Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Communication dynamics in complex brain networks

Key Points

  • The topology of structural brain networks shapes patterns of interaction and signalling among neurons and brain regions, and the resulting communication dynamics is important for brain function.

  • Different aspects of network topology imply different communication mechanisms, from routing of information through shortest paths to alternative models that involve spreading, diffusion and broadcasting.

  • Different topological attributes promote different types of communication mechanisms.

  • Communication dynamics are subject to competing constraints and demands (trade-offs) among efficiency, cost, versatility and resilience. One aspect of cost is the amount of information needed to implement network communication. This cost is high for routing and low for diffusion, and is likely to be an important factor for determining the biological feasibility of a given communication model.

Abstract

Neuronal signalling and communication underpin virtually all aspects of brain activity and function. Network science approaches to modelling and analysing the dynamics of communication on networks have proved useful for simulating functional brain connectivity and predicting emergent network states. This Review surveys important aspects of communication dynamics in brain networks. We begin by sketching a conceptual framework that views communication dynamics as a necessary link between the empirical domains of structural and functional connectivity. We then consider how different local and global topological attributes of structural networks support potential patterns of network communication, and how the interactions between network topology and dynamic models can provide additional insights and constraints. We end by proposing that communication dynamics may act as potential generative models of effective connectivity and can offer insight into the mechanisms by which brain networks transform and process information.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: A conceptual framework for linking structural connectivity and functional connectivity.
Figure 2: Network topology and communication.
Figure 3: Interplay between architecture and communication dynamics.
Figure 4: Communication processes as a function of time.

References

  1. 1

    Laughlin, S. B. & Sejnowski, T. J. Communication in neuronal networks. Science 301, 1870–1874 (2003). This is an early (pre-connectomics) account that highlights the importance of economy and efficiency in network communication.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2

    Turk-Browne, N. B. Functional interactions as big data in the human brain. Science 342, 580–584 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3

    Sporns, O. Contributions and challenges for network models in cognitive neuroscience. Nat. Neurosci. 17, 652–660 (2014).

    CAS  PubMed  Google Scholar 

  4. 4

    Bullmore, E. & Sporns, O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186–198 (2009).

    CAS  PubMed  Google Scholar 

  5. 5

    Park, H. J. & Friston, K. Structural and functional brain networks: from connections to cognition. Science 342, 1238411–1238411 (2013).

    PubMed  Google Scholar 

  6. 6

    Petersen, S. E. & Sporns, O. Brain networks and cognitive architectures. Neuron 88, 207–219 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7

    Medaglia, J. D., Lynall, M.-E. & Bassett, D. S. Cognitive network neuroscience. J. Cogn. Neurosci. 27, 1471–1491 (2015).

    PubMed  PubMed Central  Google Scholar 

  8. 8

    Roland, P. E., Hilgetag, C. C. & Deco, G. Cortico-cortical communication dynamics. Front. Syst. Neurosci. 8, 9 (2014).

    Google Scholar 

  9. 9

    Newman, M., Barabási, A.-L. & Watts, D. J. The Structure and Dynamics of Networks. (Princeton Univ. Press, 2011).

    Google Scholar 

  10. 10

    Boccaletti, S., Latora, V., Moreno, Y., Chavez, M. & Hwang, D.-U. Complex networks: structure and dynamics. Phys. Rep. 424, 175–308 (2006).

    Google Scholar 

  11. 11

    Sporns, O. Cerebral cartography and connectomics. Phil. Trans. R. Soc. B. Biol. Sci. 370, 20140173 (2015).

    Google Scholar 

  12. 12

    Breakspear, M. Dynamic models of large-scale brain activity. Nat. Neurosci. 20, 340–352 (2017). This is a comprehensive review of computational and empirical studies that advance our understanding of collective and nonlinear dynamics in large-scale brain networks.

    CAS  PubMed  Google Scholar 

  13. 13

    Deco, G., Tononi, G., Boly, M. & Kringelbach, M. L. Rethinking segregation and integration: contributions of whole-brain modelling. Nat. Rev. Neurosci. 16, 430–439 (2015).

    CAS  PubMed  Google Scholar 

  14. 14

    Bassett, D. S. & Sporns, O. Network neuroscience. Nat. Neurosci. 20, 353–364 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Fornito, A., Zalesky, A. & Bullmore, E. Fundamentals of Brain Network Analysis. (Academic Press, 2016).

    Google Scholar 

  16. 16

    Newman, M. Networks: An Introduction. (OUP Oxford, 2010).

    Google Scholar 

  17. 17

    Estrada, E. The Structure of Complex Networks: Theory and Applications. (OUP Oxford, 2011).

    Google Scholar 

  18. 18

    Barabási, A.-L. Network Science. (Cambridge Univ. Press, 2016).

    Google Scholar 

  19. 19

    Kirst, C., Modes, C. D. & Magnasco, M. O. Shifting attention to dynamics: self-reconfiguration of neural networks. Curr. Opin. Systems Biol. 3, 132–140 (2017).

    Google Scholar 

  20. 20

    Sporns, O. Network attributes for segregation and integration in the human brain. Curr. Opin. Neurobiol. 23, 162–171 (2013).

    CAS  PubMed  Google Scholar 

  21. 21

    Avena-Koenigsberger, A. et al. Path ensembles and a tradeoff between communication efficiency and resilience in the human connectome. Brain Struct. Funct. 222, 603–618 (2017).

    PubMed  Google Scholar 

  22. 22

    Kaiser, M., Martin, R., Andras, P. & Young, M. P. Simulation of robustness against lesions of cortical networks. Eur. J. Neurosci. 25, 3185–3192 (2007).

    PubMed  Google Scholar 

  23. 23

    Womelsdorf, T. et al. Modulation of neuronal interactions through neuronal synchronization. Science 316, 1609–1612 (2007).

    CAS  PubMed  Google Scholar 

  24. 24

    Smarandache-Wellmann, C. & Grätsch, S. Mechanisms of coordination in distributed neural circuits: encoding coordinating information. J. Neurosci. 34, 5627–5639 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25

    Bassett, D. S. et al. Dynamic reconfiguration of human brain networks during learning. Proc. Natl Acad. Sci. USA 108, 7641–7646 (2011).

    CAS  PubMed  Google Scholar 

  26. 26

    van den Heuvel, M. P. & Sporns, O. An anatomical substrate for integration among functional networks in human cortex. J. Neurosci. 33, 14489–14500 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Zamora-López, G., Zhou, C. & Kurths, J. Cortical hubs form a module for multisensory integration on top of the hierarchy of cortical networks. Front. Neuroinform. 4, 1 (2010).

    PubMed  PubMed Central  Google Scholar 

  28. 28

    Gallos, L. K., Makse, H. A. & Sigman, M. A small world of weak ties provides optimal global integration of self-similar modules in functional brain networks. Proc. Natl Acad. Sci. USA 109, 2825–2830 (2012).

    CAS  PubMed  Google Scholar 

  29. 29

    Bertolero, M. A., Yeo, B. T. T. & D'Esposito, M. The modular and integrative functional architecture of the human brain. Proc. Natl Acad. Sci. USA 112, E6798–E6807 (2015).

    CAS  PubMed  Google Scholar 

  30. 30

    van den Heuvel, M. P., Bullmore, E. T. & Sporns, O. Comparative connectomics. Trends Cogn. Sci. 20, 345–361 (2016).

    PubMed  Google Scholar 

  31. 31

    Betzel, R. F. & Bassett, D. S. Multi-scale brain networks. Neuroimage 160, 73–83 (2016).

    PubMed  PubMed Central  Google Scholar 

  32. 32

    Schröter, M., Paulsen, O. & Bullmore, E. T. Micro-connectomics: probing the organization of neuronal networks at the cellular scale. Nat. Rev. Neurosci. 18, 131–146 (2017). This review highlights the application of graph theory to studying the trade-offs between biological cost and functional value in small-scale neural networks.

    PubMed  Google Scholar 

  33. 33

    Passingham, R. E., Stephan, K. E. & Kötter, R. The anatomical basis of functional localization in the cortex. Nat. Rev. Neurosci. 3, 606–616 (2002).

    CAS  PubMed  Google Scholar 

  34. 34

    Kötter, R. & Stephan, K. E. Network participation indices: characterizing component roles for information processing in neural networks. Neural Netw. 16, 1261–1275 (2003).

    PubMed  Google Scholar 

  35. 35

    Watts, D. J. & Strogatz, S. H. Collective dynamics of 'small-world' networks. Nature 393, 440–442 (1998).

    CAS  Google Scholar 

  36. 36

    Bullmore, E. & Sporns, O. The economy of brain network organization. Nat. Rev. Neurosci. 13, 336–349 (2012).

    CAS  PubMed  Google Scholar 

  37. 37

    Betzel, R. F. et al. Generative models of the human connectome. Neuroimage 124, 1054–1064 (2016).

    PubMed  PubMed Central  Google Scholar 

  38. 38

    Raj, A. & Chen, Y.-H. The wiring economy principle: connectivity determines anatomy in the human brain. PLoS ONE 6, e14832 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Kaiser, M. & Hilgetag, C. C. Nonoptimal component placement, but short processing paths, due to long-distance projections in neural systems. PLoS Comput. Biol. 2, e95 (2006).

    PubMed  PubMed Central  Google Scholar 

  40. 40

    Rubinov, M., Ypma, R. J. F., Watson, C. & Bullmore, E. T. Wiring cost and topological participation of the mouse brain connectome. Proc. Natl Acad. Sci. USA 112, 10032–10037 (2015).

    CAS  PubMed  Google Scholar 

  41. 41

    Goni, J. et al. Resting-brain functional connectivity predicted by analytic measures of network communication. Proc. Natl Acad. Sci. USA 111, 833–838 (2013).

    PubMed  Google Scholar 

  42. 42

    Bettinardi, R. G. et al. How structure sculpts function: unveiling the contribution of anatomical connectivity to the brain's spontaneous correlation structure. Chaos 27, 047409 (2017). This paper introduces a measure that quantifies the propensity of two nodes to dynamically correlate, given the structural connectivity patterns that constrain the spread of information.

    CAS  PubMed  Google Scholar 

  43. 43

    Achard, S., Salvador, R., Whitcher, B., Suckling, J. & Bullmore, E. A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J. Neurosci. 26, 63–72 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Hermundstad, A. M. et al. Structural foundations of resting-state and task-based functional connectivity in the human brain. Proc. Natl Acad. Sci. USA 110, 6169–6174 (2013).

    PubMed  Google Scholar 

  45. 45

    van den Heuvel, M. P., Stam, C. J., Kahn, R. S. & Hulshoff Pol, H. E. Efficiency of functional brain networks and intellectual performance. J. Neurosci. 29, 7619–7624 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46

    Bassett, D. S. & Bullmore, E. Small-world brain networks. Neuroscientist 12, 512–523 (2006).

    PubMed  Google Scholar 

  47. 47

    de Pasquale, F., Della Penna, S., Sporns, O., Romani, G. L. & Corbetta, M. A. Dynamic core network and global efficiency in the resting human brain. Cereb. Cortex 26, 4015–4033 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Hearne, L. J., Cocchi, L., Zalesky, A. & Mattingley, J. B. Reconfiguration of brain network architectures between resting state and complexity-dependent cognitive reasoning. J. Neurosci. 37, 8399–8411 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49

    Kabbara, A., El Falou, W., Khalil, M., Wendling, F. & Hassan, M. The dynamic functional core network of the human brain at rest. Sci. Rep. 7, 2936 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50

    Boguñá, M., Krioukov, D. & Claffy, K. C. Navigability of complex networks. Nat. Phys. 5, 74–80 (2008).

    Google Scholar 

  51. 51

    Goñi, J. et al. Exploring the morphospace of communication efficiency in complex networks. PLoS ONE 8, e58070 (2013). This article introduces the concept of diffusion efficiency, and maps the topological characteristics of networks that optimize diffusion and routing efficiency onto a morphospace.

    PubMed  PubMed Central  Google Scholar 

  52. 52

    Abdelnour, F., Voss, H. U. & Raj, A. Network diffusion accurately models the relationship between structural and functional brain connectivity networks. Neuroimage 90, 335–347 (2014).

    PubMed  Google Scholar 

  53. 53

    Mišić, B., Sporns, O. & McIntosh, A. R. Communication efficiency and congestion of signal traffic in large-scale brain networks. PLoS Comput. Biol. 10, e1003427 (2014).

    PubMed  PubMed Central  Google Scholar 

  54. 54

    Graham, D. & Rockmore, D. The packet switching brain. J. Cogn. Neurosci. 23, 267–276 (2011).

    PubMed  Google Scholar 

  55. 55

    Graham, D. J. Routing in the brain. Front. Comput. Neurosci. 8, 44 (2014).

    PubMed  PubMed Central  Google Scholar 

  56. 56

    Rodrigues, F. A. & da Fontoura Costa, L. A structure–dynamic approach to cortical organization: number of paths and accessibility. J. Neurosci. Methods 183, 57–62 (2009).

    PubMed  Google Scholar 

  57. 57

    Wook Yoo, S. et al. A network flow-based analysis of cognitive reserve in normal ageing and Alzheimer's disease. Sci. Rep. 5, 10057 (2015).

    PubMed  PubMed Central  Google Scholar 

  58. 58

    Di Lanzo, C., Marzetti, L., Zappasodi, F., De Vico Fallani, F. & Pizzella, V. Redundancy as a graph-based index of frequency specific MEG functional connectivity. Comput. Math. Methods Med. 2012, 1–9 (2012).

    Google Scholar 

  59. 59

    De Vico Fallani, F. et al. Multiple pathways analysis of brain functional networks from EEG signals: an application to real data. Brain Topogr. 23, 344–354 (2011).

    PubMed  Google Scholar 

  60. 60

    Liu, X. & Duyn, J. H. Time-varying functional network information extracted from brief instances of spontaneous brain activity. Proc. Natl Acad. Sci. USA 110, 4392–4397 (2013).

    CAS  PubMed  Google Scholar 

  61. 61

    Calhoun, V. D., Miller, R., Pearlson, G. & Adalı, T. The chronnectome: time-varying connectivity networks as the next frontier in fMRI data discovery. Neuron 84, 262–274 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62

    Gonzalez-Castillo, J. et al. Tracking ongoing cognition in individuals using brief, whole-brain functional connectivity patterns. Proc. Natl Acad. Sci. USA 112, 8762–8767 (2015).

    CAS  PubMed  Google Scholar 

  63. 63

    Siegel, M., Buschman, T. J. & Miller, E. K. Cortical information flow during flexible sensorimotor decisions. Science 348, 1352–1355 (2015). This paper exemplifies how empirical studies can trace complex patterns of information flow in brain networks, for example between the frontal cortex and posterior cortex.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64

    Siegel, M., Donner, T. H. & Engel, A. K. Spectral fingerprints of large-scale neuronal interactions. Nat. Rev. Neurosci. 13, 121–134 (2012).

    CAS  PubMed  Google Scholar 

  65. 65

    Lawrence, S. J. D., Formisano, E., Muckli, L. & de Lange, F. P. Laminar fMRI: applications for cognitive neuroscience. Neuroimage http://dx.doi.org/10.1016/j.neuroimage.2017.07.004 (2017).

  66. 66

    Honey, C. J. et al. Predicting human resting-state functional connectivity from structural connectivity. Proc. Natl Acad. Sci. USA 106, 2035–2040 (2009).

    CAS  PubMed  Google Scholar 

  67. 67

    Rubinov, M. & Sporns, O. Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52, 1059–1069 (2010).

    PubMed  Google Scholar 

  68. 68

    Zalesky, A., Fornito, A. & Bullmore, E. On the use of correlation as a measure of network connectivity. Neuroimage 60, 2096–2106 (2012).

    PubMed  Google Scholar 

  69. 69

    Adachi, Y. et al. Functional connectivity between anatomically unconnected areas is shaped by collective network-level effects in the macaque cortex. Cereb. Cortex 22, 1586–1592 (2012).

    PubMed  Google Scholar 

  70. 70

    Mitra, A. & Raichle, M. E. How networks communicate: propagation patterns in spontaneous brain activity. Phil. Trans. R. Soc. B 371, 20150546 (2016).

    PubMed  Google Scholar 

  71. 71

    Ding, M., Chen, Y. & Bressler, S. L. in Handbook of Time Series Analysis (eds Schelter, B., Winterhalder, M. & Timmer, J.) 437–460 (Wiley, 2006).

    Google Scholar 

  72. 72

    Vicente, R., Wibral, M., Lindner, M. & Pipa, G. Transfer entropy — a model-free measure of effective connectivity for the neurosciences. J. Comput. Neurosci. 30, 45–67 (2010).

    PubMed  PubMed Central  Google Scholar 

  73. 73

    Lobier, M., Siebenhühner, F., Palva, S. & Palva, J. M. Phase transfer entropy: a novel phase-based measure for directed connectivity in networks coupled by oscillatory interactions. Neuroimage 85, 853–872 (2014).

    PubMed  Google Scholar 

  74. 74

    Bastos, A. M. & Schoffelen, J.-M. A. A tutorial review of functional connectivity analysis methods and their interpretational pitfalls. Front. Syst. Neurosci. 9, 175 (2015).

    PubMed  Google Scholar 

  75. 75

    Akam, T. & Kullmann, D. M. Oscillatory multiplexing of population codes for selective communication in the mammalian brain. Nat. Rev. Neurosci. 15, 111–122 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76

    Helfrich, R. F. & Knight, R. T. Oscillatory dynamics of prefrontal cognitive control. Trends Cogn. Sci. 20, 916–930 (2016).

    PubMed  PubMed Central  Google Scholar 

  77. 77

    Hillebrand, A. et al. Direction of information flow in large-scale resting-state networks is frequency-dependent. Proc. Natl Acad. Sci. USA 113, 3867–3872 (2016).

    CAS  PubMed  Google Scholar 

  78. 78

    Griffa, A. et al. Transient networks of spatio-temporal connectivity map communication pathways in brain functional systems. Neuroimage 155, 490–502 (2017). This novel multilayer-network model captures the propagation of functional activity through the underlying anatomical structure.

    PubMed  Google Scholar 

  79. 79

    Latora, V. & Marchiori, M. Efficient behavior of small-world networks. Phys. Rev. Lett. 87, 198701 (2001).

    CAS  PubMed  Google Scholar 

  80. 80

    Borgatti, S. P. Centrality and network flow. Soc. Networks 27, 55–71 (2005).

    Google Scholar 

  81. 81

    Pavlovic, D. M., Vértes, P. E., Bullmore, E. T., Schafer, W. R. & Nichols, T. E. Stochastic blockmodeling of the modules and core of the Caenorhabditis elegans connectome. PLoS ONE 9, e97584 (2014).

    PubMed  PubMed Central  Google Scholar 

  82. 82

    Dumoulin, S. O. in Biological Magnetic Resonance (ed. Berliner, L.) 429–471 (Springer, 2015).

    Google Scholar 

  83. 83

    Wertz, A. et al. Single-cell-initiated monosynaptic tracing reveals layer-specific cortical network modules. Science 349, 70–74 (2015).

    CAS  PubMed  Google Scholar 

  84. 84

    Lee, W.-C. A. et al. Anatomy and function of an excitatory network in the visual cortex. Nature 532, 370–374 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85

    Kennedy, H., Van Essen, D. C. & Christen, Y. (eds) Micro-, Meso- and Macro-Connectomics of the Brain. (Springer, 2017).

    Google Scholar 

  86. 86

    Sporns, O. & Betzel, R. F. Modular brain networks. Annu. Rev. Psychol. 67, 613–640 (2016).

    PubMed  Google Scholar 

  87. 87

    Baum, G. L. et al. Modular segregation of structural brain networks supports the development of executive function in youth. Curr. Biol. 27, 1561–1572 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88

    Nematzadeh, A., Ferrara, E., Flammini, A. & Ahn, Y.-Y. Optimal network modularity for information diffusion. Phys. Rev. Lett. 113, 088701 (2014).

    PubMed  Google Scholar 

  89. 89

    Meunier, D., Lambiotte, R. & Bullmore, E. T. Modular and hierarchically modular organization of brain networks. Front. Neurosci. 4, 200 (2010).

    PubMed  PubMed Central  Google Scholar 

  90. 90

    Zamora-López, G., Zhou, C. & Kurths, J. Graph analysis of cortical networks reveals complex anatomical communication substrate. Chaos 19, 015117 (2009).

    PubMed  Google Scholar 

  91. 91

    Brovelli, A. et al. Dynamic reconfiguration of visuomotor-related functional connectivity networks. J. Neurosci. 37, 839–853 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. 92

    Wang, L., Saalmann, Y. B., Pinsk, M. A., Arcaro, M. J. & Kastner, S. Electrophysiological low-frequency coherence and cross-frequency coupling contribute to BOLD connectivity. Neuron 76, 1010–1020 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. 93

    Betzel, R. F. et al. The modular organization of human anatomical brain networks: accounting for the cost of wiring. Network Neurosci. 1, 42–68 (2017).

    Google Scholar 

  94. 94

    Mišić, B. et al. Network-level structure–function relationships in human neocortex. Cereb. Cortex 26, 3285–3296 (2016).

    PubMed  PubMed Central  Google Scholar 

  95. 95

    Sneppen, K., Trusina, A. & Rosvall, M. Hide-and-seek on complex networks. Europhys. Lett. 69, 853–859 (2005).

    CAS  Google Scholar 

  96. 96

    Rosvall, M., Grönlund, A., Minnhagen, P. & Sneppen, K. Searchability of networks. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72, 046117 (2005).

    CAS  PubMed  Google Scholar 

  97. 97

    Fornito, A. & Bullmore, E. T. Reconciling abnormalities of brain network structure and function in schizophrenia. Curr. Opin. Neurobiol. 30, 44–50 (2015).

    CAS  PubMed  Google Scholar 

  98. 98

    van den Heuvel, M. P. & Sporns, O. Rich-club organization of the human connectome. J. Neurosci. 31, 15775–15786 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. 99

    Cole, M. W., Ito, T., Bassett, D. S. & Schultz, D. H. Activity flow over resting-state networks shapes cognitive task activations. Nat. Neurosci. 19, 1718–1726 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. 100

    Power, J. D., Schlaggar, B. L., Lessov-Schlaggar, C. N. & Petersen, S. E. Evidence for hubs in human functional brain networks. Neuron 79, 798–813 (2013).

    CAS  PubMed  Google Scholar 

  101. 101

    van den Heuvel, M. P., Kahn, R. S., Goni, J. & Sporns, O. High-cost, high-capacity backbone for global brain communication. Proc. Natl Acad. Sci. USA 109, 11372–11377 (2012).

    CAS  PubMed  Google Scholar 

  102. 102

    Suckling, J. et al. A winding road: Alzheimer's disease increases circuitous functional connectivity pathways. Front. Comput. Neurosci. 9, 140 (2015).

    PubMed  PubMed Central  Google Scholar 

  103. 103

    Kaiser, M. Mechanisms of connectome development. Trends Cogn. Sci. 21, 703–717 (2017).

    PubMed  Google Scholar 

  104. 104

    Estrada, E. & Hatano, N. Communicability in complex networks. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77, 036111 (2008).

    PubMed  Google Scholar 

  105. 105

    Crofts, J. J. et al. Network analysis detects changes in the contralesional hemisphere following stroke. Neuroimage 54, 161–169 (2011).

    CAS  PubMed  Google Scholar 

  106. 106

    Grayson, D. S. et al. The rhesus monkey connectome predicts disrupted functional networks resulting from pharmacogenetic inactivation of the amygdala. Neuron 91, 453–466 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. 107

    Zylberberg, A., Slezak, D. F., Roelfsema, P. R., Dehaene, S. & Sigman, M. The brain's router: a cortical network model of serial processing in the primate brain. PLoS Comput. Biol. 6, e1000765 (2010).

    PubMed  PubMed Central  Google Scholar 

  108. 108

    Laughlin, S. B. Energy as a constraint on the coding and processing of sensory information. Curr. Opin. Neurobiol. 11, 475–480 (2001).

    CAS  PubMed  Google Scholar 

  109. 109

    Yin, C.-Y., Wang, B.-H., Wang, W.-X., Zhou, T. & Yang, H.-J. Efficient routing on scale-free networks based on local information. Phys. Lett. A 351, 220–224 (2006).

    CAS  Google Scholar 

  110. 110

    Yang, S.-J. Exploring complex networks by walking on them. Phys. Rev. E 71, 016107 (2005).

    Google Scholar 

  111. 111

    Rosvall, M. & Bergstrom, C. T. Maps of random walks on complex networks reveal community structure. Proc. Natl Acad. Sci. USA 105, 1118–1123 (2008).

    CAS  PubMed  Google Scholar 

  112. 112

    Timme, N. M. et al. High-degree neurons feed cortical computations. PLoS Comput. Biol. 12, e1004858 (2016).

    PubMed  PubMed Central  Google Scholar 

  113. 113

    Snell, J. L., Laurie Snell, J. & Ito, K. Introduction to probability theory. J. Am. Stat. Assoc. 81, 857 (1986).

    Google Scholar 

  114. 114

    Avena-Koenigsberger, A. et al. Using Pareto optimality to explore the topology and dynamics of the human connectome. Phil. Trans. R. Soc. B 369, 20130530 (2014).

    PubMed  Google Scholar 

  115. 115

    Delvenne, J. C., Yaliraki, S. N. & Barahona, M. Stability of graph communities across time scales. Proc. Natl Acad. Sci. USA 107, 12755–12760 (2010).

    CAS  PubMed  Google Scholar 

  116. 116

    Betzel, R. F. et al. Multi-scale community organization of the human structural connectome and its relationship with resting-state functional connectivity. Network Sci. 1, 353–373 (2013).

    Google Scholar 

  117. 117

    van den Heuvel, M. P. & Sporns, O. Network hubs in the human brain. Trends Cogn. Sci. 17, 683–696 (2013).

    PubMed  Google Scholar 

  118. 118

    Spreng, R. N. et al. Intrinsic architecture underlying the relations among the default, dorsal attention, and frontoparietal control networks of the human brain. J. Cogn. Neurosci. 25, 74–86 (2013).

    PubMed  Google Scholar 

  119. 119

    Sepulcre, J., Sabuncu, M. R., Yeo, T. B., Liu, H. & Johnson, K. A. Stepwise connectivity of the modal cortex reveals the multimodal organization of the human brain. J. Neurosci. 32, 10649–10661 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. 120

    Braga, R. M., Sharp, D. J., Leeson, C., Wise, R. J. S. & Leech, R. Echoes of the brain within default mode, association, and heteromodal cortices. J. Neurosci. 33, 14031–14039 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. 121

    Bacik, K. A., Schaub, M. T., Beguerisse-Díaz, M., Billeh, Y. N. & Barahona, M. Flow-based network analysis of the Caenorhabditis elegans connectome. PLoS Comput. Biol. 12, e1005055 (2016).

    PubMed  PubMed Central  Google Scholar 

  122. 122

    Galán, R. F. On how network architecture determines the dominant patterns of spontaneous neural activity. PLoS ONE e2148 (2008).

    PubMed  PubMed Central  Google Scholar 

  123. 123

    Mišić, B., Goñi, J., Betzel, R. F., Sporns, O. & McIntosh, A. R. A network convergence zone in the hippocampus. PLoS Comput. Biol. 10, e1003982 (2014).

    PubMed  PubMed Central  Google Scholar 

  124. 124

    Kaiser, M. & Hilgetag, C. C. Edge vulnerability in neural and metabolic networks. Biol. Cybern. 90, 311–317 (2004).

    PubMed  Google Scholar 

  125. 125

    O'Dea, R., Crofts, J. J. & Kaiser, M. Spreading dynamics on spatially constrained complex brain networks. J. R. Soc. Interface 10, 20130016 (2013).

    PubMed  PubMed Central  Google Scholar 

  126. 126

    Mišić, B. et al. Cooperative and competitive spreading dynamics on the human connectome. Neuron 86, 1518–1529 (2015). This study applies a spreading model to investigate spreading dynamics in human brain networks. Cascades emerging from the spreading dynamics converge on polysensory associative areas, highlighting the integrative capacity of the topology of the network.

    PubMed  Google Scholar 

  127. 127

    Worrell, J. C., Rumschlag, J., Betzel, R. F., Sporns, O. & Mišić, B. Optimized connectome architecture for sensory-motor integration. Network Neurosci. http://dx.doi.org/10.1162/NETN_a_00022 (2017).

  128. 128

    Raj, A., Kuceyeski, A. & Weiner, M. A network diffusion model of disease progression in dementia. Neuron 73, 1204–1215 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. 129

    Stam, C. J. et al. The relation between structural and functional connectivity patterns in complex brain networks. Int. J. Psychophysiol. 103, 149–160 (2016).

    CAS  PubMed  Google Scholar 

  130. 130

    Gollo, L. L., Copelli, M. & Roberts, J. A. Diversity improves performance in excitable networks. PeerJ 4, e1912 (2016).

    PubMed  PubMed Central  Google Scholar 

  131. 131

    Beggs, J. M. & Plenz, D. Neuronal avalanches in neocortical circuits. J. Neurosci. 23, 11167–11177 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. 132

    Deco, G., Jirsa, V. K., Robinson, P. A., Breakspear, M. & Friston, K. The dynamic brain: from spiking neurons to neural masses and cortical fields. PLoS Comput. Biol. 4, e1000092 (2008).

    PubMed  PubMed Central  Google Scholar 

  133. 133

    Ghosh, A., Rho, Y., McIntosh, A. R., Kötter, R. & Jirsa, V. K. Cortical network dynamics with time delays reveals functional connectivity in the resting brain. Cogn. Neurodyn. 2, 115–120 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. 134

    Deco, G., Jirsa, V., McIntosh, A. R., Sporns, O. & Kötter, R. Key role of coupling, delay, and noise in resting brain fluctuations. Proc. Natl Acad. Sci. USA 106, 10302–10307 (2009).

    CAS  PubMed  Google Scholar 

  135. 135

    Freyer, F. et al. Biophysical mechanisms of multistability in resting-state cortical rhythms. J. Neurosci. 31, 6353–6361 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. 136

    Deco, G. & Kringelbach, M. Metastability and coherence: extending the communication through coherence hypothesis using a whole-brain computational perspective. Trends Neurosci. 39, 432 (2016).

    CAS  PubMed  Google Scholar 

  137. 137

    Ni, J. et al. Gamma-rhythmic gain modulation. Neuron 92, 240–251 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. 138

    Vazquez-Rodriguez, B. et al. Stochastic resonance at criticality in a network model of the human cortex. Sci. Rep. 7, 13020 (2017).

    PubMed  PubMed Central  Google Scholar 

  139. 139

    Ghosh, A., Rho, Y., McIntosh, A. R., Kötter, R. & Jirsa, V. K. Noise during rest enables the exploration of the brain's dynamic repertoire. PLoS Comput. Biol. 4, e1000196 (2008).

    PubMed  PubMed Central  Google Scholar 

  140. 140

    Faisal, A. A., Aldo Faisal, A., Selen, L. P. J. & Wolpert, D. M. Noise in the nervous system. Nat. Rev. Neurosci. 9, 292–303 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. 141

    Palmigiano, A., Geisel, T., Wolf, F. & Battaglia, D. Flexible information routing by transient synchrony. Nat. Neurosci. 20, 1014–1022 (2017).

    CAS  PubMed  Google Scholar 

  142. 142

    Bijsterbosch, J., Smith, S. M. & Beckmann, C. F. (eds) An Introduction to Resting State FMRI Functional Connectivity. (Oxford Univ. Press, 2017).

    Google Scholar 

  143. 143

    Englot, D. J. et al. Functional connectivity disturbances of the ascending reticular activating system in temporal lobe epilepsy. J. Neurol. Neurosurg. Psychiatry 88, 925–932 (2017).

    PubMed  PubMed Central  Google Scholar 

  144. 144

    Lee, D. et al. Analysis of structure-function network decoupling in the brain systems of spastic diplegic cerebral palsy. Hum. Brain Mapp. 38, 5292–5306 (2017).

    PubMed  Google Scholar 

  145. 145

    Yaesoubi, M., Allen, E. A., Miller, R. L. & Calhoun, V. D. Dynamic coherence analysis of resting fMRI data to jointly capture state-based phase, frequency, and time-domain information. Neuroimage 120, 133–142 (2015).

    PubMed  PubMed Central  Google Scholar 

  146. 146

    Seth, A. K., Barrett, A. B. & Barnett, L. Granger causality analysis in neuroscience and neuroimaging. J. Neurosci. 35, 3293–3297 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. 147

    Mill, R. D., Bagic, A., Bostan, A., Schneider, W. & Cole, M. W. Empirical validation of directed functional connectivity. Neuroimage 146, 275–287 (2017).

    PubMed  Google Scholar 

  148. 148

    Friston, K. J., Harrison, L. & Penny, W. Dynamic causal modelling. Neuroimage 19, 1273–1302 (2003).

    CAS  PubMed  Google Scholar 

  149. 149

    Razi, A. et al. Large-scale DCMs for resting state fMRI. Network Neurosci. 1, 222–241 (2017).

    Google Scholar 

  150. 150

    Seghier, M. L. & Friston, K. J. Network discovery with large DCMs. Neuroimage 68, 181–191 (2013).

    PubMed  PubMed Central  Google Scholar 

  151. 151

    Khambhati, A. N., Sizemore, A. E., Betzel, R. F. & Bassett, D. S. Modeling and interpreting mesoscale network dynamics. Neuroimage http://dx.doi.org/10.1016/j.neuroimage.2017.06.029 (2017).

  152. 152

    Hutchison, R. M. et al. Dynamic functional connectivity: promise, issues, and interpretations. Neuroimage 80, 360–378 (2013).

    PubMed  Google Scholar 

  153. 153

    Gonzalez-Castillo, J. & Bandettini, P. A. Task-based dynamic functional connectivity: recent findings and open questions. Neuroimage http://dx.doi.org/10.1016/j.neuroimage.2017.08.006 (2017).

  154. 154

    Bassett, D. S., Yang, M., Wymbs, N. F. & Grafton, S. T. Learning-induced autonomy of sensorimotor systems. Nat. Neurosci. 18, 744–751 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. 155

    Cole, M. W. et al. Multi-task connectivity reveals flexible hubs for adaptive task control. Nat. Neurosci. 16, 1348–1355 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. 156

    Krienen, F. M., Yeo, B. T. T. & Buckner, R. L. Reconfigurable task-dependent functional coupling modes cluster around a core functional architecture. Phil. Trans. R. Soc. B. Biol. Sci. 369, 20130526 (2014).

    Google Scholar 

  157. 157

    Bassett, D. S. et al. Task-based core-periphery organization of human brain dynamics. PLoS Comput. Biol. 9, e1003171 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. 158

    Cole, M. W., Bassett, D. S., Power, J. D., Braver, T. S. & Petersen, S. E. Intrinsic and task-evoked network architectures of the human brain. Neuron 83, 238–251 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. 159

    Braun, U. et al. Dynamic reconfiguration of frontal brain networks during executive cognition in humans. Proc. Natl Acad. Sci. USA 112, 11678–11683 (2015).

    CAS  PubMed  Google Scholar 

  160. 160

    Varela, F., Lachaux, J. P., Rodriguez, E. & Martinerie, J. The brainweb: phase synchronization and large-scale integration. Nat. Rev. Neurosci. 2, 229–239 (2001).

    CAS  PubMed  Google Scholar 

  161. 161

    Fries, P. A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn. Sci. 9, 474–480 (2005).

    PubMed  Google Scholar 

  162. 162

    Kirst, C., Timme, M. & Battaglia, D. Dynamic information routing in complex networks. Nat. Commun. 7, 11061 (2016). This study presents a mechanism that generates flexible information-routing patterns on top of the collective dynamics of the network.

    CAS  PubMed  PubMed Central  Google Scholar 

  163. 163

    Gollo, L. L., Roberts, J. A. & Cocchi, L. Mapping how local perturbations influence systems-level brain dynamics. Neuroimage 160, 97–112 (2017). This study of local perturbation effects on human brain networks highlights the importance of the core–periphery structure of the underlying anatomy.

    PubMed  Google Scholar 

  164. 164

    Dayan, E., Censor, N., Buch, E. R., Sandrini, M. & Cohen, L. G. Noninvasive brain stimulation: from physiology to network dynamics and back. Nat. Neurosci. 16, 838–844 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. 165

    Matsumoto, R. et al. Functional connectivity in the human language system: a cortico-cortical evoked potential study. Brain 127, 2316–2330 (2004).

    PubMed  Google Scholar 

  166. 166

    Friston, K. The free-energy principle: a rough guide to the brain? Trends Cogn. Sci. 13, 293–301 (2009).

    PubMed  Google Scholar 

  167. 167

    Friston, K. J., Parr, T. & de Vries, B. The graphical brain: belief propagation and active inference. Network Neurosci. http://dx.doi.org/10.1162netn_a_00018 (2017).

  168. 168

    Voytek, B. & Knight, R. T. Dynamic network communication as a unifying neural basis for cognition, development, aging, and disease. Biol. Psychiatry 77, 1089–1097 (2015).

    PubMed  PubMed Central  Google Scholar 

  169. 169

    Cocchi, L. et al. A hierarchy of timescales explains distinct effects of local inhibition of primary visual cortex and frontal eye fields. eLife 5, e15252 (2016).

    PubMed  PubMed Central  Google Scholar 

  170. 170

    Ramon y Cajal, S. Histology of the Nervous System of Man and Vertebrates. (Oxford Univ. Press, 1995).

    Google Scholar 

  171. 171

    Borst, A. & Theunissen, F. E. Information theory and neural coding. Nat. Neurosci. 2, 947–957 (1999).

    CAS  PubMed  Google Scholar 

  172. 172

    Balasubramanian, V. & Berry, M. A test of metabolically efficient coding in the retina. Network Comput. Neural Systems 13, 531–552 (2002).

    Google Scholar 

  173. 173

    Gulyás, A., Bíró, J. J., Kőrösi, A., Rétvári, G. & Krioukov, D. Navigable networks as Nash equilibria of navigation games. Nat. Commun. 6, 7651 (2015).

    PubMed  PubMed Central  Google Scholar 

  174. 174

    Barthélemy, M. Spatial networks. Phys. Rep. 499, 1–101 (2011).

    Google Scholar 

  175. 175

    Simas, T. & Rocha, L. M. Distance closures on complex networks. Network Sci. 3, 227–268 (2015).

    Google Scholar 

  176. 176

    Leong, A. T. L. et al. Long-range projections coordinate distributed brain-wide neural activity with a specific spatiotemporal profile. Proc. Natl Acad. Sci. USA 113, E8306–E8315 (2016). This study demonstrates that long-range interactions in large-scale brain networks are governed by low-frequency activity.

    CAS  PubMed  Google Scholar 

  177. 177

    Simas, T. et al. Semi-metric topology of the human connectome: sensitivity and specificity to autism and major depressive disorder. PLoS ONE 10, e0136388 (2015).

    PubMed  PubMed Central  Google Scholar 

  178. 178

    Avena-Koenigsberger, A., Goñi, J., Solé, R. & Sporns, O. Network morphospace. J. R. Soc. Interface 12, 20140881 (2015). Combining concepts from evolutionary biology and network science, this article lays out the steps to conduct a network morphospace analysis, highlighting the potential of this framework to uncover the design rules and constraints that drive and shape the topology of a network.

    PubMed  PubMed Central  Google Scholar 

  179. 179

    Solé, R. V., Ferrer-Cancho, R., Montoya, J. M. & Valverde, S. Selection, tinkering, and emergence in complex networks. Complexity 8, 20–33 (2002).

    Google Scholar 

  180. 180

    Clune, J., Mouret, J.-B. & Lipson, H. The evolutionary origins of modularity. Proc. Biol. Sci. 280, 20122863 (2013).

    PubMed  PubMed Central  Google Scholar 

  181. 181

    Churchland, P. S. & Sejnowski, T. J. The Computational Brain. (MIT Press,1994).

    Google Scholar 

  182. 182

    Fodor, J. A. & Pylyshyn, Z. W. Connectionism and cognitive architecture: a critical analysis. Cognition 28, 3–71 (1988).

    CAS  PubMed  Google Scholar 

  183. 183

    Marr, D., Ullman, S. & Poggio, T. A. Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. (MIT Press, 2010).

    Google Scholar 

  184. 184

    Matthei, E. H. & Fodor, J. A. The modularity of mind: an essay on faculty psychology. Language 60, 976 (1984).

    Google Scholar 

  185. 185

    Bassett, D. S. & Mattar, M. G. A. Network neuroscience of human learning: potential to inform quantitative theories of brain and behavior. Trends Cogn. Sci. 21, 250–264 (2017).

    PubMed  PubMed Central  Google Scholar 

  186. 186

    Shenhav, A. et al. Toward a rational and mechanistic account of mental effort. Annu. Rev. Neurosci. 40, 99–124 (2017).

    CAS  PubMed  Google Scholar 

  187. 187

    Schroeter, M. S., Charlesworth, P., Kitzbichler, M. G., Paulsen, O. & Bullmore, E. T. Emergence of rich-club topology and coordinated dynamics in development of hippocampal functional networks in vitro. J. Neurosci. 35, 5459–5470 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. 188

    Nigam, S. et al. Rich-club organization in effective connectivity among cortical neurons. J. Neurosci. 36, 670–684 (2016). This is a study of the network topology of directed functional interactions between neurons recorded at high temporal resolution.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge insightful discussions with R. F. Betzel and J. Goñi. O.S. acknowledges support from the Indiana Clinical Translational Sciences Institute (NIH UL1TR0011808), the James S. McDonnell Foundation (220020387), the National Science Foundation (1636892) and the US National Institutes of Health (R01-AT009036, R01-B022574 and P30-AG010133). B.M. acknowledges support from the Natural Sciences and Engineering Research Council of Canada (NSERC Discovery Grant RGPIN #017-04265) and from the Fonds de recherche du Quebec - Santé.

Author information

Affiliations

Authors

Contributions

The authors all researched data for the article, provided a substantial contribution to discussion of the content, wrote the article and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Olaf Sporns.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Random walk

A stochastic process that describes a succession of random steps taken on a network.

Network topology

The patterns of connectivity of a network.

Neural elements

Unit elements of a neural network. The unit is defined by the spatial scale. Neural elements can represent, for example, a single synapse, a neuron, a neuronal population or an entire brain region.

Adjacency matrix

A mathematical representation of a network as a matrix. Elements of the matrix indicate whether two nodes are connected or not.

Resilience

A network's ability to adapt and/or recover from structural failures.

Betweenness centrality

A nodal measure of influence determined by the proportion of shortest paths that traverse a node.

Routing

The process of sending a message or signal through a determined path.

Fibre tracts

A bundle of axons connecting two brain regions.

Search information

The amount of information needed to discover a path in a network.

Edge weight

A measure of the strength of the relationship between two connected nodes.

Connection density

The fraction of connections present in a network, or a subsystem of a network, with respect to the maximum number of possible connections.

Morphospace

A space in which possible, impossible and real-world network architectures can be mapped.

Hubs

Highly connected nodes.

Path transitivity

The frequency of detours comprising two edges (that is, of length 2) that are available along a path.

Core–periphery

A tendency for a network to contain a densely interconnected central component.

Modularity

Propensity for nodes to form internally densely connected clusters.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Avena-Koenigsberger, A., Misic, B. & Sporns, O. Communication dynamics in complex brain networks. Nat Rev Neurosci 19, 17–33 (2018). https://doi.org/10.1038/nrn.2017.149

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing