).

    Article  PubMed  Google Scholar 

  41. Ghilardi, M. F., Bodis-Wollner, I., Onofrj, M. C., Marx, M. S. & Glover, A. A. Spatial frequency-dependent abnormalities of the pattern electroretinogram and visual evoked potentials in a parkinsonian monkey model. Brain 111, 131–149 (1988).

    Article  PubMed  Google Scholar 

  42. Ghilardi, M. F., Marx, M. S., Bodis-Wollner, I., Camras, C. B. & Glover, A. A. The effect of intraocular 6-hydroxydopamine on retinal processing of primates. Ann. Neurol. 25, 357–364 (1989).

    Article  CAS  PubMed  Google Scholar 

  43. Archibald, N. K., Clarke, M. P., Mosimann, U. P. & Burn, D. J. Retinal thickness in Parkinson's disease. Parkinsonism Relat. Disord. 17, 431–436 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Tsironi, E. E. et al. Perimetric and retinal nerve fiber layer findings in patients with Parkinson's disease. BMC Ophthalmol. 12, 54 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Siebert, M., Sidransky, E. & Westbroek, W. Glucocerebrosidase is shaking up the synucleinopathies. Brain 137, 1304–1322 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  46. McNeill, A. et al. Retinal thinning in Gaucher disease patients and carriers: results of a pilot study. Mol. Genet. Metab. 109, 221–223 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Moschos, M. M. et al. Morphologic changes and functional retinal impairment in patients with Parkinson disease without visual loss. Eur. J. Ophthalmol. 21, 24–29 (2011).

    Article  PubMed  Google Scholar 

  48. Pagonabarraga, J. et al. Minor hallucinations occur in drug-naive Parkinson's disease patients, even from the premotor phase. Mov. Disord. 31, 45–52 (2016).

    Article  PubMed  Google Scholar 

  49. Archibald, N. K., Hutton, S. B., Clarke, M. P., Mosimann, U. P. & Burn, D. J. Visual exploration in Parkinson's disease and Parkinson's disease dementia. Brain 136, 739–750 (2013).

    Article  PubMed  Google Scholar 

  50. Muller, A. J., Shine, J. M., Halliday, G. M. & Lewis, S. J. Visual hallucinations in Parkinson's disease: theoretical models. Mov. Disord. 29, 1591–1598 (2014).

    Article  PubMed  Google Scholar 

  51. Negre-Pages, L., Regragui, W., Bouhassira, D., Grandjean, H. & Rascol, O. Chronic pain in Parkinson's disease: the cross-sectional French DoPaMiP survey. Mov. Disord. 23, 1361–1369 (2008). This is a controlled comprehensive study addressing the prevalence of various types of pain in PD.

    Article  PubMed  Google Scholar 

  52. Del, S. F. & Albanese, A. Clinical management of pain and fatigue in Parkinson's disease. Parkinsonism Relat. Disord. 18 (Suppl. 1), S233–S236 (2012).

    Google Scholar 

  53. Beiske, A. G., Loge, J. H., Ronningen, A. & Svensson, E. Pain in Parkinson's disease: prevalence and characteristics. Pain 141, 173–177 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Wasner, G. & Deuschl, G. Pains in Parkinson disease — many syndromes under one umbrella. Nat. Rev. Neurol. 8, 284–294 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Lee, M. A., Walker, R. W., Hildreth, T. J. & Prentice, W. M. A survey of pain in idiopathic Parkinson's disease. J. Pain Symptom Manage. 32, 462–469 (2006).

    Article  PubMed  Google Scholar 

  56. Sage, J. I. Pain in Parkinson's disease. Curr. Treat. Opt. Neurol. 6, 191–200 (2004).

    Article  Google Scholar 

  57. Ford, B. Pain in Parkinson's disease. Mov. Disord. 25 (Suppl. 1), S98–S103 (2010).

    Article  PubMed  Google Scholar 

  58. Politis, M. et al. Parkinson's disease symptoms: the patient's perspective. Mov. Disord. 25, 1646–1651 (2010).

    Article  PubMed  Google Scholar 

  59. Chaudhuri, K. R. et al. The nondeclaration of nonmotor symptoms of Parkinson's disease to health care professionals: an international study using the nonmotor symptoms questionnaire. Mov. Disord. 25, 704–709 (2010). This is the first international prospective study to reveal the under-reporting of 30 common non-motor symptoms of PD.

    Article  PubMed  Google Scholar 

  60. Defazio, G. et al. Pain as a nonmotor symptom of Parkinson disease: evidence from a case–control study. Arch. Neurol. 65, 1191–1194 (2008).

    Article  PubMed  Google Scholar 

  61. Defazio, G., Tinazzi, M. & Berardelli, A. How pain arises in Parkinson's disease? Eur. J. Neurol. 20, 1517–1523 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Granovsky, Y. et al. Asymmetric pain processing in Parkinson's disease. Eur. J. Neurol. 20, 1375–1382 (2013).

    Article  CAS  PubMed  Google Scholar 

  63. Lin, C. H., Wu, R. M., Chang, H. Y., Chiang, Y. T. & Lin, H. H. Preceding pain symptoms and Parkinson's disease: a nationwide population-based cohort study. Eur. J. Neurol. 20, 1398–1404 (2013).

    Article  PubMed  Google Scholar 

  64. Brefel-Courbon, C. et al. Effect of levodopa on pain threshold in Parkinson's disease: a clinical and positron emission tomography study. Mov. Disord. 20, 1557–1563 (2005).

    Article  PubMed  Google Scholar 

  65. Chudler, E. H., Foote, W. E. & Poletti, C. E. Responses of cat C1 spinal cord dorsal and ventral horn neurons to noxious and non-noxious stimulation of the head and face. Brain Res. 555, 181–192 (1991).

    Article  CAS  PubMed  Google Scholar 

  66. Fil, A. et al. Pain in Parkinson disease: a review of the literature. Parkinsonism Relat. Disord. 19, 285–294 (2013).

    Article  PubMed  Google Scholar 

  67. Gerdelat-Mas, A. et al. Levodopa raises objective pain threshold in Parkinson's disease: a RIII reflex study. J. Neurol. Neurosurg. Psychiatry 78, 1140–1142 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Drake, D. F., Harkins, S. & Qutubuddin, A. Pain in Parkinson's disease: pathology to treatment, medication to deep brain stimulation. NeuroRehabilitation 20, 335–341 (2005).

    Article  PubMed  Google Scholar 

  69. Grinberg, L. T., Rueb, U., Alho, A. T. & Heinsen, H. Brainstem pathology and non-motor symptoms in PD. J. Neurol. Sci. 289, 81–88 (2010).

    Article  PubMed  Google Scholar 

  70. Juri, C., Rodriguez-Oroz, M. & Obeso, J. A. The pathophysiological basis of sensory disturbances in Parkinson's disease. J. Neurol. Sci. 289, 60–65 (2010).

    Article  PubMed  Google Scholar 

  71. Scherder, E., Wolters, E., Polman, C., Sergeant, J. & Swaab, D. Pain in Parkinson's disease and multiple sclerosis: its relation to the medial and lateral pain systems. Neurosci. Biobehav. Rev. 29, 1047–1056 (2005).

    Article  PubMed  Google Scholar 

  72. Willis, W. D. & Westlund, K. N. Neuroanatomy of the pain system and of the pathways that modulate pain. J. Clin. Neurophysiol. 14, 2–31 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Braak, H., Sastre, M., Bohl, J. R., de Vos, R. A. & Del, T. K. Parkinson's disease: lesions in dorsal horn layer I, involvement of parasympathetic and sympathetic pre- and postganglionic neurons. Acta Neuropathol. 113, 421–429 (2007). This is a key paper that changed our view of the pathophysiology of PD by introducing the concept of pre-nigral Lewy body deposition and the concept of sequential spreading of pathology.

    Article  PubMed  Google Scholar 

  74. Nolano, M. et al. Sensory deficit in Parkinson's disease: evidence of a cutaneous denervation. Brain 131, 1903–1911 (2008).

    Article  PubMed  Google Scholar 

  75. Chaudhuri, K. R. et al. King's Parkinson's disease pain scale, the first scale for pain in PD: an international validation. Mov. Disord. 30, 1623–1631 (2015).

    Article  PubMed  Google Scholar 

  76. Trenkwalder, C. et al. Prolonged-release oxycodone-naloxone for treatment of severe pain in patients with Parkinson's disease (PANDA): a double-blind, randomised, placebo-controlled trial. Lancet Neurol. 14, 1161–1170 (2015).

    Article  CAS  PubMed  Google Scholar 

  77. Rascol, O. et al. A randomized controlled exploratory pilot study to evaluate the effect of rotigotine transdermal patch on parkinson's disease-associated chronic pain. J. Clin. Pharmacol. 56, 852–861 (2016).

    Article  CAS  PubMed  Google Scholar 

  78. Patel, N., Jankovic, J. & Hallett, M. Sensory aspects of movement disorders. Lancet Neurol. 13, 100–112 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Schrag, A., Sauerbier, A. & Chaudhuri, K. R. New clinical trials for nonmotor manifestations of Parkinson's disease. Mov. Disord. 30, 1490–1504 (2015).

    Article  CAS  PubMed  Google Scholar 

  80. Lin, C. H., Lin, J. W., Liu, Y. C., Chang, C. H. & Wu, R. M. Risk of Parkinson's disease following anxiety disorders: a nationwide population-based cohort study. Eur. J. Neurol. 22, 1280–1287 (2015).

    Article  PubMed  Google Scholar 

  81. Chaudhuri, K. R. & Schapira, A. H. Non-motor symptoms of Parkinson's disease: dopaminergic pathophysiology and treatment. Lancet Neurol. 8, 464–474 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Brown, R. G. et al. Depression and anxiety related subtypes in Parkinson's disease. J. Neurol. Neurosurg. Psychiatry 82, 803–809 (2011).

    Article  PubMed  Google Scholar 

  83. Storch, A. et al. Nonmotor fluctuations in Parkinson disease: severity and correlation with motor complications. Neurology 80, 800–809 (2013). This is an important study relating off periods to non-motor symptoms, emphasizing that certain non-motor features are at least partially responsive to dopaminergic therapy.

    Article  PubMed  Google Scholar 

  84. Ceravolo, R. et al. Mild affective symptoms in de novo Parkinson's disease patients: relationship with dopaminergic dysfunction. Eur. J. Neurol. 20, 480–485 (2013).

    Article  CAS  PubMed  Google Scholar 

  85. Clark, A. J., Ritz, B., Prescott, E. & Rod, N. H. Psychosocial risk factors, pre-motor symptoms and first-time hospitalization with Parkinson's disease: a prospective cohort study. Eur. J. Neurol. 20, 1113–1120 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Remy, P., Doder, M., Lees, A., Turjanski, N. & Brooks, D. Depression in Parkinson's disease: loss of dopamine and noradrenaline innervation in the limbic system. Brain 128, 1314–1322 (2005).

    Article  PubMed  Google Scholar 

  87. Tadaiesky, M. T. et al. Emotional, cognitive and neurochemical alterations in a premotor stage model of Parkinson's disease. Neuroscience 156, 830–840 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Vuckovic, M. G. et al. Memory, mood, dopamine, and serotonin in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mouse model of basal ganglia injury. Neurobiol. Dis. 32, 319–327 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Taylor, T. N. et al. Nonmotor symptoms of Parkinson's disease revealed in an animal model with reduced monoamine storage capacity. J. Neurosci. 29, 8103–8113 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zhu, X. R. et al. Non-motor behavioural impairments in parkin-deficient mice. Eur. J. Neurosci. 26, 1902–1911 (2007).

    Article  PubMed  Google Scholar 

  91. Campos, F. L. et al. Rodent models of Parkinson's disease: beyond the motor symptomatology. Front. Behav. Neurosci. 7, 175 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Reijnders, J. S., Ehrt, U., Weber, W. E., Aarsland, D. & Leentjens, A. F. A systematic review of prevalence studies of depression in Parkinson's disease. Mov. Disord. 23, 183–189 (2008).

    Article  PubMed  Google Scholar 

  93. Shiba, M. et al. Anxiety disorders and depressive disorders preceding Parkinson's disease: a case–control study. Mov. Disord. 15, 669–677 (2000).

    Article  CAS  PubMed  Google Scholar 

  94. Dissanayaka, N. N. et al. Factors associated with depression in Parkinson's disease. J. Affect. Disord. 132, 82–88 (2011).

    Article  PubMed  Google Scholar 

  95. Santangelo, G. et al. Subthreshold depression and subjective cognitive complaints in Parkinson's disease. Eur. J. Neurol. 21, 541–544 (2014).

    Article  CAS  PubMed  Google Scholar 

  96. Even, C. & Weintraub, D. Is depression in Parkinson's disease (PD) a specific entity? J. Affect. Disord. 139, 103–112 (2012).

    Article  PubMed  Google Scholar 

  97. Di, G. D. et al. Dopaminergic dysfunction and psychiatric symptoms in movement disorders: a 123I-FP-CIT SPECT study. Eur. J. Nucl. Med. Mol. Imaging 39, 1937–1948 (2012).

    Article  CAS  Google Scholar 

  98. Vriend, C. et al. Depressive symptoms in Parkinson's disease are related to reduced [123I]FP-CIT binding in the caudate nucleus. J. Neurol. Neurosurg. Psychiatry 85, 159–164 (2014).

    Article  PubMed  Google Scholar 

  99. Kostic, V. S. et al. Regional patterns of brain tissue loss associated with depression in Parkinson disease. Neurology 75, 857–863 (2010).

    Article  CAS  PubMed  Google Scholar 

  100. Gallagher, D. A. & Schrag, A. Psychosis, apathy, depression and anxiety in Parkinson's disease. Neurobiol. Dis. 46, 581–589 (2012). This is a helpful review of the non-motor symptoms of PD.

    Article  PubMed  Google Scholar 

  101. Seppi, K. et al. The Movement Disorder Society Evidence-Based Medicine Review update: treatments for the non-motor symptoms of Parkinson's disease. Mov. Disord. 26 (Suppl. 3), S42–S80 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Burn, D. J. et al. Parkinson's disease motor subtypes and mood. Mov. Disord. 27, 379–386 (2012).

    Article  PubMed  Google Scholar 

  103. Frisina, P. G., Haroutunian, V. & Libow, L. S. The neuropathological basis for depression in Parkinson's disease. Parkinsonism Relat. Disord. 15, 144–148 (2009).

    Article  PubMed  Google Scholar 

  104. Menza, M. et al. A controlled trial of antidepressants in patients with Parkinson disease and depression. Neurology 72, 886–892 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Czernecki, V. et al. Motivation, reward, and Parkinson's disease: influence of dopatherapy. Neuropsychologia 40, 2257–2267 (2002).

    Article  CAS  PubMed  Google Scholar 

  106. Marin, R. S., Fogel, B. S., Hawkins, J., Duffy, J. & Krupp, B. Apathy: a treatable syndrome. J. Neuropsychiatry Clin. Neurosci. 7, 23–30 (1995).

    Article  CAS  PubMed  Google Scholar 

  107. Pedersen, K. F. et al. Apathy in drug-naive patients with incident Parkinson's disease: the Norwegian ParkWest study. J. Neurol. 257, 217–223 (2010).

    Article  PubMed  Google Scholar 

  108. Santangelo, G. et al. Apathy in untreated. de novo patients with Parkinson's disease: validation study of Apathy Evaluation Scale. J. Neurol. 261, 2319–2328 (2014).

    Article  PubMed  Google Scholar 

  109. Dujardin, K. et al. Apathy in untreated early-stage Parkinson disease: relationship with other non-motor symptoms. Mov. Disord. 29, 1796–1801 (2014).

    Article  PubMed  Google Scholar 

  110. Isella, V. et al. Clinical, neuropsychological, and morphometric correlates of apathy in Parkinson's disease. Mov. Disord. 17, 366–371 (2002).

    Article  PubMed  Google Scholar 

  111. Carriere, N. et al. Apathy in Parkinson's disease is associated with nucleus accumbens atrophy: a magnetic resonance imaging shape analysis. Mov. Disord. 29, 897–903 (2014).

    Article  PubMed  Google Scholar 

  112. Pagonabarraga, J. et al. Apathy in Parkinson's disease: clinical features, neural substrates, diagnosis, and treatment. Lancet Neurol. 14, 518–531 (2015).

    Article  PubMed  Google Scholar 

  113. Czernecki, V. et al. Apathy following subthalamic stimulation in Parkinson disease: a dopamine responsive symptom. Mov. Disord. 23, 964–969 (2008).

    Article  PubMed  Google Scholar 

  114. Thobois, S. et al. Parkinsonian apathy responds to dopaminergic stimulation of D2/D3 receptors with piribedil. Brain 136, 1568–1577 (2013).

    Article  PubMed  Google Scholar 

  115. Devos, D. et al. Rivastigmine in apathetic but dementia and depression-free patients with Parkinson's disease: a double-blind, placebo-controlled, randomised clinical trial. J. Neurol. Neurosurg. Psychiatry 85, 668–674 (2014).

    Article  PubMed  Google Scholar 

  116. Hagell, P. & Brundin, L. Towards an understanding of fatigue in Parkinson disease. J. Neurol. Neurosurg. Psychiatry 80, 489–492 (2009).

    Article  CAS  PubMed  Google Scholar 

  117. Chaudhuri, A. & Behan, P. O. Fatigue in neurological disorders. Lancet 363, 978–988 (2004).

    Article  PubMed  Google Scholar 

  118. Schifitto, G. et al. Fatigue in levodopa-naive subjects with Parkinson disease. Neurology 71, 481–485 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Pavese, N., Metta, V., Bose, S. K., Chaudhuri, K. R. & Brooks, D. J. Fatigue in Parkinson's disease is linked to striatal and limbic serotonergic dysfunction. Brain 133, 3434–3443 (2010). This study provides an in vivo demonstration of abnormal central pharmacology in fatigue in PD.

    Article  PubMed  Google Scholar 

  120. Hely, M. A., Reid, W. G., Adena, M. A., Halliday, G. M. & Morris, J. G. The Sydney multicenter study of Parkinson's disease: the inevitability of dementia at 20 years. Mov. Disord. 23, 837–844 (2008).

    Article  PubMed  Google Scholar 

  121. Alves, G., Larsen, J. P., Emre, M., Wentzel-Larsen, T. & Aarsland, D. Changes in motor subtype and risk for incident dementia in Parkinson's disease. Mov. Disord. 21, 1123–1130 (2006).

    Article  PubMed  Google Scholar 

  122. Churchyard, A. & Lees, A. J. The relationship between dementia and direct involvement of the hippocampus and amygdala in Parkinson's disease. Neurology 49, 1570–1576 (1997).

    Article  CAS  PubMed  Google Scholar 

  123. Halliday, G. M., Leverenz, J. B., Schneider, J. S. & Adler, C. H. The neurobiological basis of cognitive impairment in Parkinson's disease. Mov. Disord. 29, 634–650 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Emre, M. et al. Cognitive impairment and dementia in Parkinson's disease: practical issues and management. Mov. Disord. 29, 663 (2014).

    Article  PubMed  Google Scholar 

  125. Lewis, S. J., Dove, A., Robbins, T. W., Barker, R. A. & Owen, A. M. Cognitive impairments in early Parkinson's disease are accompanied by reductions in activity in frontostriatal neural circuitry. J. Neurosci. 23, 6351–6356 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Rinne, J. O. et al. Cognitive impairment and the brain dopaminergic system in Parkinson disease: [18F]fluorodopa positron emission tomographic study. Arch. Neurol. 57, 470–475 (2000).

    Article  CAS  PubMed  Google Scholar 

  127. Chan-Palay, V. & Asan, E. Alterations in catecholamine neurons of the locus coeruleus in senile dementia of the Alzheimer type and in Parkinson's disease with and without dementia and depression. J. Comp. Neurol. 287, 373–392 (1989).

    Article  CAS  PubMed  Google Scholar 

  128. Kehagia, A. A., Barker, R. A. & Robbins, T. W. Cognitive impairment in Parkinson's disease: the dual syndrome hypothesis. Neurodegener. Dis. 11, 79–92 (2013).

    Article  PubMed  Google Scholar 

  129. Mattay, V. S. et al. Dopaminergic modulation of cortical function in patients with Parkinson's disease. Ann. Neurol. 51, 156–164 (2002).

    Article  CAS  PubMed  Google Scholar 

  130. Foltynie, T. et al. Planning ability in Parkinson's disease is influenced by the COMT val158met polymorphism. Mov. Disord. 19, 885–891 (2004).

    Article  PubMed  Google Scholar 

  131. Rakshi, J. S. et al. Frontal, midbrain and striatal dopaminergic function in early and advanced Parkinson's disease A 3D [18F]dopa-PET study. Brain 122, 1637–1650 (1999).

    Article  PubMed  Google Scholar 

  132. Robbins, T. W. Shifting and stopping: fronto-striatal substrates, neurochemical modulation and clinical implications. Phil. Trans. R. Soc. B 362, 917–932 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Cropley, V. L. et al. Pre- and post-synaptic dopamine imaging and its relation with frontostriatal cognitive function in Parkinson disease: PET studies with [11C]NNC 112 and [18F]FDOPA. Psychiatry Res. 163, 171–182 (2008).

    Article  CAS  PubMed  Google Scholar 

  134. Janvin, C. C., Larsen, J. P., Aarsland, D. & Hugdahl, K. Subtypes of mild cognitive impairment in Parkinson's disease: progression to dementia. Mov. Disord. 21, 1343–1349 (2006).

    Article  PubMed  Google Scholar 

  135. Lindgren, H. S. & Dunnett, S. B. Cognitive dysfunction and depression in Parkinson's disease: what can be learned from rodent models? Eur. J. Neurosci. 35, 1894–1907 (2012).

    Article  PubMed  Google Scholar 

  136. Masliah, E. et al. Passive immunization reduces behavioral and neuropathological deficits in an α-synuclein transgenic model of Lewy body disease. PLoS ONE 6, e19338 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Nuber, S. et al. Neurodegeneration and motor dysfunction in a conditional model of Parkinson's disease. J. Neurosci. 28, 2471–2484 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Magen, I. et al. Cognitive deficits in a mouse model of pre-manifest Parkinson's disease. Eur. J. Neurosci. 35, 870–882 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Decamp, E. & Schneider, J. S. Attention and executive function deficits in chronic low-dose MPTP-treated non-human primates. Eur. J. Neurosci. 20, 1371–1378 (2004).

    Article  CAS  PubMed  Google Scholar 

  140. Schneider, J. S., Sun, Z. Q. & Roeltgen, D. P. Effects of dihydrexidine, a full dopamine D-1 receptor agonist, on delayed response performance in chronic low dose MPTP-treated monkeys. Brain Res. 663, 140–144 (1994).

    Article  CAS  PubMed  Google Scholar 

  141. Schneider, J. S., Tinker, J. P., Menzaghi, F. & Lloyd, G. K. The subtype-selective nicotinic acetylcholine receptor agonist SIB-1553A improves both attention and memory components of a spatial working memory task in chronic low dose 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated monkeys. J. Pharmacol. Exp. Ther. 306, 401–406 (2003).

    Article  CAS  PubMed  Google Scholar 

  142. Diederich, N. J., Goetz, C. G. & Stebbins, G. T. Repeated visual hallucinations in Parkinson's disease as disturbed external/internal perceptions: focused review and a new integrative model. Mov. Disord. 20, 130–140 (2005).

    Article  PubMed  Google Scholar 

  143. Papapetropoulos, S. & Mash, D. C. Psychotic symptoms in Parkinson's disease. From description to etiology. J. Neurol. 252, 753–764 (2005).

    Article  PubMed  Google Scholar 

  144. Zahodne, L. B. & Fernandez, H. H. Pathophysiology and treatment of psychosis in Parkinson's disease: a review. Drugs Aging 25, 665–682 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Stebbins, G. T. et al. Altered cortical visual processing in PD with hallucinations: an fMRI study. Neurology 63, 1409–1416 (2004).

    Article  CAS  PubMed  Google Scholar 

  146. Bodis-Wollner, I. Visual deficits related to dopamine deficiency in experimental animals and Parkinson's disease patients. Trends Neurosci. 13, 296–302 (1990).

    Article  CAS  PubMed  Google Scholar 

  147. Moskovitz, C., Moses, H. III & Klawans, H. L. Levodopa-induced psychosis: a kindling phenomenon. Am. J. Psychiatry 135, 669–675 (1978).

    Article  CAS  PubMed  Google Scholar 

  148. Pappert, E. J., Goetz, C. G., Niederman, F. G., Raman, R. & Leurgans, S. Hallucinations, sleep fragmentation, and altered dream phenomena in Parkinson's disease. Mov. Disord. 14, 117–121 (1999).

    Article  CAS  PubMed  Google Scholar 

  149. Birkmayer, W. & Riederer, P. Responsibility of extrastriatal areas for the appearance of psychotic symptoms (clinical and biochemical human post-mortem findings). J. Neural Transm. 37, 175–182 (1975).

    Article  CAS  PubMed  Google Scholar 

  150. Kuhl, D. E. et al. In vivo mapping of cholinergic terminals in normal aging, Alzheimer's disease, and Parkinson's disease. Ann. Neurol. 40, 399–410 (1996).

    Article  CAS  PubMed  Google Scholar 

  151. van, H. G., Berger, H. J. & Horstink, M. W. Short-term memory in Parkinson's disease after withdrawal of long-term anticholinergic therapy. Clin. Neuropharmacol. 16, 438–443 (1993).

    Article  Google Scholar 

  152. Papapetropoulos, S., McCorquodale, D. S., Gonzalez, J., Jean-Gilles, L. & Mash, D. C. Cortical and amygdalar Lewy body burden in Parkinson's disease patients with visual hallucinations. Parkinsonism Relat. Disord. 12, 253–256 (2006).

    Article  PubMed  Google Scholar 

  153. Fox, S. H. et al. Neuropsychiatric behaviors in the MPTP marmoset model of Parkinson's disease. Can. J. Neurol. Sci. 37, 86–95 (2010).

    Article  PubMed  Google Scholar 

  154. Fox, S. H. et al. Dopamine receptor agonists and levodopa and inducing psychosis-like behavior in the MPTP primate model of Parkinson disease. Arch. Neurol. 63, 1343–1344 (2006).

    Article  PubMed  Google Scholar 

  155. Visanji, N. P. et al. Pharmacological characterization of psychosis-like behavior in the MPTP-lesioned nonhuman primate model of Parkinson's disease. Mov. Disord. 21, 1879–1891 (2006).

    Article  PubMed  Google Scholar 

  156. Olanow, C. W., Schapira, A. H. & Roth, T. Waking up to sleep episodes in Parkinson's disease. Mov. Disord. 15, 212–215 (2000).

    Article  CAS  PubMed  Google Scholar 

  157. Louter, M. et al. Sleep matters in Parkinson's disease: use of a priority list to assess the presence of sleep disturbances. Eur. J. Neurol. 20, 259–265 (2013).

    Article  CAS  PubMed  Google Scholar 

  158. Klingelhoefer, L. Sokolov, E. & Chaudhuri, K. R. Therapeutic options for nocturnal problems in Parkinson's disease and atypical parkinsonian disorders. J. Neural Transm. (Vienna) 121 (Suppl. 1), S25–S31 (2014).

    Article  CAS  Google Scholar 

  159. Garcia-Borreguero, D., Larrosa, O. & Bravo, M. Parkinson's disease and sleep. Sleep Med. Rev. 7, 115–129 (2003).

    Article  PubMed  Google Scholar 

  160. Rye, D. B. & Jankovic, J. Emerging views of dopamine in modulating sleep/wake state from an unlikely source: PD. Neurology 58, 341–346 (2002).

    Article  PubMed  Google Scholar 

  161. Schapira, A. H. Sleep attacks (sleep episodes) with pergolide. Lancet 355, 1332–1333 (2000).

    Article  CAS  PubMed  Google Scholar 

  162. Zeitzer, J. M. Control of sleep and wakefulness in health and disease. Prog. Mol. Biol. Transl Sci. 119, 137–154 (2013).

    Article  PubMed  Google Scholar 

  163. Fronczek, R. et al. Hypocretin (orexin) loss in Parkinson's disease. Brain 130, 1577–1585 (2007).

    Article  PubMed  Google Scholar 

  164. Thannickal, T. C., Lai, Y. Y. & Siegel, J. M. Hypocretin (orexin) cell loss in Parkinson's disease. Brain 130, 1586–1595 (2007).

    Article  PubMed  Google Scholar 

  165. Schapira, A. H. Restless legs syndrome: an update on treatment options. Drugs 64, 149–158 (2004).

    Article  CAS  PubMed  Google Scholar 

  166. Barraud, Q. et al. Sleep disorders in Parkinson's disease: the contribution of the MPTP non-human primate model. Exp. Neurol. 219, 574–582 (2009).

    Article  CAS  PubMed  Google Scholar 

  167. Hyacinthe, C., Barraud, Q., Tison, F., Bezard, E. & Ghorayeb, I. D1 receptor agonist improves sleep-wake parameters in experimental parkinsonism. Neurobiol. Dis. 63, 20–24 (2014).

    Article  CAS  PubMed  Google Scholar 

  168. Lima, M. M., Andersen, M. L., Reksidler, A. B., Vital, M. A. & Tufik, S. The role of the substantia nigra pars compacta in regulating sleep patterns in rats. PLoS ONE 2, e513 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Verhave, P. S. et al. REM sleep behavior disorder in the marmoset MPTP model of early Parkinson disease. Sleep 34, 1119–1125 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Postuma, R. B. et al. Parkinson risk in idiopathic REM sleep behavior disorder: preparing for neuroprotective trials. Neurology 84, 1104–1113 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  171. McDowell, K. A., Shin, D., Roos, K. P. & Chesselet, M. F. Sleep dysfunction and EEG alterations in mice overexpressing α-synuclein. J. Parkinsons Dis. 4, 531–539 (2014).

    Article  CAS  PubMed  Google Scholar 

  172. Boeve, B. F. et al. Pathophysiology of REM sleep behaviour disorder and relevance to neurodegenerative disease. Brain 130, 2770–2788 (2007).

    Article  CAS  PubMed  Google Scholar 

  173. Ferrer, I., Martinez, A., Blanco, R., Dalfo, E. & Carmona, M. Neuropathology of sporadic Parkinson disease before the appearance of parkinsonism: preclinical Parkinson disease. J. Neural Transm. 118, 821–839 (2011).

    Article  PubMed  Google Scholar 

  174. Blackett, H., Walker, R. & Wood, B. Urinary dysfunction in Parkinson's disease: a review. Parkinsonism Relat. Disord. 15, 81–87 (2009).

    Article  PubMed  Google Scholar 

  175. Sakakibara, R. et al. Pathophysiology of bladder dysfunction in Parkinson's disease. Neurobiol. Dis. 46, 565–571 (2012).

    Article  CAS  PubMed  Google Scholar 

  176. Sakakibara, R., Uchiyama, T., Yamanishi, T., Shirai, K. & Hattori, T. Bladder and bowel dysfunction in Parkinson's disease. J. Neural Transm. 115, 443–460 (2008).

    Article  CAS  PubMed  Google Scholar 

  177. Sakakibara, R. et al. SPECT imaging of the dopamine transporter with [123I]-β-CIT reveals marked decline of nigrostriatal dopaminergic function in Parkinson's disease with urinary dysfunction. J. Neurol. Sci. 187, 55–59 (2001).

    Article  CAS  PubMed  Google Scholar 

  178. Winge, K., Friberg, L., Werdelin, L., Nielsen, K. K. & Stimpel, H. Relationship between nigrostriatal dopaminergic degeneration, urinary symptoms, and bladder control in Parkinson's disease. Eur. J. Neurol. 12, 842–850 (2005).

    Article  CAS  PubMed  Google Scholar 

  179. Seki, S. et al. Role of dopamine D1 and D2 receptors in the micturition reflex in conscious rats. Neurourol. Urodyn. 20, 105–113 (2001).

    Article  CAS  PubMed  Google Scholar 

  180. Yoshimura, N., Miyazato, M., Kitta, T. & Yoshikawa, S. Central nervous targets for the treatment of bladder dysfunction. Neurourol. Urodyn. 33, 59–66 (2014).

    Article  CAS  PubMed  Google Scholar 

  181. Seth, J. H. Panicker, J. N. & Fowler, C. J. The neurological organization of micturition. Handb. Clin. Neurol. 117, 111–117 (2013).

    Article  PubMed  Google Scholar 

  182. de Groat, W. C. Integrative control of the lower urinary tract: preclinical perspective. Br. J. Pharmacol. 147 (Suppl. 2), S25–S40 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. McDonald, Winge, C. K. & Burn, D. J. Lower urinary tract symptoms in Parkinson's disease: prevalence, aetiology and management. Parkinsonism Relat. Disord. 35, 8–16 (2017).

    Article  PubMed  Google Scholar 

  184. Albanese, A., Jenner, P., Marsden, C. D. & Stephenson, J. D. Bladder hyperreflexia induced in marmosets by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Neurosci. Lett. 87, 46–50 (1988).

    Article  CAS  PubMed  Google Scholar 

  185. Soler, R., Fullhase, C., Santos, C. & Andersson, K. E. Development of bladder dysfunction in a rat model of dopaminergic brain lesion. Neurourol. Urodyn. 30, 188–193 (2011).

    Article  CAS  PubMed  Google Scholar 

  186. Yoshimura, N., Kuno, S., Chancellor, M. B., de Groat, W. C. & Seki, S. Dopaminergic mechanisms underlying bladder hyperactivity in rats with a unilateral 6-hydroxydopamine (6-OHDA) lesion of the nigrostriatal pathway. Br. J. Pharmacol. 139, 1425–1432 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Yoshimura, N., Mizuta, E., Kuno, S., Sasa, M. & Yoshida, O. The dopamine D1 receptor agonist SKF 38393 suppresses detrusor hyperreflexia in the monkey with parkinsonism induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Neuropharmacology 32, 315–321 (1993).

    Article  CAS  PubMed  Google Scholar 

  188. Yoshimura, N., Mizuta, E., Yoshida, O. & Kuno, S. Therapeutic effects of dopamine D1/D2 receptor agonists on detrusor hyperreflexia in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned parkinsonian cynomolgus monkeys. J. Pharmacol. Exp. Ther. 286, 228–233 (1998).

    CAS  PubMed  Google Scholar 

  189. Soler, R. et al. Stem cell therapy ameliorates bladder dysfunction in an animal model of Parkinson disease. J. Urol. 187, 1491–1497 (2012).

    Article  PubMed  Google Scholar 

  190. Fasano, A., Visanji, N. P., Liu, L. W. C., Lang, A. E. & Pfeiffer, R. F. Gastrointestinal dysfunction in Parkinson's disease. Lancet Neurol. 14, 625–639 (2015).

    Article  CAS  PubMed  Google Scholar 

  191. Tan, A. H. et al. Small intestinal bacterial overgrowth in Parkinson's disease. Parkinsonism Relat. Disord. 20, 535–540 (2014).

    Article  PubMed  Google Scholar 

  192. Abbott, R. D. et al. Frequency of bowel movements and the future risk of Parkinson's disease. Neurology 57, 456–462 (2001).

    Article  CAS  PubMed  Google Scholar 

  193. Singaram, C. et al. Dopaminergic defect of enteric nervous system in Parkinson's disease patients with chronic constipation. Lancet 346, 861–864 (1995).

    Article  CAS  PubMed  Google Scholar 

  194. Annerino, D. M. et al. Parkinson's disease is not associated with gastrointestinal myenteric ganglion neuron loss. Acta Neuropathol. 124, 665–680 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Gelpi, E. et al. Multiple organ involvement by α-synuclein pathology in Lewy body disorders. Mov. Disord. 29, 1010–1018 (2014).

    Article  PubMed  Google Scholar 

  196. Cersosimo, M. G. et al. α-Synuclein immunoreactivity in minor salivary gland biopsies of Parkinson's disease patients. Mov. Disord. 26, 188–190 (2011).

    Article  PubMed  Google Scholar 

  197. Sanchez-Ferro, A. et al. In vivo gastric detection of α-synuclein inclusions in Parkinson's disease. Mov. Disord. 30, 517–524 (2015).

    Article  CAS  PubMed  Google Scholar 

  198. Pouclet, H. et al. A comparison between colonic submucosa and mucosa to detect Lewy pathology in Parkinson's disease. Neurogastroenterol. Motil. 24, e202 (2012).

    Article  CAS  PubMed  Google Scholar 

  199. Pouclet, H. et al. A comparison between rectal and colonic biopsies to detect Lewy pathology in Parkinson's disease. Neurobiol. Dis. 45, 305–309 (2012).

    Article  PubMed  Google Scholar 

  200. Pouclet, H., Lebouvier, T., Coron, E., Neunlist, M. & Derkinderen, P. Lewy pathology in gastric and duodenal biopsies in Parkinson's Disease. Mov. Disord. 27, 708 (2012).

    Article  PubMed  Google Scholar 

  201. Shannon, K. M., Keshavarzian, A., Dodiya, H. B., Jakate, S. & Kordower, J. H. Is α-synuclein in the colon a biomarker for premotor Parkinson's disease? Evidence from 3 cases. Mov. Disord. 27, 716–719 (2012). This is an interesting study proposing that α -synuclein pathology appears in the colon years before the diagnosis of PD.

    Article  PubMed  Google Scholar 

  202. Bottner, M. et al. Expression pattern and localization of α-synuclein in the human enteric nervous system. Neurobiol. Dis. 48, 474–480 (2012).

    Article  PubMed  CAS  Google Scholar 

  203. Honig, H. et al. Intrajejunal levodopa infusion in Parkinson's disease: a pilot multicenter study of effects on nonmotor symptoms and quality of life. Mov. Disord. 24, 1468–1474 (2009). This is one of the first studies to address the effect of continuous drug delivery of intrajejunal levodopa and its effect on non-motor symptoms as a whole.

    Article  PubMed  Google Scholar 

  204. Colucci, M. et al. Intestinal dysmotility and enteric neurochemical changes in a Parkinson's disease rat model. Auton. Neurosci. 169, 77–86 (2012).

    Article  CAS  PubMed  Google Scholar 

  205. Drolet, R. E., Cannon, J. R., Montero, L. & Greenamyre, J. T. Chronic rotenone exposure reproduces Parkinson's disease gastrointestinal neuropathology. Neurobiol. Dis. 36, 96–102 (2009). This is a seminal paper showing that complex I inhibition causes α -synuclein pathology in the autonomic system.

    Article  CAS  PubMed  Google Scholar 

  206. Noorian, A. R. et al. α-Synuclein transgenic mice display age-related slowing of gastrointestinal motility associated with transgene expression in the vagal system. Neurobiol. Dis. 48, 9–19 (2012).

    Article  CAS  PubMed  Google Scholar 

  207. Wang, L. et al. Mice overexpressing wild-type human α-synuclein display alterations in colonic myenteric ganglia and defecation. Neurogastroenterol. Motil. 24, e425–e436 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Hallett, P. J., McLean, J. R., Kartunen, A., Langston, J. W. & Isacson, O. α-Synuclein overexpressing transgenic mice show internal organ pathology and autonomic deficits. Neurobiol. Dis. 47, 258–267 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Karasawa, H. et al. New ghrelin agonist, HM01 alleviates constipation and L-dopa-delayed gastric emptying in 6-hydroxydopamine rat model of Parkinson's disease. Neurogastroenterol. Motil. 26, 1771–1782 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Chaumette, T. et al. Neurochemical plasticity in the enteric nervous system of a primate animal model of experimental Parkinsonism. Neurogastroenterol. Motil. 21, 215–222 (2009).

    Article  CAS  PubMed  Google Scholar 

  211. Goldstein, D. S. et al. Cardiac sympathetic denervation in Parkinson disease. Ann. Intern. Med. 133, 338–347 (2000).

    Article  CAS  PubMed  Google Scholar 

  212. Goldstein, D. S. Orthostatic hypotension as an early finding in Parkinson's disease. Clin. Auton. Res. 16, 46–54 (2006).

    Article  PubMed  Google Scholar 

  213. Schmidt, C. et al. Loss of nocturnal blood pressure fall in various extrapyramidal syndromes. Mov. Disord. 24, 2136–2142 (2009).

    Article  PubMed  Google Scholar 

  214. Fanciulli, A. et al. The potential prognostic role of cardiovascular autonomic failure in α-synucleinopathies. Eur. J. Neurol. 20, 231–235 (2013).

    Article  CAS  PubMed  Google Scholar 

  215. Goetz, C. G., Lutge, W. & Tanner, C. M. Autonomic dysfunction in Parkinson's disease. Neurology 36, 73–75 (1986).

    Article  CAS  PubMed  Google Scholar 

  216. Pilleri, M. et al. Heart rate circadian profile in the differential diagnosis between Parkinson disease and multiple system atrophy. Parkinsonism Relat. Disord. 20, 217–221 (2014).

    Article  PubMed  Google Scholar 

  217. Chaudhuri, K. R. et al. Postprandial hypotension and parkinsonian state in Parkinson's disease. Mov. Disord. 12, 877–884 (1997).

    Article  CAS  PubMed  Google Scholar 

  218. Palma, J. A. et al. Is cardiac function impaired in premotor Parkinson's disease? A retrospective cohort study. Mov. Disord. 28, 591–596 (2013).

    Article  PubMed  Google Scholar 

  219. Fleming, S. M. et al. Impaired baroreflex function in mice overexpressing α-synuclein. Front. Neurol. 4, 103 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  220. Griffioen, K. J. et al. Dietary energy intake modifies brainstem autonomic dysfunction caused by mutant α-synuclein. Neurobiol. Aging 34, 928–935 (2013).

    Article  CAS  PubMed  Google Scholar 

  221. Fukumitsu, N. et al. Reduced 125I-meta-iodobenzylguanidine uptake and norepinephrine transporter density in the hearts of mice with MPTP-induced parkinsonism. Nucl. Med. Biol. 33, 37–42 (2006).

    Article  CAS  PubMed  Google Scholar 

  222. Fukumitsu, N., Suzuki, M., Fukuda, T. & Kiyono, Y. Multipoint analysis of reduced 125I-meta-iodobenzylguanidine uptake and norepinephrine turnover in the hearts of mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydroxypyridine-induced parkinsonism. Nucl. Med. Biol. 36, 623–629 (2009).

    Article  CAS  PubMed  Google Scholar 

  223. Takatsu, H. et al. Cardiac sympathetic denervation from the early stage of Parkinson's disease: clinical and experimental studies with radiolabeled MIBG. J. Nucl. Med. 41, 71–77 (2000).

    CAS  PubMed  Google Scholar 

  224. Amino, T. et al. Myocardial nerve fibers are preserved in MPTP-treated mice, despite cardiac sympathetic dysfunction. Neurosci. Res. 60, 314–318 (2008).

    Article  CAS  PubMed  Google Scholar 

  225. Ren, J. et al. Depressed contractile function and adrenergic responsiveness of cardiac myocytes in an experimental model of Parkinson disease, the MPTP-treated mouse. Neurobiol. Aging 25, 131–138 (2004).

    Article  CAS  PubMed  Google Scholar 

  226. Goldstein, D. S., Li, S. T., Holmes, C. & Bankiewicz, K. Sympathetic innervation in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine primate model of Parkinson's disease. J. Pharmacol. Exp. Ther. 306, 855–860 (2003).

    Article  CAS  PubMed  Google Scholar 

  227. Hallman, H. et al. Neurochemical and histochemical characterization of neurotoxic effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine on brain catecholamine neurones in the mouse. J. Neurochem. 44, 117–127 (1985).

    Article  CAS  PubMed  Google Scholar 

  228. Joers, V. et al. Nonuniform cardiac denervation observed by 11C-meta-hydroxyephedrine PET in 6-OHDA-treated monkeys. PLoS ONE 7, e35371 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Fleming, S. M. Cardiovascular autonomic dysfunction in animal models of Parkinson's disease. J. Parkinsons Dis. 1, 321–327 (2011).

    Article  CAS  PubMed  Google Scholar 

  230. Ariza, D., Sisdeli, L., Crestani, C. C., Fazan, R. & Martins-Pinge, M. C. Dysautonomias in Parkinson's disease: cardiovascular changes and autonomic modulation in conscious rats after infusion of bilateral 6-OHDA in substantia nigra. Am. J. Physiol. Heart Circ. Physiol. 308, H250–H257 (2015).

    Article  CAS  PubMed  Google Scholar 

  231. Olanow, C. W. Do prions cause Parkinson disease? The evidence accumulates. Ann. Neurol. 75, 331–333 (2014). This is an excellent review of the possible prion-like contribution to PD pathology.

    Article  PubMed  Google Scholar 

  232. Klingelhoefer, L. & Reichmann, H. Pathogenesis of Parkinson disease — the gut–brain axis and environmental factors. Nat. Rev. Neurol. 11, 625–636 (2015). This is a comprehensive and up-to-date review of the brain–gut axis.

    Article  CAS  PubMed  Google Scholar 

  233. Lee, H. J., Patel, S. & Lee, S. J. Intravesicular localization and exocytosis of α-synuclein and its aggregates. J. Neurosci. 25, 6016–6024 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Desplats, P. et al. Inclusion formation and neuronal cell death through neuron-to-neuron transmission of α-synuclein. Proc. Natl Acad. Sci. USA 106, 13010–13015 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Hansen, C. et al. α-Synuclein propagates from mouse brain to grafted dopaminergic neurons and seeds aggregation in cultured human cells. J. Clin. Invest. 121, 715–725 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Luk, K. C. et al. Pathological α-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 338, 949–953 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Recasens, A. et al. Lewy body extracts from Parkinson disease brains trigger α-synuclein pathology and neurodegeneration in mice and monkeys. Ann. Neurol. 75, 351–362 (2014).

    Article  CAS  PubMed  Google Scholar 

  238. Miwa, H., Kubo, T., Suzuki, A. & Kondo, T. Intragastric proteasome inhibition induces α-synuclein-immunopositive aggregations in neurons in the dorsal motor nucleus of the vagus in rats. Neurosci. Lett. 401, 146–149 (2006). This is an important study showing spread of α -synuclein pathology via the vagus nerve in rats.

    Article  CAS  PubMed  Google Scholar 

  239. Pan-Montojo, F. et al. Environmental toxins trigger PD-like progression via increased α-synuclein release from enteric neurons in mice. Sci. Rep. 2, 898 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  240. Bloch, A., Probst, A., Bissig, H., Adams, H. & Tolnay, M. α-Synuclein pathology of the spinal and peripheral autonomic nervous system in neurologically unimpaired elderly subjects. Neuropathol. Appl. Neurobiol. 32, 284–295 (2006).

    Article  CAS  PubMed  Google Scholar 

  241. Kalaitzakis, M. E., Graeber, M. B., Gentleman, S. M. & Pearce, R. K. The dorsal motor nucleus of the vagus is not an obligatory trigger site of Parkinson's disease: a critical analysis of α-synuclein staging. Neuropathol. Appl. Neurobiol. 34, 284–295 (2008).

    Article  CAS  PubMed  Google Scholar 

  242. Attems, J. & Jellinger, K. A. The dorsal motor nucleus of the vagus is not an obligatory trigger site of Parkinson's disease. Neuropathol. Appl. Neurobiol. 34, 466–467 (2008).

    Article  CAS  PubMed  Google Scholar 

  243. Olanow, C. W. & Schapira, A. H. Therapeutic prospects for Parkinson disease. Ann. Neurol. 74, 337–347 (2013).

    Article  CAS  PubMed  Google Scholar 

  244. Schapira, A. H. Recent developments in biomarkers in Parkinson disease. Curr. Opin. Neurol. 26, 395–400 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Schapira, A. H., Olanow, C. W., Greenamyre, J. T. & Bezard, E. Slowing of neurodegeneration in Parkinson's disease and Huntington's disease: future therapeutic perspectives. Lancet 384, 545–555 (2014).

    Article  CAS  PubMed  Google Scholar 

  246. Schrag, A., Horsfall, L., Walters, K., Noyce, A. & Petersen, I. Prediagnostic presentations of Parkinson's disease in primary care: a case–control study. Lancet Neurol. 14, 57–64 (2015).

    Article  PubMed  Google Scholar 

  247. Berg, D. et al. Changing the research criteria for the diagnosis of Parkinson's disease: obstacles and opportunities. Lancet Neurol. 12, 514–524 (2013).

    Article  PubMed  Google Scholar 

  248. Kasten, M. et al. Nonmotor symptoms in genetic Parkinson disease. Arch. Neurol. 67, 670–676 (2010).

    Article  PubMed  Google Scholar 

  249. McNeill, A. et al. Hyposmia and cognitive impairment in Gaucher disease patients and carriers. Mov. Disord. 27, 526–532 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  250. Beavan, M. et al. Evolution of prodromal clinical markers of Parkinson disease in a GBA mutation-positive cohort. JAMA Neurol. 72, 201–208 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  251. Schapira, A. H. & Gegg, M. E. Glucocerebrosidase in the pathogenesis and treatment of Parkinson disease. Proc. Natl Acad. Sci. USA 110, 3214–3215 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. McNeill, A. et al. Ambroxol improves lysosomal biochemistry in glucocerebrosidase mutation-linked Parkinson disease cells. Brain 137, 1481–1495 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  253. Gibb, W. R. & Lees, A. J. Anatomy, pigmentation, ventral and dorsal subpopulations of the substantia nigra, and differential cell death in Parkinson's disease. J. Neurol. Neurosurg. Psychiatry 54, 388–396 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Brettschneider, J. et al. Spreading of pathology in neurodegenerative diseases: a focus on human studies. Nat. Rev. Neurosci. 16, 109–120 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

A.H.V.S. is supported by a Medical Research Council (MRC) Centre of Excellence in Neurodegeneration grant (MR/L501499/1), a MRC Experimental Medicine programme award (MR/M006646/1) and a grant from Parkinson's UK (G-1403). A.H.V.S. is also supported by the National Institute for Health Research (NIHR) Biomedical Research Centre award to University College London Hospitals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony H.V. Schapira.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Bradykinesia

Abnormal slowness of movement.

Rigidity

Stiffness and increased tone of muscles.

Levodopa

Orally active dopamine precursor.

Wearing off periods

Re-emergence of dopamine deficiency-related symptoms (for example, stiffness, slowness or tremor).

Off periods

Similar to 'wearing off' but more severe in terms of symptom severity.

On periods

Periods of effective dopamine replacement with restored motor function.

Hyposmia

Reduction in the ability to detect odours.

Rotenone

A mitochondrial complex I inhibitor and common pesticide.

α-Synuclein

A protein that aggregates and forms the major constituent of Lewy bodies in neurons. Mutations in the gene encoding α-synuclein and overexpression of this protein are causes of familial Parkinson disease.

Anosmia

Loss of the sense of smell.

Lewy bodies

Abnormal aggregates of proteinaceous material within neuronal cell bodies, the major constituent of which is α-synuclein.

Lewy neurites

Abnormal aggregates of proteinaceous material within axons, the major constituent of which is α-synuclein.

Incidental Lewy body disease

(ILBD). The presence on pathological examination of Lewy body deposition, but without symptoms of Parkinson disease during life.

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine

(MPTP). A mitochondrial complex I inhibitor that can cause dopaminergic neuron death and induce parkinsonism in humans.

Paraesthesia

Positive sensory phenomena (for example, pins and needles).

Parkin

A protein that is involved in mitophagy.

Endogenous depression

Depressive symptoms that are not associated with triggers such as bereavement.

Sleep attacks

Sudden onset of sleep.

Akathisia

Motor restlessness.

Nocturia

The need to pass urine during the night.

Micturition

The process of passing urine.

Detrusor

A muscle that controls bladder function.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schapira, A., Chaudhuri, K. & Jenner, P. Non-motor features of Parkinson disease. Nat Rev Neurosci 18, 435–450 (2017). https://doi.org/10.1038/nrn.2017.62

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn.2017.62

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing