Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Algorithms for survival: a comparative perspective on emotions

Abstract

The nature and neural implementation of emotions is the subject of vigorous debate. Here, we use Bayesian decision theory to address key complexities in this field and conceptualize emotions in terms of their relationship to survival-relevant behavioural choices. Decision theory indicates which behaviours are optimal in a given situation; however, the calculations required are radically intractable. We therefore conjecture that the brain uses a range of pre-programmed algorithms that provide approximate solutions. These solutions seem to produce specific behavioural manifestations of emotions and can also be associated with core affective dimensions. We identify principles according to which these algorithms are implemented in the brain and illustrate our approach by considering decision making in the face of proximal threat.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Darwin, C. The Expression of the Emotions in Man and Animals Vol. 1965 (Univ. of Chicago Press, 1872).

    Book  Google Scholar 

  2. Russell, J. A. A circumplex model of affect. J. Pers Soc. Psychol. 39, 1161–1178 (1980).

    Article  Google Scholar 

  3. Kuppens, P., Tuerlinckx, F., Russell, J. A. & Barrett, L. F. The relation between valence and arousal in subjective experience. Psychol. Bull. 139, 917–940 (2013).

    PubMed  Article  Google Scholar 

  4. Scherer, K. R., Schorr, A. & Johnstone, T. Appraisal Processes in Emotion: Theory, Methods, Research (Oxford Univ. Press, 2001).

    Google Scholar 

  5. Oatley, K. & Johnson-Laird, P. N. Cognitive approaches to emotions. Trends Cogn. Sci. 18, 134–140 (2014).

    PubMed  Article  Google Scholar 

  6. Ekman, P. & Oster, H. Facial expressions of emotion. Annu. Rev. Psychol. 30, 527–554 (1979).

    Article  Google Scholar 

  7. Izard, C. E. Basic emotions, relations among emotions, and emotion–cognition relations. Psychol. Rev. 99, 561–565 (1992).

    CAS  PubMed  Article  Google Scholar 

  8. Calhoon, G. G. & Tye, K. M. Resolving the neural circuits of anxiety. Nat. Neurosci. 18, 1394–1404 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  9. Burgdorf, J. & Panksepp, J. The neurobiology of positive emotions. Neurosci. Biobehav. Rev. 30, 173–187 (2006).

    PubMed  Article  Google Scholar 

  10. Herry, C. & Johansen, J. P. Encoding of fear learning and memory in distributed neuronal circuits. Nat. Neurosci. 17, 1644–1654 (2014).

    CAS  PubMed  Article  Google Scholar 

  11. Stephan, K. E. et al. Charting the landscape of priority problems in psychiatry, part 1: classification and diagnosis. Lancet Psychiatry 3, 77–83 (2016).

    PubMed  Article  Google Scholar 

  12. LeDoux, J. E. Coming to terms with fear. Proc. Natl Acad. Sci. USA 111, 2871–2878 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. Blanchard, D. C., Griebel, G., Pobbe, R. & Blanchard, R. J. Risk assessment as an evolved threat detection and analysis process. Neurosci. Biobehav. Rev. 35, 991–998 (2011).

    PubMed  Article  Google Scholar 

  14. Scherer, K. R. in Appraisal Processes in Emotion (eds Scherer, K. R., Schorr, A. & Johnstone, T.) 92–120 (Oxford Univ. Press, 2001).

    Google Scholar 

  15. Wilensky, A. E., Schafe, G. E., Kristensen, M. P. & LeDoux, J. E. Rethinking the fear circuit: the central nucleus of the amygdala is required for the acquisition, consolidation, and expression of Pavlovian fear conditioning. J. Neurosci. 26, 12387–12396 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. Dayan, P., Niv, Y., Seymour, B. & Daw, N. D. The misbehavior of value and the discipline of the will. Neural Netw. 19, 1153–1160 (2006).

    Article  PubMed  Google Scholar 

  17. Daw, N. D., Niv, Y. & Dayan, P. Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nat. Neurosci. 8, 1704–1711 (2005).

    CAS  Article  PubMed  Google Scholar 

  18. Lindquist, K. A. & Barrett, L. F. A functional architecture of the human brain: emerging insights from the science of emotion. Trends Cogn. Sci. 16, 533–540 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  19. Jack, R. E., Garrod, O. G. & Schyns, P. G. Dynamic facial expressions of emotion transmit an evolving hierarchy of signals over time. Curr. Biol. 24, 187–192 (2014).

    CAS  PubMed  Article  Google Scholar 

  20. Nowlis, H. H. & Nowlis, V. The description and analysis of mood. Ann. NY Acad. Sci. 65, 345–355 (1956).

    CAS  PubMed  Article  Google Scholar 

  21. Marr, D. C. & Poggio, T. From understanding computation to understanding neural circuitry. Neurosci. Res. Program Bull. 15, 470–491 (1977).

    Google Scholar 

  22. Kording, K. P. & Wolpert, D. M. Bayesian decision theory in sensorimotor control. Trends Cogn. Sci. 10, 319–326 (2006).

    Article  PubMed  Google Scholar 

  23. Bach, D. R. & Dolan, R. J. Knowing how much you don't know: a neural organization of uncertainty estimates. Nat. Rev. Neurosci. 13, 572–586 (2012).

    CAS  Article  PubMed  Google Scholar 

  24. Pouget, A., Beck, J. M., Ma, W. J. & Latham, P. E. Probabilistic brains: knowns and unknowns. Nat. Neurosci. 16, 1170–1178 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. Graebner, A. K., Iyer, M. & Carter, M. E. Understanding how discrete populations of hypothalamic neurons orchestrate complicated behavioral states. Front. Syst. Neurosci. 9, 111 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  26. Berridge, K. C. & Kringelbach, M. L. Pleasure systems in the brain. Neuron 86, 646–664 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. Samuelson, P. A. Note on the pure theory of consumers' behaviour. Economica 5, 61–71 (1938).

    Article  Google Scholar 

  28. Blondel, V. D. & Tsitsiklis, J. N. A survey of computational complexity results in systems and control. Automatica 36, 1249–1274 (2000).

    Article  Google Scholar 

  29. Hinton, G. E. & Nowlan, S. J. How learning can guide evolution. Complex Syst. 1, 495–502 (1987).

    Google Scholar 

  30. Niv, Y., Daw, N. D., Joel, D. & Dayan, P. Tonic dopamine: opportunity costs and the control of response vigor. Psychopharmacology 191, 507–520 (2007).

    CAS  PubMed  Article  Google Scholar 

  31. Choi, J. E., Vaswani, P. A. & Shadmehr, R. Vigor of movements and the cost of time in decision making. J. Neurosci. 34, 1212–1223 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. Dayan, P. Instrumental vigour in punishment and reward. Eur. J. Neurosci. 35, 1152–1168 (2012).

    PubMed  Article  Google Scholar 

  33. Mowrer, O. H. 2-Factor learning theory — summary and comment. Psychol. Rev. 58, 350–354 (1951).

    CAS  PubMed  Article  Google Scholar 

  34. Maia, T. V. Two-factor theory, the actor–critic model, and conditioned avoidance. Learn. Behav. 38, 50–67 (2010).

    PubMed  Article  Google Scholar 

  35. Lloyd, K. & Dayan, P. Safety out of control: dopamine and defence. Behav. Brain Funct. 12, 15 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  36. Trimmer, P. C., Paul, E. S., Mendl, M. T., McNamara, J. M. & Houston, A. I. On the evolution and optimality of mood States. Behav. Sci. (Basel) 3, 501–521 (2013).

    Article  Google Scholar 

  37. Bach, D. R. Anxiety-like behavioural inhibition is normative under environmental threat-reward correlations. PLoS Comput. Biol. 11, e1004646 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  38. Mackintosh, N. J. Conditioning and Associative Learning (Oxford Univ. Press, 1983).

    Google Scholar 

  39. Dickinson, A. Contemporary Animal Learning Theory Vol. 1 (CUP Archive, 1980).

    Google Scholar 

  40. Dickinson, A. & Balleine, B. in Steven's Handbook of Experimental Psychology: Learning, Motivation and Emotion Vol. 3 (eds Pashler, H. & Gallistel, R.) 497–534 (Wiley, 2002).

    Google Scholar 

  41. Doya, K. What are the computations of the cerebellum, the basal ganglia and the cerebral cortex? Neural Netw. 12, 961–974 (1999).

    CAS  Article  PubMed  Google Scholar 

  42. Adams, C. D. & Dickinson, A. in Information Processing in Animals: Memory Mechanisms (eds Spear, N. E. & Miller, R. E.) 143–165 (Psychology Press,1981).

    Google Scholar 

  43. Yeomans, J. S., Li, L., Scott, B. W. & Frankland, P. W. Tactile, acoustic and vestibular systems sum to elicit the startle reflex. Neurosci. Biobehav. Rev. 26, 1–11 (2002).

    PubMed  Article  Google Scholar 

  44. Wilson, R. C. & Niv, Y. Inferring relevance in a changing world. Front. Hum. Neurosci. 5, 189 (2011).

    PubMed  Google Scholar 

  45. Garcia, J., McGowan, B. K., Ervin, F. R. & Koelling, R. A. Cues: their relative effectiveness as a function of the reinforcer. Science 160, 794–795 (1968).

    CAS  PubMed  Article  Google Scholar 

  46. Rozin, P., Gruss, L. & Berk, G. Reversal of innate aversions: attempts to induce a preference for chili peppers in rats. J. Comp. Physiol. Psychol. 93, 1001–1014 (1979).

    CAS  PubMed  Article  Google Scholar 

  47. Cain, C. K. & LeDoux, J. E. Escape from fear: a detailed behavioral analysis of two atypical responses reinforced by CS termination. J. Exp. Psychol. Anim. Behav. Process 33, 451–463 (2007).

    PubMed  Article  Google Scholar 

  48. Bach, D. R. A cost minimisation and Bayesian inference model predicts startle reflex modulation across species. J. Theor. Biol. 370, 53–60 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  49. Kehoe, E. J. & Macrae, M. in A Neuroscientist's Guide to Classical Conditioning 171–231 (Springer, 2002).

    Book  Google Scholar 

  50. Blanchard, D. C. & Blanchard, R. J. Ethoexperimental approaches to the biology of emotion. Annu. Rev. Psychol. 39, 43–68 (1988).

    CAS  PubMed  Article  Google Scholar 

  51. McNaughton, N. & Corr, P. J. A two-dimensional neuropsychology of defense: fear/anxiety and defensive distance. Neurosci. Biobehav. Rev. 28, 285–305 (2004).

    Article  PubMed  Google Scholar 

  52. Gray, J. A. & McNaughton, N. The Neuropsychology of Anxiety: an Enquiry into the Functions of the Septohippocampal System Vol. 2 (Oxford Univ. Press, 2000).

    Google Scholar 

  53. Fanselow, M. S. & Lester, L. S. in Evolution and Learning (eds Bolles, R. C. & Beecher, M. D) 185–212 (Psychology Press, 1988).

    Google Scholar 

  54. Siddle, D. A. Orienting, habituation, and resource allocation: an associative analysis. Psychophysiology 28, 245–259 (1991).

    CAS  PubMed  Article  Google Scholar 

  55. Schutzwohl, A. Surprise and schema strength. J. Exp. Psychol. Learn. Mem. Cogn. 24, 1182–1199 (1998).

    CAS  PubMed  Article  Google Scholar 

  56. Hailman, J. P. The Ontogeny of an Instinct: the Pecking Response in Chicks of the Laughing Gull (Larus atricilla L.) and Related Species (Brill, 1967).

    Google Scholar 

  57. Tinbergen, N. The Study of Instinct (Oxford Univ. Press, 1951).

    Google Scholar 

  58. Byrne, R. W. & Byrne, J. M. E. Complex leaf-gathering skills of mountain gorillas (Gorilla g. beringei): variability and standardization. Am. J. Primatol. 31, 241–261 (1993).

    Article  PubMed  Google Scholar 

  59. Zhang, S., Mano, H., Ganesh, G., Robbins, T. & Seymour, B. Dissociable learning processes underlie human pain conditioning. Curr. Biol. 26, 52–58 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  60. Gross, C. T. & Canteras, N. S. The many paths to fear. Nat. Rev. Neurosci. 13, 651–658 (2012).

    CAS  PubMed  Article  Google Scholar 

  61. LeDoux, J. E., Sakaguchi, A., Iwata, J. & Reis, D. J. Auditory emotional memories: establishment by projections from the medial geniculate nucleus to the posterior neostriatum and/or dorsal amygdala. Ann. NY Acad. Sci. 444, 463–464 (1985).

    CAS  PubMed  Article  Google Scholar 

  62. Kim, J. J. & Fanselow, M. S. Modality-specific retrograde amnesia of fear. Science 256, 675–677 (1992).

    CAS  Article  PubMed  Google Scholar 

  63. Ohman, A. & Mineka, S. Fears, phobias, and preparedness: toward an evolved module of fear and fear learning. Psychol. Rev. 108, 483–522 (2001).

    CAS  PubMed  Article  Google Scholar 

  64. Dolan, R. J. & Dayan, P. Goals and habits in the brain. Neuron 80, 312–325 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. Korn, C. W. & Bach, D. R. Maintaining homeostasis by decision-making. PLoS Comput. Biol. 11, e1004301 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  66. Rangel, A. Regulation of dietary choice by the decision-making circuitry. Nat. Neurosci. 16, 1717–1724 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  67. Fonio, E., Benjamini, Y. & Golani, I. Freedom of movement and the stability of its unfolding in free exploration of mice. Proc. Natl Acad. Sci. USA 106, 21335–21340 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  68. Bach, D. R. The cognitive architecture of anxiety-like behavioral inhibition. J. Exp. Psychol. Hum. Percept. Perform. 43, 18–29 (2017).

    PubMed  Article  Google Scholar 

  69. Alonso, R., Brocas, I. & Carrillo, J. D. Resource allocation in the brain. Rev. Econom. Studies 81, 501–534 (2014).

    Article  Google Scholar 

  70. Dayan, P. & Berridge, K. C. Model-based and model-free Pavlovian reward learning: revaluation, revision, and revelation. Cogn. Affect Behav. Neurosci. 14, 473–492 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  71. Tomkins, S. S. & McCarter, R. What and where are the primary affects? Some evidence for a theory. Percept. Mot. Skills 18, 119–158 (1964).

    CAS  PubMed  Article  Google Scholar 

  72. Ekman, P., Friesen, W. V. & Ellsworth, P. Emotion in the Human Face: Guide-Lines for Research and an Integration of Findings (Pergamon Press, 1972).

    Google Scholar 

  73. Ekman, P. Are there basic emotions? Psychol. Rev. 99, 550–553 (1992).

    CAS  PubMed  Article  Google Scholar 

  74. Brandao, M. L., Zanoveli, J. M., Ruiz-Martinez, R. C., Oliveira, L. C. & Landeira-Fernandez, J. Different patterns of freezing behavior organized in the periaqueductal gray of rats: association with different types of anxiety. Behav. Brain Res. 188, 1–13 (2008).

    PubMed  Article  Google Scholar 

  75. Keay, K. A., Clement, C. I., Owler, B., Depaulis, A. & Bandler, R. Convergence of deep somatic and visceral nociceptive information onto a discrete ventrolateral midbrain peraqueductal gray region. Neuroscience 61, 727–732 (1994).

    CAS  Article  PubMed  Google Scholar 

  76. Phillips, R. G. & LeDoux, J. E. Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav. Neurosci. 106, 274–285 (1992).

    CAS  PubMed  Article  Google Scholar 

  77. McHugh, S. B., Deacon, R. M., Rawlins, J. N. & Bannerman, D. M. Amygdala and ventral hippocampus contribute differentially to mechanisms of fear and anxiety. Behav. Neurosci. 118, 63–78 (2004).

    CAS  PubMed  Article  Google Scholar 

  78. Bach, D. R. et al. Human hippocampus arbitrates approach–avoidance conflict. Curr. Biol. 24, 541–547 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  79. Reynolds, S. M. & Berridge, K. C. Fear and feeding in the nucleus accumbens shell: rostrocaudal segregation of GABA-elicited defensive behavior versus eating behavior. J. Neurosci. 21, 3261–3270 (2001).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  80. Reynolds, S. M. & Berridge, K. C. Positive and negative motivation in nucleus accumbens shell: bivalent rostrocaudal gradients for GABA-elicited eating, taste “liking”/“disliking” reactions, place preference/avoidance, and fear. J. Neurosci. 22, 7308–7320 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  81. Reynolds, S. M. & Berridge, K. C. Emotional environments retune the valence of appetitive versus fearful functions in nucleus accumbens. Nat. Neurosci. 11, 423–425 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  82. Sharpe, M. J. & Killcross, S. The prelimbic cortex uses higher-order cues to modulate both the acquisition and expression of conditioned fear. Front. Syst. Neurosci. 8, 235 (2014).

    PubMed  Google Scholar 

  83. Ohl, F. W., Wetzel, W., Wagner, T., Rech, A. & Scheich, H. Bilateral ablation of auditory cortex in Mongolian gerbil affects discrimination of frequency modulated tones but not of pure tones. Learn. Mem. 6, 347–362 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Letzkus, J. J. et al. A disinhibitory microcircuit for associative fear learning in the auditory cortex. Nature 480, 331–335 (2011).

    CAS  PubMed  Article  Google Scholar 

  85. Winston, J. S., Gottfried, J. A., Kilner, J. M. & Dolan, R. J. Integrated neural representations of odor intensity and affective valence in human amygdala. J. Neurosci. 25, 8903–8907 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  86. Lewis, P., Critchley, H., Rotshtein, P. & Dolan, R. Neural correlates of processing valence and arousal in affective words. Cereb. Cortex 17, 742–748 (2007).

    CAS  PubMed  Article  Google Scholar 

  87. Chikazoe, J., Lee, D. H., Kriegeskorte, N. & Anderson, A. K. Population coding of affect across stimuli, modalities and individuals. Nat. Neurosci. 17, 1114–1122 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  88. Lindquist, K. A., Satpute, A. B., Wager, T. D., Weber, J. & Barrett, L. F. The brain basis of positive and negative affect: evidence from a meta-analysis of the human neuroimaging literature. Cereb. Cortex 26, 1910–1922 (2016).

    PubMed  Article  Google Scholar 

  89. Critchley, H. D. & Rolls, E. T. Hunger and satiety modify the responses of olfactory and visual neurons in the primate orbitofrontal cortex. J. Neurophysiol. 75, 1673–1686 (1996).

    CAS  Article  PubMed  Google Scholar 

  90. Schultz, W., Dayan, P. & Montague, P. R. A neural substrate of prediction and reward. Science 275, 1593–1599 (1997).

    CAS  PubMed  Article  Google Scholar 

  91. Killcross, S. & Coutureau, E. Coordination of actions and habits in the medial prefrontal cortex of rats. Cereb. Cortex 13, 400–408 (2003).

    Article  PubMed  Google Scholar 

  92. Balleine, B. W. Neural bases of food-seeking: affect, arousal and reward in corticostriatolimbic circuits. Physiol. Behav. 86, 717–730 (2005).

    CAS  PubMed  Article  Google Scholar 

  93. Bassareo, V. & Di Chiara, G. Differential responsiveness of dopamine transmission to food-stimuli in nucleus accumbens shell/core compartments. Neuroscience 89, 637–641 (1999).

    CAS  PubMed  Article  Google Scholar 

  94. Corbit, L. H. & Balleine, B. W. The general and outcome-specific forms of Pavlovian-instrumental transfer are differentially mediated by the nucleus accumbens core and shell. J. Neurosci. 31, 11786–11794 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  95. Liljeholm, M. & O'Doherty, J. P. Contributions of the striatum to learning, motivation, and performance: an associative account. Trends Cogn. Sci. 16, 467–475 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  96. Amat, J., Paul, E., Zarza, C., Watkins, L. R. & Maier, S. F. Previous experience with behavioral control over stress blocks the behavioral and dorsal raphe nucleus activating effects of later uncontrollable stress: role of the ventral medial prefrontal cortex. J. Neurosci. 26, 13264–13272 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  97. Dayan, P. Twenty-five lessons from computational neuromodulation. Neuron 76, 240–256 (2012).

    CAS  PubMed  Article  Google Scholar 

  98. Fallon, J. H. Topographic organization of ascending dopaminergic projections. Ann. NY Acad. Sci. 537, 1–9 (1988).

    CAS  PubMed  Article  Google Scholar 

  99. Hale, M. W. & Lowry, C. A. Functional topography of midbrain and pontine serotonergic systems: implications for synaptic regulation of serotonergic circuits. Psychopharmacology 213, 243–264 (2011).

    CAS  PubMed  Article  Google Scholar 

  100. Berridge, C. W. & Waterhouse, B. D. The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res. Brain Res. Rev. 42, 33–84 (2003).

    PubMed  Article  Google Scholar 

  101. Liang, K. C. et al. Corticotropin-releasing factor: long-lasting facilitation of the acoustic startle reflex. J. Neurosci. 12, 2303–2312 (1992).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  102. Cavanagh, J. F., Eisenberg, I., Guitart-Masip, M., Huys, Q. & Frank, M. J. Frontal theta overrides pavlovian learning biases. J. Neurosci. 33, 8541–8548 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  103. Tovote, P., Fadok, J. P. & Luthi, A. Neuronal circuits for fear and anxiety. Nat. Rev. Neurosci. 16, 317–331 (2015).

    CAS  PubMed  Article  Google Scholar 

  104. Likhtik, E. et al. Prefrontal entrainment of amygdala activity signals safety in learned fear and innate anxiety. Nat. Neurosci. 17, 106–113 (2014).

    CAS  PubMed  Article  Google Scholar 

  105. Adhikari, A., Topiwala, M. A. & Gordon, J. A. Synchronized activity between the ventral hippocampus and the medial prefrontal cortex during anxiety. Neuron 65, 257–269 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  106. Adhikari, A., Topiwala, M. A. & Gordon, J. A. Single units in the medial prefrontal cortex with anxiety-related firing patterns are preferentially influenced by ventral hippocampal activity. Neuron 71, 898–910 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  107. Roseman, I. J. & Smith, C. A. in Appraisal Processes in Emotion Ch. 1 (eds Scherer, K. R., Schorr, A. & Johnstone, T.) 3–19 (Oxford Univ. Press, 2001).

    Google Scholar 

  108. Frijda, N. H. The Laws of Emotion (Lawrence Erlbaum Associates, 2007).

    Google Scholar 

  109. Dolan, R. J. Emotion, cognition, and behavior. Science 298, 1191–1194 (2002).

    CAS  PubMed  Article  Google Scholar 

  110. Mendl, M., Burman, O. H. & Paul, E. S. An integrative and functional framework for the study of animal emotion and mood. Proc. Biol. Sci. 277, 2895–2904 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  111. Eldar, E., Rutledge, R. B., Dolan, R. J. & Niv, Y. Mood as representation of momentum. Trends Cogn. Sci. 20, 15–24 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  112. DeWall, C. N., Baumeister, R. F., Chester, D. S. & Bushman, B. J. How often does currently felt emotion predict social behavior and judgment? A meta-analytic test of two theories. Emot. Rev. 8, 136–143 (2016).

    Article  Google Scholar 

  113. Huys, Q. J. et al. Bonsai trees in your head: how the pavlovian system sculpts goal-directed choices by pruning decision trees. PLoS Comput. Biol. 8, e1002410 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  114. Redish, A. D. Vicarious trial and error. Nat. Rev. Neurosci. 17, 147–159 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  115. Loewenstein, G. & Lerner, J. S. in Handbook of Affective Sciences (eds Davidson, R. J., Scherer, K. R. & Goldsmith, H. H.) (Oxford University Press, 2003).

    Google Scholar 

  116. Pessoa, L. & Adolphs, R. Emotion processing and the amygdala: from a 'low road' to 'many roads' of evaluating biological significance. Nat. Rev. Neurosci. 11, 773–783 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  117. Pessoa, L. On the relationship between emotion and cognition. Nat. Rev. Neurosci. 9, 148–158 (2008).

    CAS  PubMed  Article  Google Scholar 

  118. Barrett, L. F. The theory of constructed emotion: an active inference account of interoception and categorization. Soc. Cogn. Affect Neurosci. 12, 1–23 (2016).

    PubMed Central  Google Scholar 

  119. Berger, J. O. Statistical Decision Theory and Bayesian Analysis (Springer Science & Business Media, 2013).

    Google Scholar 

  120. Sutton, R. S. & Barto, A. G. Reinforcement Learning: an Introduction (MIT Press, 1998).

    Google Scholar 

  121. Bertsekas, D. P. Dynamic Programming and Optimal Control Vol. 1 (Athena Scientific Belmont, 2005).

    Google Scholar 

  122. Schwartz, B. & Williams, D. R. The role of the response-reinforcer contingency in negative automaintenance. J. Exp. Anal. Behav. 17, 351–357 (1972).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  123. Breland, K. & Breland, M. The misbehavior of organisms. Am. Psychol. 16, 681–684 (1961).

    Article  Google Scholar 

  124. Dickinson, A. & Balleine, B. Motivational control of goal-directed action. Anim. Learn. Behav. 22, 1–18 (1994).

    Article  Google Scholar 

  125. Boureau, Y. L., Sokol-Hessner, P. & Daw, N. D. Deciding how to decide: self-control and meta-decision making. Trends Cogn. Sci. 19, 700–710 (2015).

    Article  PubMed  Google Scholar 

  126. Dayan, P. How to set the switches on this thing. Curr. Opin. Neurobiol. 22, 1068–1074 (2012).

    CAS  PubMed  Article  Google Scholar 

  127. Alexander, W. H. & Brown, J. W. Computational models of performance monitoring and cognitive control. Top. Cogn. Sci. 2, 658–677 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  128. Botvinick, M. & Weinstein, A. Model-based hierarchical reinforcement learning and human action control. Phil. Trans. R. Soc. B Biol. Sci. 369, 20130480 (2014).

    Article  Google Scholar 

  129. Keramati, M., Dezfouli, A. & Piray, P. Speed/accuracy trade-off between the habitual and the goal-directed processes. PLoS Comput. Biol. 7, e1002055 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  130. Pezzulo, G., Rigoli, F. & Chersi, F. The mixed instrumental controller: using value of information to combine habitual choice and mental simulation. Front. Psychol. 4, 92 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  131. Kahneman, D. Thinking, Fast and Slow (Farrar, 2011).

    Google Scholar 

  132. Camerer, C. Behavioral Game Theory: Experiments in Strategic Interaction (Princeton Univ. Press, 2003).

    Google Scholar 

  133. Devaine, M., Hollard, G. & Daunizeau, J. Theory of mind: did evolution fool us? PLoS ONE 9, e87619 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  134. Johnson, D. D. & Fowler, J. H. The evolution of overconfidence. Nature 477, 317–320 (2011).

    CAS  PubMed  Article  Google Scholar 

  135. Giske, J. et al. Effects of the emotion system on adaptive behavior. Am. Nat. 182, 689–703 (2013).

    PubMed  Article  Google Scholar 

  136. Seth, A. K. Interoceptive inference, emotion, and the embodied self. Trends Cogn. Sci. 17, 565–573 (2013).

    PubMed  Article  Google Scholar 

Download references

Acknowledgements

The authors thank G. Castegnetti, L. Harris, C. Korn, M. Mendl, H. Nakahara, L. Paul, the reviewers and many others for inspiring discussions during the writing of this article. This work was supported by the University of Zurich (to D.R.B.), the Gatsby Charitable Foundation (to P.D.) and a grant from the UK National Centre for the Replacement Refinement and Reduction of Animals in Research (K/00008X/1; to M. Mendl, E. Paul and P.D.). The Wellcome Trust Centre for Neuroimaging is supported by core funding from the Wellcome Trust (091593/Z/10/Z).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominik R. Bach.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Glossary

Decision theory

A computational-level theory for making choices given information about states and resulting utilities. Bayesian decision theory is a formally optimal (normative) decision theory.

Algorithms

In this article, an algorithm denotes an abstract, self-contained set of operations or effective procedures that maps sensory input and internal state to external and internal actions.

Controllers

In this article, a controller corresponds to a realized neural circuit that is capable of implementing one or several algorithms for choosing or emitting actions.

Constructionist approaches

A family of theoretical approaches that view subjectively experienced mental categories (such as feelings) as constructed representations of more-basic psychological operations, which are not consciously accessible.

Utility functions

A real utility function quantifies how useful or dangerous certain outcomes are to an agent, in a given situation, and is realized in the output of actual neural circuits. A virtual utility function is an as-if construct that provides quantifications that are consistent with behavioural choices, but without necessarily underlying those choices.

Consistency

Choice consistency, or independence, denotes that if A is preferred over B, then A + C is preferred over B + C, irrespective of what C is. This is a fundamental component of expected utility theory and of revealed choice theory.

Transitivity

Assuming that A is preferred over B and that B is preferred over C, these preferences are said to be transitive if A is also preferred over C. This is a fundamental component of expected utility theory and of revealed choice theory.

Pre-programming

In this article, pre-programming refers to any restriction on the workings of a controller that can be cast in Bayesian decision theory terms as an immutable, prior mapping of state or prediction to action, or utility function.

Action contingency

The causal relationship between the execution of actions and the outcomes that result.

Pavlovian

In this article, the term Pavlovian is used to denote an algorithm or a controller making a choice of actions that is insensitive to the actual consequences of those actions. Here, the term is not used to denote design characteristics of experiments (as is sometimes the case).

Instrumental

In this article, the term instrumental refers to an algorithm or a controller making choices that are contingent on their past or predicted future consequences. Here, the term does not refer to design characteristics of experiments.

Model-based

In this article, the term model-based is used to characterize algorithms that exploit a model of the structure of the environment and the outcomes that it affords to make long-run predictions about the future. Predictions need not be action contingent and thus can support either Pavlovian or instrumental controllers.

Model-free

In this article, the term model-free is used to describe algorithms that learn to make long-run predictions by caching or saving experiences from the past, generally by enforcing self-consistency in successive outputs. Predictions are typically scalar, for instance, of summed future value and consequently do not encode the specific outcomes underpinning those values. Model-free predictions need not be action contingent and thus can support either Pavlovian or instrumental controllers.

Appraisal theory

A family of emotion theories, all of which posit that manifestations of emotions (feelings, motivational processes, bodily reactions, and so on) are the output of a set of cognitive appraisals or encompass such appraisals. Theories differ widely according to the appraisals that they consider part of the set.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bach, D., Dayan, P. Algorithms for survival: a comparative perspective on emotions. Nat Rev Neurosci 18, 311–319 (2017). https://doi.org/10.1038/nrn.2017.35

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn.2017.35

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing