Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The nano-architecture of the axonal cytoskeleton

A Corrigendum to this article was published on 16 November 2017

This article has been updated

Key Points

  • The unique morphology and function of axons are sustained by the organization of the key elements of their cytoskeleton: microtubules, neurofilaments and actin.

  • Classical methods (electron microscopy and biochemistry) have been critical in identifying the morphology and composition of axonal cytostructures.

  • More recently, super-resolution microscopy, live-cell imaging and other new optical methods have been applied to the study of the axonal cytoskeleton.

  • This has led to major discoveries, in particular the existence of axonal actin structures such as rings, hot spots, trails and patches.

  • This Review summarizes the latest advances in our understanding of the axonal cytoskeleton and discusses key open questions in this field, such as the functions of newly discovered structures and the interplay between different cytoskeletal components.

Abstract

The corporeal beauty of the neuronal cytoskeleton has captured the imagination of generations of scientists. One of the easiest cellular structures to visualize by light microscopy, its existence has been known for well over 100 years, yet we have only recently begun to fully appreciate its intricacy and diversity. Recent studies combining new probes with super-resolution microscopy and live imaging have revealed surprising details about the axonal cytoskeleton and, in particular, have discovered previously unknown actin-based structures. Along with traditional electron microscopy, these newer techniques offer a nanoscale view of the axonal cytoskeleton, which is important for our understanding of neuronal form and function, and lay the foundation for future studies. In this Review, we summarize existing concepts in the field and highlight contemporary discoveries that have fundamentally altered our perception of the axonal cytoskeleton.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ultrastructure of the axon shaft.
Figure 2: The cytoskeleton of the axon shaft.

Similar content being viewed by others

Change history

  • 16 November 2017

    In Box 1 of this article, the sentence "Actin filaments are approximately 8 nm in diameter, are composed of heterodimers of α-actin and β-actin (known as G-actin) and require ATP for polymerization" should have read "Actin filaments are approximately 8 nm in diameter, are composed of actin monomers (known as G-actin) and require ATP for polymerization". The article has been corrected in the online version.

References

  1. Wilt, B. A. et al. Advances in light microscopy for neuroscience. Annu. Rev. Neurosci. 32, 435–506 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Maglione, M. & Sigrist, S. J. Seeing the forest tree by tree: super-resolution light microscopy meets the neurosciences. Nat. Neurosci. 16, 790–797 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Pannese, E. Neurocytology. (Springer, 2015).

    Book  Google Scholar 

  4. Wuerker, R. B. & Kirkpatrick, J. B. Neuronal microtubules, neurofilaments, and microfilaments. Int. Rev. Cytol. 33, 45–75 (1972).

    Article  CAS  PubMed  Google Scholar 

  5. Frixione, E. The cytoskeleton of nerve cells in historic perspective. IBRO History of Neuroscience http://ibro.info/wp-content/uploads/2012/12/The-Cytoskeleton-of-Nerve-Cells-in-Historic-Perspective.pdf (2006).

  6. Hirokawa, N. Cross-linker system between neurofilaments, microtubules, and membranous organelles in frog axons revealed by the quick-freeze, deep-etching method. J. Cell Biol. 94, 129–142 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schnapp, B. J. & Reese, T. S. Cytoplasmic structure in rapid-frozen axons. J. Cell Biol. 94, 667–669 (1982). Using quick-freeze, deep-etching EM, references 6 and 7 provide the pictures that shaped our thinking about the axonal cytoskeleton for the following decades.

    Article  CAS  PubMed  Google Scholar 

  8. Shelanski, M. L. & Taylor, E. W. Isolation of a protein subunit from microtubules. J. Cell Biol. 34, 549–554 (1967).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Borisy, G. G. & Taylor, E. W. The mechanism of action of colchicine. Binding of colchincine-3H to cellular protein. J. Cell Biol. 34, 525–533 (1967).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ishikawa, H., Bischoff, R. & Holtzer, H. Formation of arrowhead complexes with heavy meromyosin in a variety of cell types. J. Cell Biol. 43, 312–328 (1969).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Leterrier, C. The axon initial segment, 50 years later: a nexus for neuronal organization and function. Curr. Top. Membr. 77, 185–233 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Kohno, K. Neurotubules contained within the dendrite and axon of Purkinje cell of frog. Bull. Tokyo Dent. Univ. 11, 411–442 (1964).

    Google Scholar 

  13. Palay, S., Sotelo, C., Peters, A. & Orkand, P. The axon hillock and the initial segment. J. Cell Biol. 38, 193–201 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Peters, A., Proskauer, C. C. & Kaiserman-Abramof, I. R. The small pyramidal neuron of the rat cerebral cortex. The axon hillock and initial segment. J. Cell Biol. 39, 604–619 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hirokawa, N. & Takemura, R. Molecular motors and mechanisms of directional transport in neurons. Nat. Rev. Neurosci. 6, 201–214 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Song, A.-H. et al. A selective filter for cytoplasmic transport at the axon initial segment. Cell 136, 1148–1160 (2009). This study identifies an actin-based sorting of vesicular trafficking at the axon entrance whose mechanism is still debated today.

    Article  CAS  PubMed  Google Scholar 

  17. Chan-Palay, V. The tripartite structure of the undercoat in initial segments of Purkinje cell axons. Z. Anat. Entwicklungsgesch 139, 1–10 (1972).

    Article  CAS  PubMed  Google Scholar 

  18. Rasband, M. N. The axon initial segment and the maintenance of neuronal polarity. Nat. Rev. Neurosci. 11, 552–562 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Kordeli, E., Lambert, S. & Bennett, V. AnkyrinG. A new ankyrin gene with neural-specific isoforms localized at the axonal initial segment and node of Ranvier. J. Biol. Chem. 270, 2352–2359 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Zhou, D. et al. AnkyrinG is required for clustering of voltage-gated Na channels at axon initial segments and for normal action potential firing. J. Cell Biol. 143, 1295–1304 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Berghs, S. et al. βIV spectrin, a new spectrin localized at axon initial segments and nodes of ranvier in the central and peripheral nervous system. J. Cell Biol. 151, 985–1002 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Komada, M. & Soriano, P. βIV-spectrin regulates sodium channel clustering through ankyrin-G at axon initial segments and nodes of Ranvier. J. Cell Biol. 156, 337–348 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Winckler, B., Forscher, P. & Mellman, I. A diffusion barrier maintains distribution of membrane proteins in polarized neurons. Nature 397, 698–701 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Nakada, C. et al. Accumulation of anchored proteins forms membrane diffusion barriers during neuronal polarization. Nat. Cell Biol. 5, 626–632 (2003). This article uses state-of-the-art single-particle tracking to demonstrate lipid immobilization at the AIS (in addition to protein immobilization shown in reference 23) and to probe the molecular basis of this diffusion barrier.

    Article  CAS  PubMed  Google Scholar 

  25. Hoffman, P. N. & Lasek, R. J. The slow component of axonal transport. Identification of major structural polypeptides of the axon and their generality among mammalian neurons. J. Cell Biol. 66, 351–366 (1975).

    Article  CAS  PubMed  Google Scholar 

  26. Black, M. M. & Lasek, R. J. Slow components of axonal transport: two cytoskeletal networks. J. Cell Biol. 86, 616–623 (1980).

    Article  CAS  PubMed  Google Scholar 

  27. Willard, M., Wiseman, M., Levine, J. & Skene, P. Axonal transport of actin in rabbit retinal ganglion cells. J. Cell Biol. 81, 581–591 (1979).

    Article  CAS  PubMed  Google Scholar 

  28. Galbraith, J. A. & Gallant, P. E. Axonal transport of tubulin and actin. J. Neurocytol. 29, 889–911 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Roy, S. Seeing the unseen: the hidden world of slow axonal transport. Neuroscientist 20, 71–81 (2014).

    Article  PubMed  Google Scholar 

  30. Wang, Y., Shyy, J. Y.-J. & Chien, S. Fluorescence proteins, live-cell imaging, and mechanobiology: seeing is believing. Annu. Rev. Biomed. Eng. 10, 1–38 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Kuczmarski, E. R. & Rosenbaum, J. L. Studies on the organization and localization of actin and myosin in neurons. J. Cell Biol. 80, 356–371 (1979).

    Article  CAS  PubMed  Google Scholar 

  32. Alonso, G., Gabrion, J., Travers, E. & Assenmacher, I. Ultrastructural organization of actin filaments in neurosecretory axons of the rat. Cell Tissue Res. 214, 323–341 (1981).

    Article  CAS  PubMed  Google Scholar 

  33. Nagele, R. G., Kosciuk, M. C., Hunter, E. T., Bush, K. T. & Lee, H. Immunoelectron microscopic localization of actin in neurites of cultured embryonic chick dorsal root ganglia: actin is a component of granular, microtubule-associated crossbridges. Brain Res. 474, 279–286 (1988).

    Article  CAS  PubMed  Google Scholar 

  34. Letourneau, P. C. Differences in the organization of actin in the growth cones compared with the neurites of cultured neurons from chick embryos. J. Cell Biol. 97, 963–973 (1983).

    Article  CAS  PubMed  Google Scholar 

  35. Letourneau, P. C. Actin in axons: stable scaffolds and dynamic filaments. Results Probl. Cell Differ. 48, 65–90 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Wang, L., Ho, C. L., Sun, D., Liem, R. K. & Brown, A. Rapid movement of axonal neurofilaments interrupted by prolonged pauses. Nat. Cell Biol. 2, 137–141 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Roy, S. et al. Neurofilaments are transported rapidly but intermittently in axons: implications for slow axonal transport. J. Neurosci. 20, 6849–6861 (2000). References 36 and 37 show rapid, intermittent movements of neurofilaments along axons, establishing the 'stop and go' model of neurofilament transport.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Stepanova, T. et al. Visualization of microtubule growth in cultured neurons via the use of EB3-GFP (end-binding protein 3-green fluorescent protein). J. Neurosci. 23, 2655–2664 (2003). This report describes pioneering the use of fluorescent EBs to detect the orientation of dynamic axonal microtubules, which is refined and extended in reference 39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yau, K. W. et al. Dendrites in vitro and in vivo contain microtubules of opposite polarity and axon formation correlates with uniform plus-end-out microtubule orientation. J. Neurosci. 36, 1071–1085 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Conde, C. & Caceres, A. Microtubule assembly, organization and dynamics in axons and dendrites. Nat. Rev. Neurosci. 10, 319–332 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Heidemann, S. R., Landers, J. M. & Hamborg, M. A. Polarity orientation of axonal microtubules. J. Cell Biol. 91, 661–665 (1981).

    Article  CAS  PubMed  Google Scholar 

  42. Baas, P. W., Deitch, J. S., Black, M. M. & Banker, G. A. Polarity orientation of microtubules in hippocampal neurons: uniformity in the axon and nonuniformity in the dendrite. Proc. Natl Acad. Sci. USA 85, 8335–8339 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Baas, P. W. & Lin, S. Hooks and comets: the story of microtubule polarity orientation in the neuron. Dev. Neurobiol. 71, 403–418 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. van de Willige, D., Hoogenraad, C. C. & Akhmanova, A. Microtubule plus-end tracking proteins in neuronal development. Cell. Mol. Life Sci. 73, 2053–2077 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kleele, T. et al. An assay to image neuronal microtubule dynamics in mice. Nat. Commun. 5, 4827 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Waxman, S. G. & Kocsis, J. D. The Axon. (Oxford Univ. Press, 1995).

    Book  Google Scholar 

  47. Peters, A. & Vaughn, J. E. Microtubules and filaments in the axons and astrocytes of early postnatal rat optic nerves. J. Cell Biol. 32, 113–119 (1967).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yu, W. & Baas, P. W. Changes in microtubule number and length during axon differentiation. J. Neurosci. 14, 2818–2829 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bray, D. & Bunge, M. B. Serial analysis of microtubules in cultured rat sensory axons. J. Neurocytol. 10, 589–605 (1981).

    Article  CAS  PubMed  Google Scholar 

  50. Burton, P. R. Microtubules of frog olfactory axons: their length and number/axon. Brain Res. 409, 71–78 (1987).

    Article  CAS  PubMed  Google Scholar 

  51. Burton, P. R. Ultrastructural studies of microtubules and microtubule organizing centers of the vertebrate olfactory neuron. Microsc. Res. Tech. 23, 142–156 (1992).

    Article  CAS  PubMed  Google Scholar 

  52. Tsukita, S. & Ishikawa, H. The cytoskeleton in myelinated axons: serial section study. Biomed. Res. 2, 424–437 (1981).

    Article  Google Scholar 

  53. Yogev, S., Cooper, R., Fetter, R., Horowitz, M. & Shen, K. Microtubule organization determines axonal transport dynamics. Neuron 92, 449–460 (2016). This article uses methods based on fluorescence and live-cell imaging to comprehensively map the organization of axonal microtubules in C. elegans neurons and correlate it to vesicular transport events.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chalfie, M. & Thomson, J. N. Organization of neuronal microtubules in the nematode Caenorhabditis elegans. J. Cell Biol. 82, 278–289 (1979).

    Article  CAS  PubMed  Google Scholar 

  55. Mudrakola, H. V., Zhang, K. & Cui, B. Optically resolving individual microtubules in live axons. Structure 17, 1433–1441 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mikhaylova, M. et al. Resolving bundled microtubules using anti-tubulin nanobodies. Nat. Commun. 6, 7933 (2015). This study demonstrates the need for small probes (nanobodies) in addition to super-resolution microscopy to probe the organization of microtubules within neuronal bundles.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. van Coevorden-Hameete, M. H. et al. Antibodies to TRIM46 are associated with paraneoplastic neurological syndromes. Ann. Clin. Transl Neurol. 4, 680–686 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. van Beuningen, S. F. B. et al. TRIM46 controls neuronal polarity and axon specification by driving the formation of parallel microtubule arrays. Neuron 88, 1208–1226 (2015).

    Article  CAS  PubMed  Google Scholar 

  59. Leterrier, C. & Dargent, B. No Pasaran! Role of the axon initial segment in the regulation of protein transport and the maintenance of axonal identity. Semin. Cell Dev. Biol. 27, 44–51 (2014).

    Article  PubMed  Google Scholar 

  60. Satake, T. et al. MTCL1 plays an essential role in maintaining Purkinje neuron axon initial segment. EMBO J. 36, 1227–1242 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Nakata, T. & Hirokawa, N. Microtubules provide directional cues for polarized axonal transport through interaction with kinesin motor head. J. Cell Biol. 162, 1045–1055 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Nakata, T., Niwa, S., Okada, Y., Perez, F. & Hirokawa, N. Preferential binding of a kinesin-1 motor to GTP-tubulin-rich microtubules underlies polarized vesicle transport. J. Cell Biol. 194, 245–255 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Leterrier, C. et al. End-binding proteins EB3 and EB1 link microtubules to ankyrin G in the axon initial segment. Proc. Natl Acad. Sci. USA 108, 8826–8831 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Freal, A. et al. Cooperative interactions between 480 kDa ankyrin-G and EB proteins assemble the axon initial segment. J. Neurosci. 36, 4421–4433 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Leterrier, C. et al. Nanoscale architecture of the axon initial segment reveals an organized and robust scaffold. Cell Rep. 13, 2781–2793 (2015). This article uses STORM to determine the architecture of the axon initial segment scaffold, highlighting the capability of super-resolution microscopy to delineate molecular complexes in neurons.

    Article  CAS  PubMed  Google Scholar 

  66. Yu, W., Centonze, V. E., Ahmad, F. J. & Baas, P. W. Microtubule nucleation and release from the neuronal centrosome. J. Cell Biol. 122, 349–359 (1993).

    Article  CAS  PubMed  Google Scholar 

  67. Ahmad, F. J., Joshi, H. C., Centonze, V. E. & Baas, P. W. Inhibition of microtubule nucleation at the neuronal centrosome compromises axon growth. Neuron 12, 271–280 (1994).

    Article  CAS  PubMed  Google Scholar 

  68. Baas, P. W. Microtubules and neuronal polarity: lessons from mitosis. Neuron 22, 23–31 (1999).

    Article  CAS  PubMed  Google Scholar 

  69. Stiess, M. et al. Axon extension occurs independently of centrosomal microtubule nucleation. Science 327, 704–707 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. Nguyen, M. M., Stone, M. C. & Rolls, M. M. Microtubules are organized independently of the centrosome in Drosophila neurons. Neural Dev. 6, 38 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Yonezawa, S., Shigematsu, M., Hirata, K. & Hayashi, K. Loss of γ-tubulin, GCP-WD/NEDD1 and CDK5RAP2 from the centrosome of neurons in developing mouse cerebral and cerebellar cortex. Acta Histochem. Cytochem. 48, 145–152 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yau, K. W. et al. Microtubule minus-end binding protein CAMSAP2 controls axon specification and dendrite development. Neuron 82, 1058–1073 (2014).

    Article  CAS  PubMed  Google Scholar 

  73. Kuijpers, M. & Hoogenraad, C. C. Centrosomes, microtubules and neuronal development. Mol. Cell. Neurosci. 48, 349–358 (2011).

    Article  CAS  PubMed  Google Scholar 

  74. Ori-McKenney, K. M., Jan, L. Y. & Jan, Y.-N. Golgi outposts shape dendrite morphology by functioning as sites of acentrosomal microtubule nucleation in neurons. Neuron 76, 921–930 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Delandre, C., Amikura, R. & Moore, A. W. Microtubule nucleation and organization in dendrites. Cell Cycle 15, 1685–1692 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sánchez-Huertas, C. et al. Non-centrosomal nucleation mediated by augmin organizes microtubules in post-mitotic neurons and controls axonal microtubule polarity. Nat. Commun. 7, 12187 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kapitein, L. C. & Hoogenraad, C. C. Building the neuronal microtubule cytoskeleton. Neuron 87, 492–506 (2015).

    Article  CAS  PubMed  Google Scholar 

  78. Howard, J. & Hyman, A. A. Growth, fluctuation and switching at microtubule plus ends. Nat. Rev. Mol. Cell Biol. 10, 569–574 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Akhmanova, A. & Hoogenraad, C. C. Microtubule minus-end-targeting proteins. Curr. Biol. 25, R162–R171 (2015).

    Article  CAS  PubMed  Google Scholar 

  80. Wu, J. & Akhmanova, A. Microtubule-organizing centers. Annu. Rev. Cell Dev. Biol. http://dx.doi.org/10.1146/annurev-cellbio-100616-060615 (2017).

  81. Goodwin, S. S. & Vale, R. D. Patronin regulates the microtubule network by protecting microtubule minus ends. Cell 143, 263–274 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Richardson, C. E. et al. PTRN-1, a microtubule minus end-binding CAMSAP homolog, promotes microtubule function in Caenorhabditis elegans neurons. eLife 3, e01498 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Marcette, J. D., Chen, J. J. & Nonet, M. L. The Caenorhabditis elegans microtubule minus-end binding homolog PTRN-1 stabilizes synapses and neurites. eLife 3, e01637 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Baas, P. W., Rao, A. N., Matamoros, A. J. & Leo, L. Stability properties of neuronal microtubules. Cytoskeleton 73, 442–460 (2016).

    Article  CAS  PubMed  Google Scholar 

  85. Baas, P. W., Slaughter, T., Brown, A. & Black, M. M. Microtubule dynamics in axons and dendrites. J. Neurosci. Res. 30, 134–153 (1991).

    Article  CAS  PubMed  Google Scholar 

  86. Baas, P. W. & Black, M. M. Individual microtubules in the axon consist of domains that differ in both composition and stability. J. Cell Biol. 111, 495–509 (1990).

    Article  CAS  PubMed  Google Scholar 

  87. Ahmad, F. J., Pienkowski, T. P. & Baas, P. W. Regional differences in microtubule dynamics in the axon. J. Neurosci. 13, 856–866 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Janke, C. & Bulinski, J. C. Post-translational regulation of the microtubule cytoskeleton: mechanisms and functions. Nat. Rev. Mol. Cell Biol. 12, 773–786 (2011).

    Article  CAS  PubMed  Google Scholar 

  89. Song, Y. et al. Transglutaminase and polyamination of tubulin: posttranslational modification for stabilizing axonal microtubules. Neuron 78, 109–123 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Sirajuddin, M., Rice, L. M. & Vale, R. D. Regulation of microtubule motors by tubulin isotypes and post-translational modifications. Nat. Cell Biol. 16, 335–344 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Janke, C. & Kneussel, M. Tubulin post-translational modifications: encoding functions on the neuronal microtubule cytoskeleton. Trends Neurosci. 33, 362–372 (2010).

    Article  CAS  PubMed  Google Scholar 

  92. Xu, Z. et al. Microtubules acquire resistance from mechanical breakage through intralumenal acetylation. Science 356, 328–332 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hammond, J. W. et al. Posttranslational modifications of tubulin and the polarized transport of kinesin-1 in neurons. Mol. Biol. Cell 21, 572–583 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Konishi, Y. & Setou, M. Tubulin tyrosination navigates the kinesin-1 motor domain to axons. Nat. Neurosci. 12, 559–567 (2009).

    Article  CAS  PubMed  Google Scholar 

  95. Tapia, M., Wandosell, F. & Garrido, J. J. Impaired function of HDAC6 slows down axonal growth and interferes with axon initial segment development. PLoS ONE 5, e12908 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Dimitrov, A. et al. Detection of GTP-tubulin conformation in vivo reveals a role for GTP remnants in microtubule rescues. Science 322, 1353–1356 (2008).

    Article  CAS  PubMed  Google Scholar 

  97. Cassimeris, L., Guglielmi, L., Denis, V., Larroque, C. & Martineau, P. Specific in vivo labeling of tyrosinated α-tubulin and measurement of microtubule dynamics using a GFP tagged, cytoplasmically expressed recombinant antibody. PLoS ONE 8, e59812 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Borowiak, M. et al. Photoswitchable inhibitors of microtubule dynamics optically control mitosis and cell death. Cell 162, 403–411 (2015).

    Article  CAS  PubMed  Google Scholar 

  99. Tashiro, T. & Komiya, Y. Organization and slow axonal transport of cytoskeletal proteins under normal and regenerating conditions. Mol. Neurobiol. 6, 301–311 (1992).

    Article  CAS  PubMed  Google Scholar 

  100. Hoffman, P. N., Lopata, M. A., Watson, D. F. & Luduena, R. F. Axonal transport of class II and III β-tubulin: evidence that the slow component wave represents the movement of only a small fraction of the tubulin in mature motor axons. J. Cell Biol. 119, 595–604 (1992).

    Article  CAS  PubMed  Google Scholar 

  101. Terasaki, M., Schmidek, A., Galbraith, J. A., Gallant, P. E. & Reese, T. S. Transport of cytoskeletal elements in the squid giant axon. Proc. Natl Acad. Sci. USA 92, 11500–11503 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Dent, E. W., Callaway, J. L., Szebenyi, G., Baas, P. W. & Kalil, K. Reorganization and movement of microtubules in axonal growth cones and developing interstitial branches. J. Neurosci. 19, 8894–8908 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Galbraith, J. A., Reese, T. S., Schlief, M. L. & Gallant, P. E. Slow transport of unpolymerized tubulin and polymerized neurofilament in the squid giant axon. Proc. Natl Acad. Sci. USA 96, 11589–11594 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Terada, S., Kinjo, M. & Hirokawa, N. Oligomeric tubulin in large transporting complex is transported via kinesin in squid giant axons. Cell 103, 141–155 (2000).

    Article  CAS  PubMed  Google Scholar 

  105. Wang, L. & Brown, A. Rapid movement of microtubules in axons. Curr. Biol. 12, 1496–1501 (2002).

    Article  CAS  PubMed  Google Scholar 

  106. Brown, A. Axonal transport of membranous and nonmembranous cargoes: a unified perspective. J. Cell Biol. 160, 817–821 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. He, Y. et al. Role of cytoplasmic dynein in the axonal transport of microtubules and neurofilaments. J. Cell Biol. 168, 697–703 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Rao, A. N. et al. Cytoplasmic dynein transports axonal microtubules in a polarity-sorting manner. Cell Rep. 19, 2210–2219 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ganguly, A. et al. Hsc70 chaperone activity is required for the cytosolic slow axonal transport of synapsin. J. Cell Biol. 216, 2059–2074 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Jolly, A. L. et al. Kinesin-1 heavy chain mediates microtubule sliding to drive changes in cell shape. Proc. Natl Acad. Sci. USA 107, 12151–12156 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Keating, T. J., Peloquin, J. G., Rodionov, V. I., Momcilovic, D. & Borisy, G. G. Microtubule release from the centrosome. Proc. Natl Acad. Sci. USA 94, 5078–5083 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Hirokawa, N., Glicksman, M. A. & Willard, M. B. Organization of mammalian neurofilament polypeptides within the neuronal cytoskeleton. J. Cell Biol. 98, 1523–1536 (1984).

    Article  CAS  PubMed  Google Scholar 

  113. Laser-Azogui, A., Kornreich, M., Malka-Gibor, E. & Beck, R. Neurofilament assembly and function during neuronal development. Curr. Opin. Cell Biol. 32, 92–101 (2015).

    Article  CAS  PubMed  Google Scholar 

  114. Uchida, A., Colakoglu, G., Wang, L., Monsma, P. C. & Brown, A. Severing and end-to-end annealing of neurofilaments in neurons. Proc. Natl Acad. Sci. USA 110, E2696–E2705 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Leduc, C. & Etienne-Manneville, S. Regulation of microtubule-associated motors drives intermediate filament network polarization. J. Cell Biol. 216, 1689–1703 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Black, M. M. & Lasek, R. J. Axonal transport of actin: slow component b is the principal source of actin for the axon. Brain Res. 171, 401–413 (1979).

    Article  CAS  PubMed  Google Scholar 

  117. McQuarrie, I. G., Brady, S. T. & Lasek, R. J. Diversity in the axonal transport of structural proteins: major differences between optic and spinal axons in the rat. J. Neurosci. 6, 1593–1605 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Nixon, R. A. & Logvinenko, K. B. Multiple fates of newly synthesized neurofilament proteins: evidence for a stationary neurofilament network distributed nonuniformly along axons of retinal ganglion cell neurons. J. Cell Biol. 102, 647–659 (1986).

    Article  CAS  PubMed  Google Scholar 

  119. Hirokawa, N., Funakoshi, S. T. & Takeda, S. Slow axonal transport: the subunit transport model. Trends Cell Biol. 7, 384–388 (1997).

    Article  CAS  PubMed  Google Scholar 

  120. Baas, P. W. & Brown, A. Slow axonal transport: the polymer transport model. Trends Cell Biol. 7, 380–384 (1997). References 119 and 120 offer a summary of the 1990s debate on the mechanism of slow axonal transport for cytoskeletal components.

    Article  CAS  PubMed  Google Scholar 

  121. Yan, Y. & Brown, A. Neurofilament polymer transport in axons. J. Neurosci. 25, 7014–7021 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Uchida, A., Alami, N. H. & Brown, A. Tight functional coupling of kinesin-1A and dynein motors in the bidirectional transport of neurofilaments. Mol. Biol. Cell 20, 4997–5006 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. LeBeux, Y. J. & Willemot, J. An ultrastructural study of the microfilaments in rat brain by means of heavy meromyosin labeling. I. The perikaryon, the dendrites and the axon. Cell Tissue Res. 160, 1–36 (1975).

    CAS  PubMed  Google Scholar 

  124. Fath, K. R. & Lasek, R. J. Two classes of actin microfilaments are associated with the inner cytoskeleton of axons. J. Cell Biol. 107, 613–621 (1988).

    Article  CAS  PubMed  Google Scholar 

  125. Bearer, E. L. & Reese, T. S. Association of actin filaments with axonal microtubule tracts. J. Neurocytol. 28, 85–98 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Spooner, B. S. & Holladay, C. R. Distribution of tubulin and actin in neurites and growth cones of differentiating nerve cells. Cytoskeleton 1, 167–178 (1981).

    CAS  Google Scholar 

  127. Xu, K., Zhong, G. & Zhuang, X. Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons. Science 339, 452–456 (2013). This study identifies the periodic organization of submembrane axonal actin, with actin rings regularly spaced every 190 nm by spectrins.

    Article  CAS  PubMed  Google Scholar 

  128. Bennett, V., Davis, J. Q. & Fowler, W. E. Brain spectrin, a membrane-associated protein related in structure and function to erythrocyte spectrin. Nature 299, 126–131 (1982).

    Article  CAS  PubMed  Google Scholar 

  129. Glenney, J. R., Glenney, P. & Weber, K. F-Actin-binding and cross-linking properties of porcine brain fodrin, a spectrin-related molecule. J. Biol. Chem. 257, 9781–9787 (1982).

    CAS  PubMed  Google Scholar 

  130. Lukinavicius, G. et al. Fluorogenic probes for live-cell imaging of the cytoskeleton. Nat. Methods 11, 731–733 (2014).

    Article  CAS  PubMed  Google Scholar 

  131. D'Este, E., Kamin, D., Göttfert, F., El-Hady, A. & Hell, S. W. STED nanoscopy reveals the ubiquity of subcortical cytoskeleton periodicity in living neurons. Cell Rep. 10, 1246–1251 (2015).

    Article  CAS  PubMed  Google Scholar 

  132. D'Este, E., Kamin, D., Balzarotti, F. & Hell, S. W. Ultrastructural anatomy of nodes of Ranvier in the peripheral nervous system as revealed by STED microscopy. Proc. Natl Acad. Sci. USA 114, E191–E199 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. D'Este, E. et al. Subcortical cytoskeleton periodicity throughout the nervous system. Sci. Rep. 6, 22741 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. He, J. et al. Prevalent presence of periodic actin-spectrin-based membrane skeleton in a broad range of neuronal cell types and animal species. Proc. Natl Acad. Sci. USA 113, 6029–6034 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Qu, Y., Hahn, I., Webb, S. E. D. & Prokop, A. Periodic actin structures in neuronal axons are required to maintain microtubules. Mol. Biol. Cell 28, 296–308 (2016).

    Article  CAS  PubMed  Google Scholar 

  136. Sidenstein, S. C. et al. Multicolour multilevel STED nanoscopy of actin/spectrin organization at synapses. Sci. Rep. 6, 26725 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Bär, J., Kobler, O., van Bommel, B. & Mikhaylova, M. Periodic F-actin structures shape the neck of dendritic spines. Sci. Rep. 6, 37136 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Han, B., Zhou, R., Xia, C. & Zhuang, X. Structural organization of the actin-spectrin-based membrane skeleton in dendrites and soma of neurons. Proc. Natl Acad. Sci. USA 114, E6678–E6685 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Zhong, G. et al. Developmental mechanism of the periodic membrane skeleton in axons. eLife 3, 194 (2014).

    Article  Google Scholar 

  140. Leite, S. C. et al. The actin-binding protein α-adducin is required for maintaining axon diameter. Cell Rep. 15, 490–498 (2016). References 135, 139 and 140 present the first information about the mechanisms of actin ring assembly and maintenance.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Leite, S. C. & Sousa, M. M. The neuronal and actin commitment: why do neurons need rings? Cytoskeleton 73, 424–434 (2016).

    Article  CAS  PubMed  Google Scholar 

  142. Galiano, M. R. et al. A distal axonal cytoskeleton forms an intra-axonal boundary that controls axon initial segment assembly. Cell 149, 1125–1139 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Watanabe, K. et al. Networks of polarized actin filaments in the axon initial segment provide a mechanism for sorting axonal and dendritic proteins. Cell Rep. 2, 1546–1553 (2012). This study identifies actin patches inside the AIS and, together with reference 245, proposed that they regulate vesicular entrance into the axon.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Jones, S. L., Korobova, F. & Svitkina, T. Axon initial segment cytoskeleton comprises a multiprotein submembranous coat containing sparse actin filaments. J. Cell Biol. 205, 67–81 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Al-Bassam, S., Xu, M., Wandless, T. J. & Arnold, D. B. Differential trafficking of transport vesicles contributes to the localization of dendritic proteins. Cell Rep. 2, 89–100 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Janssen, A. F. J. et al. Myosin-V induces cargo immobilization and clustering at the axon initial segment. Front. Cell Neurosci. 11, 89 (2017).

    Article  CAS  Google Scholar 

  147. Nirschl, J. J., Ghiretti, A. E. & Holzbaur, E. L. F. The impact of cytoskeletal organization on the local regulation of neuronal transport. Nat. Rev. Neurosci. 18, 585–597 (2017). This recent review gives a contemporary view of local regulation of the transport machinery in axons, dendrites and synapses.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Ganguly, A. et al. A dynamic formin-dependent deep F-actin network in axons. J. Cell Biol. 104, 20576–20417 (2015). This study presents the discovery of new actin structures within axons: static, intermittent hot spots and dynamic filamentous trails spurting from them.

    Google Scholar 

  149. Ruthel, G. & Banker, G. A. Actin-dependent anterograde movement of growth-cone-like structures along growing hippocampal axons: a novel form of axonal transport? Cell. Motil. Cytoskeleton 40, 160–173 (1998).

    Article  CAS  PubMed  Google Scholar 

  150. Flynn, K. C. et al. ADF/Cofilin-mediated actin retrograde flow directs neurite formation in the developing brain. Neuron 76, 1091–1107 (2012).

    Article  CAS  PubMed  Google Scholar 

  151. Tint, I., Jean, D., Baas, P. W. & Black, M. M. Doublecortin associates with microtubules preferentially in regions of the axon displaying actin-rich protrusive structures. J. Neurosci. 29, 10995–11010 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Katsuno, H. & Sakumura, Y. Actin migration driven by directional assembly and disassembly of membrane-anchored actin filaments. Cell Rep. 12, 648–660 (2015). This article combines live-cell imaging, micromanipulation and force measurements to detail the organization and mechanisms of axonal actin waves.

    Article  CAS  PubMed  Google Scholar 

  153. Winans, A. M., Collins, S. R. & Meyer, T. Waves of actin and microtubule polymerization drive microtubule-based transport and neurite growth before single axon formation. eLife 5, e12387 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Tomba, C. et al. Geometrical determinants of neuronal actin waves. Front. Cell Neurosci. 11, 86 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Flynn, K. C., Pak, C. W., Shaw, A. E., Bradke, F. & Bamburg, J. R. Growth cone-like waves transport actin and promote axonogenesis and neurite branching. Dev. Neurobiol. 69, 761–779 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Roy, S. Waves, rings, and trails: the scenic landscape of axonal actin. J. Cell Biol. 212, 131–134 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Allard, J. & Mogilner, A. Traveling waves in actin dynamics and cell motility. Curr. Opin. Cell Biol. 25, 107–115 (2013).

    Article  CAS  PubMed  Google Scholar 

  158. Arnold, D. B. & Gallo, G. Structure meets function: actin filaments and myosin motors in the axon. J. Neurochem. 129, 213–220 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Spillane, M. et al. The actin nucleating Arp2/3 complex contributes to the formation of axonal filopodia and branches through the regulation of actin patch precursors to filopodia. Dev. Neurobiol. 71, 747–758 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Armijo-Weingart, L. & Gallo, G. It takes a village to raise a branch: Cellular mechanisms of the initiation of axon collateral branches. Mol. Cell. Neurosci. http://dx.doi.org/10.1016/j.mcn.2017.03.007 (2017).

  161. Chetta, J., Love, J. M., Bober, B. G. & Shah, S. B. Bidirectional actin transport is influenced by microtubule and actin stability. Cell. Mol. Life Sci. 72, 4205–4220 (2015).

    Article  CAS  PubMed  Google Scholar 

  162. Rogers, S. L. & Gelfand, V. I. Myosin cooperates with microtubule motors during organelle transport in melanophores. Curr. Biol. 8, 161–164 (1998).

    Article  CAS  PubMed  Google Scholar 

  163. Bridgman, P. C. Myosin-dependent transport in neurons. J. Neurobiol. 58, 164–174 (2004).

    Article  CAS  PubMed  Google Scholar 

  164. Lai, L. & Cao, J. Spectrins in axonal cytoskeletons: dynamics revealed by extensions and fluctuations. J. Chem. Phys. 141, 015101 (2014).

    Article  CAS  PubMed  Google Scholar 

  165. Zhang, Y. et al. Modeling of the axon membrane skeleton structure and implications for its mechanical properties. PLoS Comput. Biol. 13, e1005407 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Hammarlund, M., Jorgensen, E. M. & Bastiani, M. J. Axons break in animals lacking beta-spectrin. J. Cell Biol. 176, 269–275 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Krieg, M. et al. Genetic defects in β-spectrin and tau sensitize C. elegans axons to movement-induced damage via torque-tension coupling. eLife 6, 1187 (2017).

    Article  Google Scholar 

  168. Krieg, M., Dunn, A. R. & Goodman, M. B. Mechanical control of the sense of touch by β-spectrin. Nat. Cell Biol. 16, 224–233 (2014). References 167 and 168 combine in vivo force measurements, mutant analysis, super-resolution microscopy and modelling to explore the role of microtubules and the actin–spectrin submembrane scaffold in the mechanical robustness of axons.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Stephan, R. et al. Hierarchical microtubule organization controls axon caliber and transport and determines synaptic structure and stability. Dev. Cell 33, 5–21 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Taylor, A. M., Dieterich, D. C., Ito, H. T., Kim, S. A. & Schuman, E. M. Microfluidic local perfusion chambers for the visualization and manipulation of synapses. Neuron 66, 57–68 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Harterink, M. et al. DeActs: genetically encoded tools for perturbing the actin cytoskeleton in single cells. Nat. Methods 14, 479–482 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Albrecht, D. et al. Nanoscopic compartmentalization of membrane protein motion at the axon initial segment. J. Cell Biol. 215, 37–46 (2016). This study combines single-particle tracking and super-resolution microscopy to detail how the AIS surface diffusion barrier forms and operates.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Brachet, A. et al. Ankyrin G restricts ion channel diffusion at the axonal initial segment before the establishment of the diffusion barrier. J. Cell Biol. 191, 383–395 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Dance, A. Inner workings: uncovering the neuron's internal skeleton. Proc. Natl Acad. Sci. USA 113, 13931–13933 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Tilney, L. G. & Portnoy, D. A. Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes. J. Cell Biol. 109, 1597–1608 (1989).

    Article  CAS  PubMed  Google Scholar 

  176. Wagner, O. I. et al. Mechanisms of mitochondria-neurofilament interactions. J. Neurosci. 23, 9046–9058 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Schermelleh, L., Heintzmann, R. & Leonhardt, H. A guide to super-resolution fluorescence microscopy. J. Cell Biol. 190, 165–175 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Toomre, D. & Bewersdorf, J. A new wave of cellular imaging. Annu. Rev. Cell Dev. Biol. 26, 285–314 (2010).

    Article  CAS  PubMed  Google Scholar 

  179. Fornasiero, E. F. & Opazo, F. Super-resolution imaging for cell biologists. Bioessays 37, 436–451 (2015).

    Article  PubMed  Google Scholar 

  180. Rust, M. J., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3, 793–795 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).

    Article  CAS  PubMed  Google Scholar 

  182. Gustafsson, M. G. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc. 198, 82–87 (2000).

    Article  CAS  PubMed  Google Scholar 

  183. Gustafsson, M. G. L. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc. Natl Acad. Sci. USA 102, 13081–13086 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Klar, T. A., Jakobs, S., Dyba, M., Egner, A. & Hell, S. W. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc. Natl Acad. Sci. USA 97, 8206–8210 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Dotti, C. G., Sullivan, C. & Banker, G. A. The establishment of polarity by hippocampal neurons in culture. J. Neurosci. 8, 1454–1468 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Dent, E. W. et al. Filopodia are required for cortical neurite initiation. Nat. Cell Biol. 9, 1347–1359 (2007).

    Article  CAS  PubMed  Google Scholar 

  187. Flynn, K. C. The cytoskeleton and neurite initiation. BioArchitecture 3, 86–109 (2014).

    Article  Google Scholar 

  188. Jacobson, C., Schnapp, B. & Banker, G. A. A. Change in the selective translocation of the kinesin-1 motor domain marks the initial specification of the axon. Neuron 49, 797–804 (2006).

    Article  CAS  PubMed  Google Scholar 

  189. Randlett, O., Poggi, L., Zolessi, F. R. & Harris, W. A. The oriented emergence of axons from retinal ganglion cells is directed by laminin contact in vivo. Neuron 70, 266–280 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Lewis, T. L., Courchet, J. & Polleux, F. Cell biology in neuroscience: cellular and molecular mechanisms underlying axon formation, growth, and branching. J. Cell Biol. 202, 837–848 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Bentley, M. & Banker, G. A. The cellular mechanisms that maintain neuronal polarity. Nat. Rev. Neurosci. 17, 611–622 (2016).

    Article  CAS  PubMed  Google Scholar 

  192. Schelski, M. & Bradke, F. Neuronal polarization: from spatiotemporal signaling to cytoskeletal dynamics. Mol. Cell. Neurosci. http://dx.doi.org/10.1016/j.mcn.2017.03.008. (2017).

  193. Bradke, F. & Dotti, C. G. Neuronal polarity: vectorial cytoplasmic flow precedes axon formation. Neuron 19, 1175–1186 (1997).

    Article  CAS  PubMed  Google Scholar 

  194. Bradke, F. & Dotti, C. G. The role of local actin instability in axon formation. Science 283, 1931–1934 (1999).

    Article  CAS  PubMed  Google Scholar 

  195. Witte, H., Neukirchen, D. & Bradke, F. Microtubule stabilization specifies initial neuronal polarization. J. Cell Biol. 180, 619–632 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Omotade, O. F., Pollitt, S. L. & Zheng, J. Q. Actin-based growth cone motility and guidance. Mol. Cell. Neurosci. http://dx.doi.org/10.1016/j.mcn.2017.03.001 (2017).

  197. Vitriol, E. A. & Zheng, J. Q. Growth cone travel in space and time: the cellular ensemble of cytoskeleton, adhesion, and membrane. Neuron 73, 1068–1081 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Dent, E. W., Gupton, S. L. & Gertler, F. B. The growth cone cytoskeleton in axon outgrowth and guidance. Cold Spring Harb. Perspect. Biol. 3, a001800 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Nozumi, M., Nakatsu, F., Katoh, K. & Igarashi, M. Coordinated movement of vesicles and actin bundles during nerve growth revealed by superresolution microscopy. Cell Rep. 18, 2203–2216 (2017).

    Article  CAS  PubMed  Google Scholar 

  200. Hedstrom, K. et al. Neurofascin assembles a specialized extracellular matrix at the axon initial segment. J. Cell Biol. 178, 875–886 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Boiko, T. et al. Ankyrin-dependent and -independent mechanisms orchestrate axonal compartmentalization of L1 family members neurofascin and L1/neuron-glia cell adhesion molecule. J. Neurosci. 27, 590–603 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Kalil, K. & Dent, E. W. Branch management: mechanisms of axon branching in the developing vertebrate CNS. Nat. Rev. Neurosci. 15, 7–18 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. McAllister, A. Dynamic aspects of CNS synapse formation. Annu. Rev. Neurosci. 30, 425–450 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Work in the Leterrier laboratory is supported by the Centre National de la Recherche Scientifique (CNRS) Action Thématique et Incitative sur Programme (ATIP)–Avenir programme AO2016. Work in the Roy laboratory is supported by US National Institutes of Health (NIH) grants R01NS075233, R01AG048218 and R21 AG052404.

Author information

Authors and Affiliations

Authors

Contributions

C.L., P.D. and S.R. contributed to researching data for the article, making contributions to discussion of content and writing. C.L. and S.R. contributed equally to writing, reviewing and editing of the manuscript before submission.

Corresponding authors

Correspondence to Christophe Leterrier or Subhojit Roy.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Electron microscopy

A group of methods that generate an image of a sample by using a beam of electrons. Electrons can be detected after passing through the sample (transmission electron microscopy) or after being reflected (scanning electron microscopy). Electron microscopy can routinely reach 1 nm resolution (the size of a single amino acid) but usually requires the sample to be placed in a vacuum and is therefore destructive and most applicable to fixed samples labelled with specific procedures.

Immuno-electron microscopy

An electron microscopy modality in which proteins labelled by using antibodies that are tagged with small gold beads are imaged, allowing their localization.

Microtubule plus-end-tracking proteins

A set of proteins that bind the growing plus ends of microtubules. The core components of this complex are end-binding proteins, dimeric proteins that interact with the specific tubulin conformation found at the plus end.

Moiré effect

The emergence of a third pattern due to the superposition of two patterns with distinct frequencies. In microscopy, this effect is exploited in structured illumination microscopy by illuminating the sample with periodic patterns of light and using the resulting Moiré pattern to infer sample details that are beyond the diffraction limit.

Centrosome

An organelle that nucleates and controls the organization of microtubules and regulates cell-cycle progression.

Microtubule-associated proteins

(MAPs). The repertoire of proteins that bind to microtubules. They can associate with the microtubule lattice or with the minus end or plus end of the microtubules. Microtubule-associated molecular motor complexes are also MAPs.

Fluorescence recovery after photobleaching

A method used to measure the diffusion or transport of molecules. It requires tagging of the molecule of interest with a fluorescent marker, photobleaching of the label with a pulse of laser light and a subsequent measure of the rate of fluorescence recovery into the bleached area as other labelled molecules move into it.

Microfluidic

Of a method to manipulate cells (for seeding, incubation or labelling) at the sub-millimetre scale by using small volumes of medium that are pumped into miniaturized culturing devices.

En-passant boutons

Presynaptic specializations along axons that make contact with downstream neurons, as opposed to synaptic terminals at the extremity of axons. In hippocampal and cortical neuronal cultures, most presynapses are en-passant boutons.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leterrier, C., Dubey, P. & Roy, S. The nano-architecture of the axonal cytoskeleton. Nat Rev Neurosci 18, 713–726 (2017). https://doi.org/10.1038/nrn.2017.129

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn.2017.129

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing