Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The use of brain organoids to investigate neural development and disease

Key Points

  • Organoid models provide an opportunity to model the unique features of human brain development in a complex tissue-like environment.

  • The intrinsic patterning of whole brain organoids in intrinsic organoid protocols promotes the generation of diverse brain regions.

  • Signalling molecules can be used to mimic in vivo patterning and increase the efficiency of directed differentiation in comparison to the intrinsic patterning of regional brain organoids.

  • There are a number of advantages of an in vitro system for experimentation purposes, including the relative ease of genomic manipulation and the possibility of using patient-derived cell lines.

  • Human brain organoids can model human development and shed light on human-specific diseases.

  • Protocols will benefit from systematic analysis of cell types generated and a robust comparison to in vivo counterparts.

  • Pre-patterned, region-specific organoids can be fused to model complex brain structures.

  • Current organoid protocols still face a number of limitations, including low reproducibility, incomplete cell type diversity and slow maturation.


Understanding the development and dysfunction of the human brain is a major goal of neurobiology. Much of our current understanding of human brain development has been derived from the examination of post-mortem and pathological specimens, bolstered by observations of developing non-human primates and experimental studies focused largely on mouse models. However, these tissue specimens and model systems cannot fully capture the unique and dynamic features of human brain development. Recent advances in stem cell technologies that enable the generation of human brain organoids from pluripotent stem cells (PSCs) promise to profoundly change our understanding of the development of the human brain and enable a detailed study of the pathogenesis of inherited and acquired brain diseases.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Cortical organoids generated with current protocols.
Figure 2: Human cerebral organoids as models of cortical development.
Figure 3: Aspects of human cortical development for future exploration in brain organoid models.


  1. 1

    Tiscornia, G., Vivas, E. L. & Belmonte, J. C. I. Diseases in a dish: modeling human genetic disorders using induced pluripotent cells. Nat. Med. 17, 1570–1576 (2011).

    CAS  PubMed  Google Scholar 

  2. 2

    Lancaster, M. A. et al. Cerebral organoids model human brain development and microcephaly. Nature 501, 373–379 (2013). This was the first paper to introduce a method for generating cerebral organoids. The organoids were used to model microcephaly.

    CAS  Article  Google Scholar 

  3. 3

    Kadoshima, T. et al. Self-organization of axial polarity, inside-out layer pattern, and species-specific progenitor dynamics in human ES cell-derived neocortex. Proc. Natl Acad. Sci. USA 110, 20284–20289 (2013). This study provided a detailed exploration of brain organoid tissue including the temporal and spatial organization of cell type diversity and patterning.

    CAS  PubMed  Google Scholar 

  4. 4

    Jo, J. et al. Midbrain-like organoids from human pluripotent stem cells contain functional dopaminergic and neuromelanin-producing neurons. Cell Stem Cell 19, 248–257 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5

    Qian, X. et al. Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell 165, 1238–1254 (2016). This study used mini bioreactors to produce forebrain organoids with a well-defined OSVZ and demonstrated the presence of oRGs with defined molecular markers. Diverse neuronal cell types expressing molecular markers of all six cortical layers were observed.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6

    Birey, F. et al. Assembly of functionally integrated human forebrain spheroids. Nature 545, 54–59 (2017). This study used pre-patterned pallial and subpallial spheroids to form fused forebrain spheroids, demonstrating interneuron diversity, migration and integration. This organoid model was used to model Timothy syndrome.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7

    Sakaguchi, H. et al. Generation of functional hippocampal neurons from self-organizing human embryonic stem cell-derived dorsomedial telencephalic tissue. Nat. Commun. 6, 8896 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8

    Monzel, A. S. et al. Derivation of human midbrain-specific organoids from neuroepithelial stem cells. Stem Cell Rep. 8, 1144–1154 (2017).

    CAS  Google Scholar 

  9. 9

    Muguruma, K., Nishiyama, A., Kawakami, H., Hashimoto, K. & Sasai, Y. Self-organization of polarized cerebellar tissue in 3D culture of human pluripotent stem cells. Cell Rep. 10, 537–550 (2015).

    CAS  Google Scholar 

  10. 10

    Suga, H. et al. Self-formation of functional adenohypophysis in three-dimensional culture. Nature 480, 57–62 (2011).

    CAS  PubMed  Google Scholar 

  11. 11

    Eiraku, M. et al. Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell 3, 519–532 (2008).

    CAS  Google Scholar 

  12. 12

    Weitzer, G. in Handbook of Experimental Pharmacology (eds Barrett, J.E. et al.) 21–51 (Springer, 2004).

    Google Scholar 

  13. 13

    Zhang, S.-C., Wernig, M., Duncan, I. D., Brüstle, O. & Thomson, J. A. In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat. Biotechnol. 19, 1129–1133 (2001).

    CAS  Google Scholar 

  14. 14

    Edri, R. et al. Analysing human neural stem cell ontogeny by consecutive isolation of Notch active neural progenitors. Nat. Commun. 6, 6500 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Shi, Y., Kirwan, P., Smith, J., Robinson, H. P. C. & Livesey, F. J. Human cerebral cortex development from pluripotent stem cells to functional excitatory synapses. Nat. Neurosci. 15, 477–486 (2012).

    CAS  PubMed  Google Scholar 

  16. 16

    Ying, Q.-L., Stavridis, M., Griffiths, D., Li, M. & Smith, A. Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nat. Biotechnol. 21, 183–186 (2003).

    CAS  PubMed  Google Scholar 

  17. 17

    Gaspard, N. et al. An intrinsic mechanism of corticogenesis from embryonic stem cells. Nature 455, 351–357 (2008).

    CAS  Google Scholar 

  18. 18

    Chambers, S. M. et al. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat. Biotechnol. 27, 275–280 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19

    Watanabe, K. et al. Directed differentiation of telencephalic precursors from embryonic stem cells. Nat. Neurosci. 8, 288–296 (2005).

    CAS  PubMed  Google Scholar 

  20. 20

    Eiraku, M. et al. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 472, 51–56 (2011).

    CAS  Google Scholar 

  21. 21

    Sato, T. et al. Single Lgr5 stem cells build crypt–villus structures in vitro without a mesenchymal niche. Nature 459, 262–265 (2009).

    CAS  Google Scholar 

  22. 22

    Fietz, S. A. et al. OSVZ progenitors of human and ferret neocortex are epithelial-like and expand by integrin signaling. Nat. Neurosci. 13, 690–699 (2010).

    CAS  PubMed  Google Scholar 

  23. 23

    Hansen, D. V., Lui, J. H., Parker, P. R. L. & Kriegstein, A. R. Neurogenic radial glia in the outer subventricular zone of human neocortex. Nature 464, 554–561 (2010).

    CAS  Google Scholar 

  24. 24

    Shi, Y., Kirwan, P. & Livesey, F. J. Directed differentiation of human pluripotent stem cells to cerebral cortex neurons and neural networks. Nat. Protoc. 7, 1836–1846 (2012).

    CAS  PubMed  Google Scholar 

  25. 25

    Paşca, A. M. et al. Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. Nat. Methods 12, 671–678 (2015).

    PubMed  PubMed Central  Google Scholar 

  26. 26

    Bagley, J. A., Reumann, D., Bian, S., Lévi-Strauss, J. & Knoblich, J. A. Fused cerebral organoids model interactions between brain regions. Nat. Methods 14, 743–751 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Lindborg, B. A. et al. Rapid induction of cerebral organoids from human induced pluripotent stem cells using a chemically defined hydrogel and defined cell culture medium. Stem Cells Transl Med. 5, 970–979 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28

    Quadrato, G. et al. Cell diversity and network dynamics in photosensitive human brain organoids. Nature 545, 48–53 (2017). This study analysed gene expression in over 80,000 individual cells and found that organoids can generate a broad diversity of cells that are related to endogenous classes, including cells from the cerebral cortex and the retina. Neuronal activity within organoids was also controlled using light stimulation of photosensitive cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29

    Camp, J. G. et al. Human cerebral organoids recapitulate gene expression programs of fetal neocortex development. Proc. Natl Acad. Sci. USA 112, 15672–15677 (2015).

    CAS  PubMed  Google Scholar 

  30. 30

    Suzuki, I. K. & Vanderhaeghen, P. Is this a brain which I see before me? Modeling human neural development with pluripotent stem cells. Development 142, 3138–3150 (2015).

    CAS  PubMed  Google Scholar 

  31. 31

    Harrison-Uy, S. J. & Pleasure, S. J. Wnt signaling and forebrain development. Cold Spring Harb. Perspect. Biol. 4, a008094 (2012).

    PubMed  PubMed Central  Google Scholar 

  32. 32

    Hikasa, H. & Sokol, S. Y. Wnt signaling in vertebrate axis specification. Cold Spring Harb. Perspect. Biol. 5, a007955 (2012).

    Google Scholar 

  33. 33

    Backman, M. et al. Effects of canonical Wnt signaling on dorso-ventral specification of the mouse telencephalon. Dev. Biol. 279, 155–168 (2005).

    CAS  PubMed  Google Scholar 

  34. 34

    ten Berge, D. et al. Wnt signaling mediates self-organization and axis formation in embryoid bodies. Cell Stem Cell 3, 508–518 (2008).

    CAS  PubMed  Google Scholar 

  35. 35

    Kirkeby, A. et al. Generation of regionally specified neural progenitors and functional neurons from human embryonic stem cells under defined conditions. Cell Rep. 1, 703–714 (2012).

    CAS  PubMed  Google Scholar 

  36. 36

    Nasu, M. et al. Robust formation and maintenance of continuous stratified cortical neuroepithelium by laminin-containing matrix in mouse ES cell culture. PLoS ONE 7, e53024 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37

    Chenn, A. & Walsh, C. A. Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science 297, 365–369 (2002).

    CAS  Google Scholar 

  38. 38

    Machon, O. et al. A dynamic gradient of Wnt signaling controls initiation of neurogenesis in the mammalian cortex and cellular specification in the hippocampus. Dev. Biol. 311, 223–237 (2007).

    CAS  PubMed  Google Scholar 

  39. 39

    Otani, T., Marchetto, M. C., Gage, F. H., Simons, B. D. & Livesey, F. J. 2D and 3D stem cell models of primate cortical development identify species-specific differences in progenitor behavior contributing to brain size. Cell Stem Cell 18, 467–480 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Smart, I. H. M., Dehay, C., Giroud, P., Berland, M. & Kennedy, H. Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey. Cereb. Cortex 12, 37–53 (2002).

    PubMed  PubMed Central  Google Scholar 

  41. 41

    Lukaszewicz, A. et al. G1 phase regulation, area-specific cell cycle control, and cytoarchitectonics in the primate cortex. Neuron 47, 353–364 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42

    Zecevic, N., Chen, Y. & Filipovic, R. Contributions of cortical subventricular zone to the development of the human cerebral cortex. J. Comp. Neurol. 491, 109–122 (2005).

    PubMed  PubMed Central  Google Scholar 

  43. 43

    Dehay, C. & Kennedy, H. Cell-cycle control and cortical development. Nat. Rev. Neurosci. 8, 438–450 (2007).

    CAS  PubMed  Google Scholar 

  44. 44

    Martínez- Cerdeño, V. et al. Comparative analysis of the subventricular zone in rat, ferret and macaque: evidence for an outer subventricular zone in rodents. PLoS ONE 7, e30178 (2012).

    Google Scholar 

  45. 45

    Lui, J. H., Hansen, D. V. & Kriegstein, A. R. Development and evolution of the human neocortex. Cell 146, 18–36 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46

    Fish, J. L., Dehay, C., Kennedy, H. & Huttner, W. B. Making bigger brains-the evolution of neural-progenitor-cell division. J. Cell Sci. 121, 2783–2793 (2008).

    CAS  PubMed  Google Scholar 

  47. 47

    Wang, X., Tsai, J.-W., LaMonica, B. & Kriegstein, A. R. A new subtype of progenitor cell in the mouse embryonic neocortex. Nat. Neurosci. 14, 555–561 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Pollen, A. A. et al. Molecular identity of human outer radial glia during cortical development. Cell 163, 55–67 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49

    Ostrem, B., Di Lullo, E. & Kriegstein, A. oRGs and mitotic somal translocation - a role in development and disease. Curr. Opin. Neurobiol. 42, 61–67 (2017).

    CAS  PubMed  Google Scholar 

  50. 50

    Bershteyn, M. et al. Human iPSC-derived cerebral organoids model cellular features of lissencephaly and reveal prolonged mitosis of outer radial glia. Cell Stem Cell 20, 435–449.e4 (2017). This study used brain organoids to model lissencephaly. The authors identified a mitotic defect in oRGs and used single-cell RNA sequencing to identify cells presenting an oRG transcriptional signature in human brain organoids.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51

    Li, Y. et al. Induction of expansion and folding in human cerebral organoids. Cell Stem Cell 20, 385–396 (2017).

    PubMed  Google Scholar 

  52. 52

    Luo, C. et al. Cerebral organoids recapitulate epigenomic signatures of the human fetal brain. Cell Rep. 17, 3369–3384 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53

    Lodato, S. & Arlotta, P. Generating neuronal diversity in the mammalian cerebral cortex. Annu. Rev. Cell Dev. Biol. 31, 699–720 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54

    Voronova, A. et al. Migrating interneurons secrete fractalkine to promote oligodendrocyte formation in the developing mammalian brain. Neuron 94, 500–516.e9 (2017).

    CAS  PubMed  Google Scholar 

  55. 55

    Bertrand, N., Castro, D. S. & Guillemot, F. Proneural genes and the specification of neural cell types. Nat. Rev. Neurosci. 3, 517–530 (2002).

    CAS  PubMed  Google Scholar 

  56. 56

    Renner, M. et al. Self-organized developmental patterning and differentiation in cerebral organoids. EMBO J. 36, 1316–1329 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57

    Subramanian, L. & Tole, S. Mechanisms underlying the specification, positional regulation, and function of the cortical hem. Cereb. Cortex 19 (Suppl. 1), i90–i95 (2009).

    PubMed  Google Scholar 

  58. 58

    Caronia-Brown, G., Yoshida, M., Gulden, F., Assimacopoulos, S. & Grove, E. A. The cortical hem regulates the size and patterning of neocortex. Development 141, 2855–2865 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59

    Furuta, Y., Piston, D. W. & Hogan, B. L. Bone morphogenetic proteins (BMPs) as regulators of dorsal forebrain development. Development 124, 2203–2212 (1997).

    CAS  PubMed  Google Scholar 

  60. 60

    Grove, E. A., Tole, S., Limon, J., Yip, L. & Ragsdale, C. W. The hem of the embryonic cerebral cortex is defined by the expression of multiple Wnt genes and is compromised in Gli3-deficient mice. Development 125, 2315–2325 (1998).

    CAS  Google Scholar 

  61. 61

    Guo, J. & Anton, E. S. Decision making during interneuron migration in the developing cerebral cortex. Trends Cell Biol. 24, 342–351 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62

    Javaherian, A. & Kriegstein, A. A stem cell niche for intermediate progenitor cells of the embryonic cortex. Cereb. Cortex 19, i70–i77 (2009).

    PubMed  PubMed Central  Google Scholar 

  63. 63

    Stubbs, D. et al. Neurovascular congruence during cerebral cortical development. Cereb. Cortex 19, i32–i41 (2009).

    PubMed  PubMed Central  Google Scholar 

  64. 64

    Cunningham, C. L., Martínez- Cerdeño, V. & Noctor, S. C. Microglia regulate the number of neural precursor cells in the developing cerebral cortex. J. Neurosci. 33, 4216–4233 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65

    Hockemeyer, D. & Jaenisch, R. Induced pluripotent stem cells meet genome editing. Cell Stem Cell 18, 573–586 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66

    Sun, Y. & Ding, Q. Genome engineering of stem cell organoids for disease modeling. Protein Cell 8, 315–327 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67

    Iefremova, V. et al. An organoid-based model of cortical development identifies non-cell-autonomous defects in wnt signaling contributing to Miller–Dieker syndrome. Cell Rep. 19, 50–59 (2017).

    CAS  Google Scholar 

  68. 68

    Tang, H. et al. Zika virus infects human cortical neural progenitors and attenuates their growth. Cell Stem Cell 18, 587–590 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69

    Garcez, P. P. et al. Zika virus impairs growth in human neurospheres and brain organoids. Science 352, 816–818 (2016).

    CAS  Google Scholar 

  70. 70

    Cugola, F. R. et al. The Brazilian Zika virus strain causes birth defects in experimental models. Nature 534, 267–271 (2016). This report used a brain organoid model to demonstrate that ZIKV infection results in a reduction of proliferative zones and in disrupted cortical layers.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71

    Dang, J. et al. Zika virus depletes neural progenitors in human cerebral organoids through activation of the innate immune receptor TLR3. Cell Stem Cell 19, 258–265 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72

    Retallack, H. et al. Zika virus cell tropism in the developing human brain and inhibition by azithromycin. Proc. Natl Acad. Sci. USA 113, 14408–14413 (2016).

    CAS  PubMed  Google Scholar 

  73. 73

    Nowakowski, T. J. et al. Expression analysis highlights AXL as a candidate zika virus entry receptor in neural stem cells. Cell Stem Cell 18, 591–596 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74

    Wells, M. F. et al. Genetic ablation of AXL does not protect human neural progenitor cells and cerebral organoids from zika virus infection. Cell Stem Cell 19, 703–708 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75

    Meertens, L. et al. Axl mediates ZIKA virus entry in human glial cells and modulates innate immune responses. Cell Rep. 18, 324–333 (2017).

    CAS  PubMed  Google Scholar 

  76. 76

    Wen, Z., Christian, K. M., Song, H. & Ming, G.-L. Modeling psychiatric disorders with patient-derived iPSCs. Curr. Opin. Neurobiol. 36, 118–127 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. 77

    Flaherty, E. K. & Brennand, K. J. Using hiPSCs to model neuropsychiatric copy number variations (CNVs) has potential to reveal underlying disease mechanisms. Brain Res. 1655, 283–293 (2017).

    CAS  PubMed  Google Scholar 

  78. 78

    Brennand, K. J. et al. Modelling schizophrenia using human induced pluripotent stem cells. Nature 473, 221–225 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79

    Madison, J. M. et al. Characterization of bipolar disorder patient-specific induced pluripotent stem cells from a family reveals neurodevelopmental and mRNA expression abnormalities. Mol. Psychiatry 20, 703–717 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80

    Mertens, J. et al. Differential responses to lithium in hyperexcitable neurons from patients with bipolar disorder. Nature 527, 95–99 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81

    Marchetto, M. C. N. et al. A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell 143, 527–539 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82

    Quadrato, G., Brown, J. & Arlotta, P. The promises and challenges of human brain organoids as models of neuropsychiatric disease. Nat. Med. 22, 1220–1228 (2016).

    CAS  PubMed  Google Scholar 

  83. 83

    Mariani, J. et al. FOXG1-Dependent dysregulation of GABA/Glutamate neuron differentiation in autism spectrum disorders. Cell 162, 375–390 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84

    Serrano-Pozo, A., Frosch, M. P., Masliah, E. & Hyman, B. T. Neuropathological alterations in Alzheimer disease. Cold Spring Harb. Perspect. Med. 1, a006189 (2011).

    PubMed  PubMed Central  Google Scholar 

  85. 85

    Choi, S. H. et al. A three-dimensional human neural cell culture model of Alzheimer's disease. Nature 515, 274–278 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86

    Raja, W. K. et al. Self-organizing 3D human neural tissue derived from induced pluripotent stem cells recapitulate alzheimer's disease phenotypes. PLoS ONE 11, e0161969 (2016). This report used Alzheimer disease (AD) patient-derived iPSCs to recapitulate AD-like pathologies such as age-dependent amyloid aggregation, hyperphosphorylated tau protein, and endosome abnormalities in organoids and showed that treatment of patient-derived organoids with β-and γ-secretase inhibitors significantly reduces amyloid and tau pathology.

    PubMed  PubMed Central  Google Scholar 

  87. 87

    Salloway, S. et al. Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer's disease. N. Engl. J. Med. 370, 322–333 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88

    Doody, R. S. et al. A phase 3 trial of semagacestat for treatment of Alzheimer's disease. N. Engl. J. Med. 369, 341–350 (2013).

    CAS  PubMed  Google Scholar 

  89. 89

    Doody, R. S. et al. Phase 3 trials of solanezumab for mild-to-moderate Alzheimer's disease. N. Engl. J. Med. 370, 311–321 (2014).

    CAS  PubMed  Google Scholar 

  90. 90

    Nowakowski, T. J., Pollen, A. A., Sandoval-Espinosa, C. & Kriegstein, A. R. Transformation of the radial glia scaffold demarcates two stages of human cerebral cortex development. Neuron 91, 1219–1227 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references


The authors thank A. Bhaduri, J. Spatazza, T. Nowakowski, M. Bershteyn, H. Retallack, M. A. Mostajo Radji and A. Pollen for their scientific discussions and thoughtful input. The authors are very grateful to T. Nowakowski for his help with the illustrations. This work was supported by funding from the US National Institutes of Health R35NS097305.

Author information




E.D. researched the data for the article and provided a substantial contribution to discussions of the content. E.D. and A.R.K. contributed equally to writing the article and to review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Arnold R. Kriegstein.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides



The capacity to autonomously generate the architectural complexity of vertebrate organs.

Inductive signals

Molecular signals that can influence the developmental fate of a cell.

Outer radial glial cells

A subclass of radial glial cell residing primarily in the outer subventricular zone.


Secreted factors that can induce different cell fates across a sheet of cells in a concentration-dependent manner by forming gradients.


A manufactured or engineered device that supports a biologically active environment.

Intermediate progenitors

Transient-amplifying cells that can produce neurons or new intermediate progenitor cells.

RNA sequencing

(RNA-seq). A high-throughput method to sequence whole-genome cDNA in order to obtain quantitative measures of all expressed RNAs in a tissue.

Principal component analysis

A mathematical algorithm that reduces the dimensionality of data while retaining important variation.

Single-cell transcriptional profiling

RNA sequencing of single cells.

Regulatory elements

Sequences of a gene that are involved in regulation of genetic transcription.


A multitude of biochemical modifications to DNA that have key roles in regulating genome structure and function, including the timing, strength, and memory of gene expression.

Forebrain organizing centres

Groups of cells that send signals that induce distinct fates in neighbouring cells, resulting in spatial patterning in the forebrain.

Viral tropism

The specificity of a virus for a particular host cell.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Di Lullo, E., Kriegstein, A. The use of brain organoids to investigate neural development and disease. Nat Rev Neurosci 18, 573–584 (2017).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing