Abstract
Since the first formal description of Parkinson disease (PD) two centuries ago, our understanding of this common neurodegenerative disorder has expanded at all levels of description, from the delineation of its clinical phenotype to the identification of its neuropathological features, neurochemical processes and genetic factors. Along the way, findings have led to novel hypotheses about how the disease develops and progresses, challenging our understanding of how neurodegenerative disorders wreak havoc on human health. In this Timeline article, I recount the fascinating 200-year journey of PD research.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$189.00 per year
only $15.75 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
References
Parkinson, J. An Essay on the Shaking Palsy (Whittingham and Rowland, 1817).
Goetz, C. G. The history of Parkinson's disease: early clinical descriptions and neurological therapies. Cold Spring Harb. Perspect. Med. 1, a008862 (2011).
Charcot, J. M. in Oeuvres Complètes (Tome 1). Leçons sur les Maladies du Système Nerveux (eds Delahaye, A. & Lecrosnier, E.) 155–188 (in French) (Bureaux du Progrès Médical, 1872).
Dauer, W. & Przedborski, S. Parkinson's disease: mechanisms and models. Neuron 39, 889–909 (2003).
Casals, J., Elizan, T. S. & Yahr, M. D. Postencephalitic parkinsonism — a review. J. Neural Transm. (Vienna) 105, 645–676 (1998).
Economo, C. V. Encephalitis Lethargica: its Sequelae and Treatment (Oxford Univ. Press, 1931).
Kalia, L. V. & Lang, A. E. Parkinson's disease. Lancet 386, 896–912 (2015).
Postuma, R. B. & Berg, D. Advances in markers of prodromal Parkinson disease. Nat. Rev. Neurol. 12, 622–634 (2016).
Blocq, C. & Marinescu, G. Sur un cas de tremblement parkinsonien hémiplégique symptomatique d'une tumeur du pédoncule cérébral. C. R. Cos. Biol. 45, 105–111 (in French) (1893).
Brissaud, E. Leçons sur les Maladies Nerveuses Vol. 2 (in French) (Masson, 1899).
Trétiakoff, C. Contribution à l'étude de l'anatomie pathologique du locus niger de Soemmering avec quelques deductions relatives a la pathogenie des troubles du tonus musculaire et de la maladie de Parkinson (in French) (Université de Paris, 1919).
Marsden, C. D. Neuromelanin and Parkinson's disease. J. Neural Transm. Suppl. 19, 121–141 (1983).
Lewy, F. Zur pathologischen Anatomie der Paralysis agitans. Dtsch. Z. Nervenheilk 50, 50–55 (in German) (1913).
Shults, C. W. Lewy bodies. Proc. Natl Acad. Sci. USA 103, 1661–1668 (2006).
Wilson, S. A. K. Progressive lenticular degeneration: a familial nervous disease associated with cirrhosis of the liver. Brain 34, 295–509 (1912).
Anden, N. E., Dahlstroem, A., Fuxe, K. & Larsson, K. Further evidence for the presence of nigro-neostriatal dopamine neurons in the rat. Am. J. Anat. 116, 329–333 (1965).
Anden, N. E. et al. Demonstration and mapping out of nigro-neostriatal dopamine neurons. Life Sci. 3, 523–530 (1964).
Poirier, L. J. & Sourkes, T. L. Influence of the substantia nigra on the catecholamine content of the striatum. Brain 88, 181–192 (1965).
Goldstein, M., Anagnoste, B., Owen, W. S. & Battista, A. F. The effects of ventromedial tegmental lesions on the biosynthesis of catecholamines in the striatum. Life Sci. 5, 2171–2176 (1966).
Dahlström, A. & Fuxe, K. Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol. Scand. Suppl. 232, 1–55 (1964).
Hassler, R. Zur Pathologie der Paralysis agitans und des postenzephalitischen Parkinsonismus. J. Psychol. Neurol. 48, 387–476 (in German) (1938).
Greenfield, J. G. & Bosanquet, F. D. The brain-stem lesions in Parkinsonism. J. Neurol. Neurosurg. Psychiatry 16, 213–226 (1953).
Hirsch, E., Graybiel, A. M. & Agid, Y. A. Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson's disease. Nature 334, 345–348 (1988).
Fahn, S. & Cohen, G. The oxidant stress hypothesis in Parkinson's disease: evidence supporting it. Ann. Neurol. 32, 804–812 (1992).
Fearnley, J. M. & Lees, A. J. Ageing and Parkinson's disease: substantia nigra regional selectivity. Brain 114, 2283–2301 (1991).
Braak, H. et al. Nigral and extranigral pathology in Parkinson's disease. J. Neural Transm. Suppl. 46, 15–31 (1995).
Montagu, K. A. Catechol compounds in rat tissues and in brains of different animals. Nature 180, 244–245 (1957).
Carlsson, A., Lindquist, M., Magnusson, T. & Waldeck, B. On the presence of 3-hydroxytyramine in brain. Science 127, 471–471 (1958).
Bertler, A. & Rosengren, E. Occurrence and distribution of dopamine in brain and other tissues. Experientia 15, 10–11 (1959).
Sano, I. et al. Distribution of catechol compounds in human brain. Biochim. Biophys. Acta 32, 586–587 (1959).
Carlsson, A. The occurrence, distribution and physiological role of catecholamines in the nervous system. Pharmacol. Rev. 11, 490–493 (1959).
Carlsson, A., Lindqvist, M. & Magnusson, T. 3,4-Dihydroxyphenylalanine and 5-hydroxytryptophan as reserpine antagonists. Nature 180, 1200 (1957).
Sano, I. Biochemistry of the extrapyramidal system. Shinkei Kennkyu No Shinpo 5, 42–48 (in Japanese) (1960).
Ehringer, H. & Hornykiewicz, O. Verteilung von noradrenalin und dopamin (3-hydroxytyramin) im gehirn des menschen und ihr verhalten bei erkrankungen des extrapyramidalen systems. Klin. Wochenschr. 38, 1236–1239 (in German) (1960).
Fahn, S. The medical treatment of Parkinson disease from James Parkinson to George Cotzias. Mov. Disord. 30, 4–18 (2015).
Olanow, C. W., Obeso, J. A. & Stocchi, F. Drug insight: continuous dopaminergic stimulation in the treatment of Parkinson's disease. Nat. Clin. Pract. Neurol. 2, 382–392 (2006).
Smith, Y., Wichmann, T., Factor, S. A. & DeLong, M. R. Parkinson's disease therapeutics: new developments and challenges since the introduction of levodopa. Neuropsychopharmacology 37, 213–246 (2012).
Missale, C., Nash, S. R., Robinson, S. W., Jaber, M. & Caron, M. G. Dopamine receptors: from structure to function. Physiol. Rev. 78, 189–225 (1998).
Hokfelt, T. & Ungerstedt, U. Specificity of 6-hydroxydopamine induced degeneration of central monoamine neurones: an electron and fluorescence microscopic study with special reference to intracerebral injection on the nigro-striatal dopamine system. Brain Res. 60, 269–297 (1973).
Ungerstedt, U. & Arbuthnott, G. Quantitative recording of rotational behaviour in rats after 6-hydroxydopamine lesions of the nigrostriatal dopamine system. Brain Res. 24, 485–493 (1970).
Barker, R. A., Drouin-Ouellet, J. & Parmar, M. Cell-based therapies for Parkinson disease-past insights and future potential. Nat. Rev. Neurol. 11, 492–503 (2015).
Meyers, R. The modification of alternating tremors, rigidity and festination by surgery of the basal ganglia. Res. Publ. Assoc. Res. Nerv. Ment. Dis. 21, 602–665 (1942).
Bergman, H., Wichmann, T. & DeLong, M. R. Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science 249, 1436–1438 (1990).
Hammond, C., Bergman, H. & Brown, P. Pathological synchronization in Parkinson's disease: networks, models and treatments. Trends Neurosci. 30, 357–364 (2007).
de Hemptinne, C. et al. Therapeutic deep brain stimulation reduces cortical phase-amplitude coupling in Parkinson's disease. Nat. Neurosci. 18, 779–786 (2015).
Rosin, B. et al. Closed-loop deep brain stimulation is superior in ameliorating parkinsonism. Neuron 72, 370–384 (2011).
Niethammer, M., Feigin, A. & Eidelberg, D. Functional neuroimaging in Parkinson's disease. Cold Spring Harb. Perspect. Med. 2, a009274 (2012).
Gingrich, J. A. & Caron, M. G. Recent advances in the molecular biology of dopamine receptors. Annu. Rev. Neurosci. 16, 299–321 (1993).
Walaas, S. I., Aswad, D. W. & Greengard, P. A dopamine- and cyclic AMP-regulated phosphoprotein enriched in dopamine-innervated brain regions. Nature 301, 69–71 (1983).
DeLong, M. R. Primate models of movement disorders of basal ganglia origin. Trends Neurosci. 13, 281–285 (1990).
Albin, R. L., Young, A. B. & Penney, J. B. The functional anatomy of basal ganglia disorders. Trends Neurosci. 12, 366–375 (1989).
Crossman, A. R. Neural mechanisms in disorders of movement. Comp. Biochem. Physiol. A Comp. Physiol. 93, 141–149 (1989).
Gerfen, C. R. et al. D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250, 1429–1432 (1990).
Kravitz, A. V. et al. Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature 466, 622–626 (2010).
Mink, J. W. in Fundamental Neuroscience Ch. 30 (eds Squire, L. R. et al.) 653–676 (Academic Press, 2013).
Jin, X., Tecuapetla, F. & Costa, R. M. Basal ganglia subcircuits distinctively encode the parsing and concatenation of action sequences. Nat. Neurosci. 17, 423–430 (2014).
Tecuapetla, F., Jin, X., Lima, S. Q. & Costa, R. M. Complementary contributions of striatal projection pathways to action initiation and execution. Cell 166, 703–715 (2016).
Panigrahi, B. et al. Dopamine is required for the neural representation and control of movement vigor. Cell 162, 1418–1430 (2015).
Yttri, E. A. & Dudman, J. T. Opponent and bidirectional control of movement velocity in the basal ganglia. Nature 533, 402–406 (2016).
Mazzoni, P., Hristova, A. & Krakauer, J. W. Why don't we move faster? Parkinson's disease, movement vigor, and implicit motivation. J. Neurosci. 27, 7105–7116 (2007).
Langston, J. W., Ballard, P. & Irwin, I. Chronic parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219, 979–980 (1983).
Davis, G. C. et al. Chronic parkinsonism secondary to intravenous-injection of meperidine analogs. Psychiatry Res. 1, 249–254 (1979).
Schapira, A. H. et al. Mitochondrial complex I deficiency in Parkinson's disease. J. Neurochem. 54, 823–827 (1990).
Schapira, A. H. et al. Anatomic and disease specificity of NADH CoQ1 reductase (complex I) deficiency in Parkinson's disease. J. Neurochem. 55, 2142–2145 (1990).
Schon, E. A. & Przedborski, S. Mitochondria: the next (neurode)generation. Neuron 70, 1033–1053 (2011).
Nishioka, K. et al. Genetic variation of the mitochondrial complex I subunit NDUFV2 and Parkinson's disease. Parkinsonism Relat. Disord. 16, 686–687 (2010).
Kraytsberg, Y. et al. Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons. Nat. Genet. 38, 518–520 (2006).
Bender, A. et al. High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat. Genet. 38, 515–517 (2006).
Kosel, S. et al. Novel mutations of mitochondrial complex I in pathologically proven Parkinson disease. Neurogenetics 1, 197–204 (1998).
van der Walt, J. M. et al. Mitochondrial polymorphisms significantly reduce the risk of Parkinson disease. Am. J. Hum. Genet. 72, 804–811 (2003).
Wooten, G. F. et al. Maternal inheritance in Parkinson's disease. Ann. Neurol. 41, 265–268 (1997).
Swerdlow, R. H. et al. Matrilineal inheritance of complex I dysfunction in a multigenerational Parkinson's disease family. Ann. Neurol. 44, 873–881 (1998).
Shoffner, J. M., Brown, M. & Huoponen, K. A mitochondrial DNA (mtDNA) mutation associated with maternally inherited deafness and Parkinson's disease (PD). Neurology 46, (2 Suppl.) A331 (1996).
Thyagarajan, D. et al. A novel mitochondrial 12SrRNA point mutation in parkinsonism, deafness, and neuropathy. Ann. Neurol. 48, 730–736 (2000).
Luoma, P. et al. Parkinsonism, premature menopause, and mitochondrial DNA polymerase gamma mutations: clinical and molecular genetic study. Lancet 364, 875–882 (2004).
Kitada, T. et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392, 605–608 (1998).
Mizuno, Y., Hattori, N., Mori, H., Suzuki, T. & Tanaka, K. Parkin and Parkinson's disease. Curr. Opin. Neurol. 14, 477–482 (2001).
Goldberg, M. S. et al. Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic neurons. J. Biol. Chem. 278, 43628–43635 (2003).
Palacino, J. J. et al. Mitochondrial dysfunction and oxidative damage in parkin-deficient mice. J. Biol. Chem. 279, 18614–18622 (2004).
Greene, J. C. et al. Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Proc. Natl Acad. Sci. USA 100, 4078–4083 (2003).
Shimura, H. et al. Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat. Genet. 25, 302–305 (2000).
Zhang, Y. et al. Parkin functions as an E2-dependent ubiquitin- protein ligase and promotes the degradation of the synaptic vesicle-associated protein, CDCrel-1. Proc. Natl Acad. Sci. USA 97, 13354–13359 (2000).
Shin, J. H. et al. PARIS (ZNF746) repression of PGC-1alpha contributes to neurodegeneration in Parkinson's disease. Cell 144, 689–702 (2011).
Austin, S. & St-Pierre, J. PGC1alpha and mitochondrial metabolism — emerging concepts and relevance in ageing and neurodegenerative disorders. J. Cell Sci. 125, 4963–4971 (2012).
Vives-Bauza, C. et al. PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc. Natl Acad. Sci. USA 107, 378–383 (2010).
Geisler, S. et al. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat. Cell Biol. 12, 119–131 (2010).
Narendra, D. P. et al. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol. 8, e1000298 (2010).
Valente, E. M. et al. Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science 304, 1158–1160 (2004).
Clark, I. E. et al. Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 441, 1162–1166 (2006).
Park, J. et al. Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 441, 1157–1161 (2006).
Narendra, D., Tanaka, A., Suen, D. F. & Youle, R. J. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol. 183, 795–803 (2008).
Burchell, V. S. et al. The Parkinson's disease-linked proteins Fbxo7 and Parkin interact to mediate mitophagy. Nat. Neurosci. 16, 1257–1265 (2013).
Lesage, S. et al. Loss of VPS13C function in autosomal-recessive parkinsonism causes mitochondrial dysfunction and increases PINK1/Parkin-dependent mitophagy. Am. J. Hum. Genet. 98, 500–513 (2016).
Polymeropoulos, M. H. et al. Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. Science 276, 2045–2047 (1997).
Kruger, R. et al. Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson's disease. Nat. Genet. 18, 106–108 (1998).
Zarranz, J. J. et al. The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann. Neurol. 55, 164–173 (2004).
Lesage, S. et al. G51D alpha-synuclein mutation causes a novel Parkinsonian-pyramidal syndrome. Ann. Neurol. 73, 459–471 (2013).
Proukakis, C. et al. A novel alpha-synuclein missense mutation in Parkinson disease. Neurology 80, 1062–1064 (2013).
Spillantini, M. G. et al. Alpha-synuclein in Lewy bodies. Nature 388, 839–840 (1997).
Lashuel, H. A., Overk, C. R., Oueslati, A. & Masliah, E. The many faces of alpha-synuclein: from structure and toxicity to therapeutic target. Nat. Rev. Neurosci. 14, 38–48 (2013).
Munoz, E. et al. Identification of Spanish familial Parkinson's disease and screening for the Ala53Thr mutation of the alpha-synuclein gene in early onset patients. Neurosci. Lett. 235, 57–60 (1997).
Spillantini, M. G., Crowther, R. A., Jakes, R., Hasegawa, M. & Goedert, M. Alpha-synuclein in filamentous inclusions of Lewy bodies from Parkinson's disease and dementia with Lewy bodies. Proc. Natl Acad. Sci. USA 95, 6469–6473 (1998).
Singleton, A. B. et al. Alpha-synuclein locus triplication causes Parkinson's disease. Science 302, 841 (2003).
Chartier-Harlin, M. C. et al. Alpha-synuclein locus duplication as a cause of familial Parkinson's disease. Lancet 364, 1167–1169 (2004).
Ibanez, P. et al. Causal relation between alpha-synuclein gene duplication and familial Parkinson's disease. Lancet 364, 1169–1171 (2004).
Gowers, W. R. (ed) A Manual of Diseases of the Nervous System 2nd edn (Blakiston, 1888).
Marder, K. et al. Risk of Parkinson's disease among first-degree relatives: a community-based study. Neurology 47, 155–160 (1996).
Chen, K.-M. & Chase, T. N. in Handbook of Clinical Neurology. Extrapyramidal disorders Vol. 49 (eds Vinken, P. J., Bruyn, G. W. & Klawans, H. L.) 167–183 (Elsevier, 1986).
Tanner, C., Goldman, S. M. & Ross, G. W. in Parkinson's Disease and Movement Disorders Ch. 7 (eds Jankovic, J. & Tolosa, E.) 90–103 (Lippincott Williams & Wilkins, 2002).
Hernan, M. A., Takkouche, B., Caamano-Isorna, F. & Gestal-Otero, J. J. A meta-analysis of coffee drinking, cigarette smoking, and the risk of Parkinson's disease. Ann. Neurol. 52, 276–284 (2002).
Thiruchelvam, M., Brockel, B. J., Richfield, E. K., Baggs, R. B. & Cory-Slechta, D. A. Potentiated and preferential effects of combined paraquat and maneb on nigrostriatal dopamine systems: environmental risk factors for Parkinson's disease? Brain Res. 873, 225–234 (2000).
Betarbet, R. et al. Chronic systemic pesticide exposure reproduces features of Parkinson's disease. Nat. Neurosci. 3, 1301–1306 (2000).
Trinh, J. & Farrer, M. Advances in the genetics of Parkinson disease. Nat. Rev. Neurol. 9, 445–454 (2013).
Lucking, C. B. et al. Association between early-onset Parkinson's disease and mutations in the parkin gene. N. Engl. J. Med. 342, 1560–1567 (2000).
Gilks, W. P. et al. A common LRRK2 mutation in idiopathic Parkinson's disease. Lancet 365, 415–416 (2005).
Martin, E. R. et al. Association of single-nucleotide polymorphisms of the tau gene with late-onset Parkinson disease. JAMA 286, 2245–2250 (2001).
Zareparsi, S. et al. Age at onset of Parkinson disease and apolipoprotein E genotypes. Am. J. Med. Genet. 107, 156–161 (2002).
Li, Y. J. et al. Age at onset in two common neurodegenerative diseases is genetically controlled. Am. J. Hum. Genet. 70, 985–993 (2002).
Aharon-Peretz, J., Rosenbaum, H. & Gershoni-Baruch, R. Mutations in the glucocerebrosidase gene and Parkinson's disease in Ashkenazi Jews. N. Engl. J. Med. 351, 1972–1977 (2004).
Heman-Ackah, S. M., Hallegger, M., Rao, M. S. & Wood, M. J. RISC in PD: the impact of microRNAs in Parkinson's disease cellular and molecular pathogenesis. Front. Mol. Neurosci. 6, 40 (2013).
Tanner, C. M. et al. Parkinson disease in twins: an etiologic study. JAMA 281, 341–346 (1999).
Dickson, D. et al. Pathology of PD in monozygotic twins with a 20-year discordance interval. Neurology 56, 981–982 (2001).
Keller, M. F. et al. Using genome-wide complex trait analysis to quantify 'missing heritability' in Parkinson's disease. Hum. Mol. Genet. 21, 4996–5009 (2012).
Wood, A. R. et al. Imputation of variants from the 1000 Genomes Project modestly improves known associations and can identify low-frequency variant-phenotype associations undetected by HapMap based imputation. PLoS ONE 8, e64343 (2013).
Nalls, M. A. et al. Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson's disease. Nat. Genet. 46, 989–993 (2014).
Zimprich, A. et al. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 44, 601–607 (2004).
Peelaerts, W. et al. Alpha-synuclein strains cause distinct synucleinopathies after local and systemic administration. Nature 522, 340–344 (2015).
Przedborski, S. in Handbook of Clinical Neurology. Parkinson's Disease and Related Disoders Ch. 26 (eds Koller, W. C. & Melamed, E.) 535–551 (Elsevier, 2007).
McGeer, P. L., Itagaki, S., Boyes, B. E. & McGeer, E. G. Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson's and Alzheimer's disease brains. Neurology 38, 1285–1291 (1988).
Forno, L. S., DeLanney, L. E., Irwin, I., Di Monte, D. & Langston, J. W. Astrocytes and Parkinson's disease. Prog. Brain Res. 94, 429–436 (1992).
Banati, R. B., Daniel, S. E. & Blunt, S. B. Glial pathology but absence of apoptotic nigral neurons in long-standing Parkinson's disease. Mov. Disord. 13, 221–227 (1998).
Mirza, B., Hadberg, H., Thomsen, P. & Moos, T. The absence of reactive astrocytosis is indicative of a unique inflammatory process in Parkinson's disease. Neuroscience 95, 425–432 (2000).
Valera, E., Spencer, B. & Masliah, E. Immunotherapeutic approaches targeting amyloid-beta, alpha-synuclein, and tau for the treatment of neurodegenerative disorders. Neurotherapeutics 13, 179–189 (2016).
Walsh, D. M. & Selkoe, D. J. A critical appraisal of the pathogenic protein spread hypothesis of neurodegeneration. Nat. Rev. Neurosci. 17, 251–260 (2016).
Braak, H. et al. Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol. Aging 24, 197–211 (2003).
Mao, X. et al. Pathological alpha-synuclein transmission initiated by binding lymphocyte-activation gene 3. Science 353, aah3374 (2016).
Volpicelli-Daley, L. A. et al. Exogenous alpha-synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death. Neuron 72, 57–71 (2011).
Sharon, G., Sampson, T. R., Geschwind, D. H. & Mazmanian, S. K. The central nervous system and the gut microbiome. Cell 167, 915–932 (2016).
Acknowledgements
The author is supported by the US National Institutes of Health (NIH)/NIDS awards NS099862 and NS072428, DOD Award 13-1-0416 and from Target-ALS and the Project-ALS.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The author declares no competing financial interests.
Rights and permissions
About this article
Cite this article
Przedborski, S. The two-century journey of Parkinson disease research. Nat Rev Neurosci 18, 251–259 (2017). https://doi.org/10.1038/nrn.2017.25
Published:
Issue Date:
DOI: https://doi.org/10.1038/nrn.2017.25
This article is cited by
-
Ginsenoside Rg1 ameliorates stress-exacerbated Parkinson’s disease in mice by eliminating RTP801 and α-synuclein autophagic degradation obstacle
Acta Pharmacologica Sinica (2024)
-
Interneuron diversity in the human dorsal striatum
Nature Communications (2024)
-
Synaptic dysfunction and extracellular matrix dysregulation in dopaminergic neurons from sporadic and E326K-GBA1 Parkinson’s disease patients
npj Parkinson's Disease (2024)
-
Neuropathogenesis-on-chips for neurodegenerative diseases
Nature Communications (2024)
-
The Role of Mitochondrial Pyruvate Carrier in Neurological Disorders
Molecular Neurobiology (2024)