Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Electrodiffusion phenomena in neuroscience: a neglected companion

Key Points

  • Classical principles of electrophysiology become inaccurate on the nanoscale because some of the underlying assumptions do not hold at such small distances.

  • The molecular composition of the cell membrane influences electric fields that occur near the membrane surface and controls the activity of voltage-sensitive membrane receptors or channels. Classical patch-clamp recording methods are usually unable to detect such effects.

  • Neuronal activity can lead to rapid redistributions of electrolyte ions in narrow spaces such as synaptic clefts or dendritic spines. The resulting dynamics of local voltage and current will differ from that predicted by the classical theories.

  • Ionic currents may exert electro-osmotic forces acting on local membrane proteins, thus prompting their lateral movement. The resulting rearrangement may alter individual or cooperative protein properties, thus affecting local cellular function.

  • Large immobile ions can perturb local electrolyte electroneutrality inside or outside cells but are unlikely to influence bulk electrolyte properties in the surrounding medium.

Abstract

The emerging technological revolution in genetically encoded molecular sensors and super-resolution imaging provides neuroscientists with a pass to the real-time nano-world. On this small scale, however, classical principles of electrophysiology do not always apply. This is in large part because the nanoscopic heterogeneities in ionic concentrations and the local electric fields associated with individual ions and their movement can no longer be ignored. Here, we review basic principles of molecular electrodiffusion in the cellular environment of organized brain tissue. We argue that accurate interpretation of physiological observations on the nanoscale requires a better understanding of the underlying electrodiffusion phenomena.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electric charges and their fields in brain tissue: basic principles and two common deviations from common electrophysiological postulates.
Figure 2: Patch-clamp measurements of membrane potential: first principles.
Figure 3: The effect of membrane-impermeable intracellular anions on transmembrane ion exchange.
Figure 4: Possible physiological implications of electrodiffusion and electro-osmosis in the synaptic cleft.

Similar content being viewed by others

References

  1. Triller, A. & Choquet, D. New concepts in synaptic biology derived from single-molecule imaging. Neuron 59, 359–374 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Novak, P. et al. Nanoscale-targeted patch-clamp recordings of functional presynaptic ion channels. Neuron 79, 1067–1077 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hochbaum, D. R. et al. All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins. Nat. Methods 11, 825–833 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tonnesen, J., Katona, G., Rozsa, B. & Nagerl, U. V. Spine neck plasticity regulates compartmentalization of synapses. Nat. Neurosci. 17, 678–685 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Hodgkin, A. L. & Huxley, A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Buzsaki, G., Anastassiou, C. A. & Koch, C. The origin of extracellular fields and currents—EEG, ECoG, LFP and spikes. Nat. Rev. Neurosci. 13, 407–420 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pods, J., Schonke, J. & Bastian, P. Electrodiffusion models of neurons and extracellular space using the Poisson-Nernst-Planck equations—numerical simulation of the intra- and extracellular potential for an axon model. Biophys. J. 105, 242–254 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mori, Y. & Peskin, C. S. A numerical method for cellular electrophysiology based on the electrodiffusion equations with internal boundary conditions at membranes. Commun. Appl. Math. Computat. Sci. 4, 85–134 (2009).

    Article  Google Scholar 

  9. Lopreore, C. L. et al. Computational modeling of three-dimensional electrodiffusion in biological systems: application to the node of Ranvier. Biophys. J. 95, 2624–2635 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Savtchenko, L. P., Korogod, S. M. & Rusakov, D. A. Electrodiffusion of synaptic receptors: a mechanism to modify synaptic efficacy? Synapse 35, 26–38 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Zhang, L. I. & Poo, M. M. Electrical activity and development of neural circuits. Nat. Neurosci. 4, 1207–1214 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Eccles, J. C. & Jaeger, J. C. The relationship between the mode of operation and the dimensions of the junctional regions at synapses and motor end-organs. Proc. R. Soc. B 148, 38–56 (1958). This study is a pioneering theoretical work predicting a substantial effect of electric fields on ion currents in small spaces such as the synaptic cleft.

    Article  CAS  Google Scholar 

  13. Savtchenko, L. P., Antropov, S. N. & Korogod, S. M. Effect of voltage drop within the synaptic cleft on the current and voltage generated at a single synapse. Biophys. J. 78, 1119–1125 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Savtchenko, L. P. & Rusakov, D. A. The optimal height of the synaptic cleft. Proc. Natl Acad. Sci. USA 104, 1823–1828 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Poo, M. M. Insitu electrophoresis of membrane-components. Annu. Rev. Biophys. Bio 10, 245–276 (1981).

    Article  CAS  Google Scholar 

  16. Orida, N. & Poo, M. M. Electrophoretic movement and localization of acetylcholine receptors in embryonic muscle-cell membrane. Nature 275, 31–35 (1978).

    Article  CAS  PubMed  Google Scholar 

  17. Eisenberg, B. Interacting ions in biophysics: real is not ideal. Biophys. J. 104, 1849–1866 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Eisenberg, B. Ionic interactions are everywhere. Physiol. (Bethesda) 28, 28–38 (2013).

    CAS  Google Scholar 

  19. Holcman, D. & Yuste, R. The new nanophysiology: regulation of ionic flow in neuronal subcompartments. Nat. Rev. Neurosci. 16, 685–692 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Torriero, A. A. J. (ed) Electrochemistry in Ionic Liquids: Volume 1: Fundamentals (Springer, 2015).

    Book  Google Scholar 

  21. Pods, J. A. Comparison of computational models for the extracellular potential of neurons. arXiv http://dx.doi.org/10.3233/JIN-170009 (2015).

  22. Luo, Z. X., Xing, Y. Z., Ling, Y. C., Kleinhammes, A. & Wu, Y. Electroneutrality breakdown and specific ion effects in nanoconfined aqueous electrolytes observed by NMR. Nat. Commun. 6, 6358 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. DeFelice, L. J. Electrical Properties of Cells: Patch Clamp for Biologists (Plenum Press, 1997).

    Book  Google Scholar 

  24. Steinberg, J. S. & Mittal, S. Electrophysiology: the Basics 2nd edn (Wolters Kluwer Heath, 2017).

    Google Scholar 

  25. Macdonald, J. R. A new model for the debye dispersion equations. Phys. Rev. 91, 412–412 (1953).

    Article  CAS  Google Scholar 

  26. Bagotsky, V. S. (ed.) Fundamentals of Electrochemistry 2nd edn (John Wiley & Sons, 2006).

    Google Scholar 

  27. Perram, J. W. & Stiles, P. J. On the nature of liquid junction and membrane potentials. Phys. Chem. Chem. Phys. 8, 4200–4213 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Plonsey, R., Henriquez, C. & Trayanova, N. Extracellular (volume conductor) effect on adjoining cardiac muscle electrophysiology. Med. Biol. Eng. Comput. 26, 126–129 (1988).

    Article  CAS  PubMed  Google Scholar 

  29. Clark, J. & Plonsey, R. The extracellular potential field of the single active nerve fiber in a volume conductor. Biophys. J. 8, 842–864 (1968). This study provided an important theoretical introduction to the use of mathematical formalism in calculating extracellular electric fields.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Thorne, R. G. & Nicholson, C. In vivo diffusion analysis with quantum dots and dextrans predicts the width of brain extracellular space. Proc. Natl Acad. Sci. USA 103, 5567–5572 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sykova, E. & Nicholson, C. Diffusion in brain extracellular space. Physiol. Rev. 88, 1277–1340 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Hrabetova, S., Hrabe, J. & Nicholson, C. Dead-space microdomains hinder extracellular diffusion in rat neocortex during ischemia. J. Neurosci. 23, 8351–8359 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kinney, J. P. et al. Extracellular sheets and tunnels modulate glutamate diffusion in hippocampal neuropil. J. Comp. Neurol. 521, 448–464 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zheng, K. et al. Nanoscale diffusion in the synaptic cleft and beyond measured with time-resolved fluorescence anisotropy imaging. Sci. Rep. 7, 42022 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rusakov, D. A. & Kullmann, D. M. Geometric and viscous components of the tortuosity of the extracellular space in the brain. Proc. Natl Acad. Sci. USA 95, 8975–8980 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hrabetova, S., Masri, D., Tao, L., Xiao, F. & Nicholson, C. Calcium diffusion enhanced after cleavage of negatively charged components of brain extracellular matrix by chondroitinase ABC. J. Physiol. 587, 4029–4049 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Miranda, P. C., Hallett, M. & Basser, P. J. The electric field induced in the brain by magnetic stimulation: a 3D finite-element analysis of the effect of tissue heterogeneity and anisotropy. IEEE Trans. Biomed. Eng. 50, 1074–1085 (2003).

    Article  PubMed  Google Scholar 

  38. Bazhenov, M., Lonjers, P., Skorheim, S., Bedard, C. & Dstexhe, A. Non-homogeneous extracellular resistivity affects the current-source density profiles of up-down state oscillations. Philos. Trans. A Math. Phys. Eng. Sci. 369, 3802–3819 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Rusakov, D. A. Disentangling calcium-driven astrocyte physiology. Nat. Rev. Neurosci. 16, 226–233 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Gleixner, R. & Fromherz, P. The extracellular electrical resistivity in cell adhesion. Biophys. J. 90, 2600–2611 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rudy, Y. & Plonsey, R. Volume conductor and geometrical effects on body-surface and epicardial potentials.1. Theory. Phys. Med. Biol. 25, 978–978 (1980).

    Google Scholar 

  42. Hallez, H. et al. Review on solving the forward problem in EEG source analysis. J. Neuroeng. Rehabil. 4, 46 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  43. McLaughlin, S. The electrostatic properties of membranes. Annu. Rev. Biophys. Biophys. Chem. 18, 113–136 (1989).

    Article  CAS  PubMed  Google Scholar 

  44. Greathouse, J. A., Feller, S. E. & Mcquarrie, D. A. The modified Gouy-Chapman theory - comparisons between electrical double-layer models of clay swelling. Langmuir 10, 2125–2130 (1994).

    Article  CAS  Google Scholar 

  45. Zheng, K., Scimemi, A. & Rusakov, D. A. Receptor actions of synaptically released glutamate: the role of transporters on the scale from nanometers to microns. Biophys. J. 95, 4584–4596 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nadler, B., Naeh, T. & Schuss, Z. Connecting a discrete ionic simulation to a continuum. SIAM J. Appl. Math. 63, 850–873 (2003).

    Article  Google Scholar 

  47. Sylantyev, S., Savtchenko, L. P., Ermolyuk, Y., Michaluk, P. & Rusakov, D. A. Spike-driven glutamate electrodiffusion triggers synaptic potentiation via a Homer-dependent mGluR-NMDAR link. Neuron 77, 528–541 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Guerrier, C. & Holcman, D. Hybrid Markov-mass action law model for cell activation by rare binding events: application to calcium induced vesicular release at neuronal synapses. Sci. Rep. 6, 35506 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Marhl, M., Brumen, M., Glaser, R. & Heinrich, R. Diffusion layer caused by local ionic transmembrane fluxes. Pflugers Arch. 431, R259–R260 (1996).

    Article  CAS  PubMed  Google Scholar 

  50. McLaughlin, S. G., Szabo, G. & Eisenman, G. Divalent ions and the surface potential of charged phospholipid membranes. J. Gen. Physiol. 58, 667–687 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ward, K. R., Dickinson, E. J. F. & Compton, R. G. How far do membrane potentials extend in space beyond the membrane itself? Int. J. Electrochem. Sci. 5, 1527–1534 (2010).

    CAS  Google Scholar 

  52. Stuart, G., Schiller, J. & Sakmann, B. Action potential initiation and propagation in rat neocortical pyramidal neurons. J. Physiol.-Lond. 505, 617–632 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bezanilla, F. The voltage sensor in voltage-dependent ion channels. Physiol. Rev. 80, 555–592 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. Catterall, W. A. Ion channel voltage sensors: structure, function, and pathophysiology. Neuron 67, 915–928 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Neher, E. Correction for liquid junction potentials in patch clamp experiments. Method Enzymol. 207, 123–131 (1992).

    Article  CAS  Google Scholar 

  56. von J. J. Lingane . Electroanalytical Chemistry (Interscience Publishers, 1958).

    Google Scholar 

  57. Dickinson, E. J., Freitag, L. & Compton, R. G. Dynamic theory of liquid junction potentials. J. Phys. Chem. B 114, 187–197 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. Barton, P. G. The influence of surface charge density of phosphatides on the binding of some cations. J. Biol. Chem. 243, 3884–3890 (1968).

    CAS  PubMed  Google Scholar 

  59. Gurtovenko, A. A. & Vattulainen, I. Membrane potential and electrostatics of phospholipid bilayers with asymmetric transmembrane distribution of anionic lipids. J. Phys. Chem. B 112, 4629–4634 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. van Meer, G., Voelker, D. R. & Feigenson, G. W. Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol. 9, 112–124 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Isaev, D. et al. Surface charge impact in low-magnesium model of seizure in rat hippocampus. J. Neurophysiol. 107, 417–423 (2012).

    Article  CAS  PubMed  Google Scholar 

  62. Rusakov, D. A. & Fine, A. Extracellular Ca2+ depletion contributes to fast activity-dependent modulation of synaptic transmission in the brain. Neuron 37, 287–297 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Annunziato, L., Pignataro, G. & Di Renzo, G. F. Pharmacology of brain Na+/Ca2+ exchanger: from molecular biology to therapeutic perspectives. Pharmacol. Rev. 56, 633–654 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Hahin, R. & Campbell, D. T. Simple shifts in the voltage dependence of sodium channel gating caused by divalent cations. J. Gen. Physiol. 82, 785–805 (1983).

    Article  CAS  PubMed  Google Scholar 

  65. Hille, B., Woodhull, A. M. & Shapiro, B. I. Negative surface charge near sodium channels of nerve: divalent ions, monovalent ions, and pH. Phil. Trans. R. Soc. Lond. B 270, 301–318 (1975).

    Article  CAS  Google Scholar 

  66. Isaev, D. et al. Role of extracellular sialic acid in regulation of neuronal and network excitability in the rat hippocampus. J. Neurosci. 27, 11587–11594 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ednie, A. R. & Bennett, E. S. Modulation of voltage-gated ion channels by sialylation. Compr. Physiol. 2, 1269–1301 (2012).

    PubMed  Google Scholar 

  68. Michaluk, P. et al. Matrix metalloproteinase-9 controls NMDA receptor surface diffusion through integrin β1 signaling. J. Neurosci. 29, 6007–6012 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kochlamazashvili, G. et al. The extracellular matrix molecule hyaluronic acid regulates hippocampal synaptic plasticity by modulating postsynaptic L-type Ca2+ channels. Neuron 67, 116–128 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Dityatev, A., Schachner, M. & Sonderegger, P. The dual role of the extracellular matrix in synaptic plasticity and homeostasis. Nat. Rev. Neurosci. 11, 735–746 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Young, S. H. & Poo, M. M. Topographical rearrangement of acetylcholine receptors alters channel kinetics. Nature 304, 161–163 (1983).

    Article  CAS  PubMed  Google Scholar 

  72. Qian, N. & Sejnowski, T. J. An electro-diffusion model for computing membrane-potentials and ionic concentrations in branching dendrites, spines and axons. Biol. Cybern. 62, 1–15 (1989). This paper provides a clear and detailed outline of the mathematical formalism of electrodiffusion pertinent to small spaces in the microenvironment of dendrites and synapses.

    Article  Google Scholar 

  73. Langlands, T. A., Henry, B. I. & Wearne, S. L. Fractional cable equation models for anomalous electrodiffusion in nerve cells: infinite domain solutions. J. Math. Biol. 59, 761–808 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. Henry, B. I., Langlands, T. A. & Wearne, S. L. Fractional cable models for spiny neuronal dendrites. Phys. Rev. Lett. 100, 128103 (2008).

    Article  CAS  PubMed  Google Scholar 

  75. Halnes, G., Ostby, I., Pettersen, K. H., Omholt, S. W. & Einevoll, G. T. Electrodiffusive model for astrocytic and neuronal ion concentration dynamics. PLoS Comput. Biol. 9, e1003386 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Halnes, G., Ostby, I., Pettersen, K. H., Omholt, S. W. & Einevoll, G. T. in Advances in Cognitive Neurodynamics (IV) (ed. Liljenström, H.) 353–360 (2015).

    Book  Google Scholar 

  77. Gianazza, E. & Righetti, P. G. Size and charge-distribution of macromolecules in living systems. J. Chromatogr. 193, 1–8 (1980).

    Article  CAS  Google Scholar 

  78. Lodish, H. F. Molecular cell biology 4th edn (W. H. Freeman, 2000).

    Google Scholar 

  79. Glykys, J. et al. Local impermeant anions establish the neuronal chloride concentration. Science 343, 670–675 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Voipio, J. et al. Comment on “Local impermeant anions establish the neuronal chloride concentration”. Science 345, 1130 (2014).

    Article  CAS  PubMed  Google Scholar 

  81. Kaila, K., Price, T. J., Payne, J. A., Puskarjov, M. & Voipio, J. Cation-chloride cotransporters in neuronal development, plasticity and disease. Nat. Rev. Neurosci. 15, 637–654 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Doyon, N., Vinay, L., Prescott, S. A. & De Koninck, Y. Chloride regulation: a dynamic equilibrium crucial for synaptic inhibition. Neuron 89, 1157–1172 (2016).

    Article  CAS  PubMed  Google Scholar 

  83. Luby-Phelps, K. The physical chemistry of cytoplasm and its influence on cell function: an update. Mol. Biol. Cell 24, 2593–2596 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Luby-Phelps, K. Cytoarchitecture and physical properties of cytoplasm: volume, viscosity, diffusion, intracellular surface area. Int. Rev. Cytol. 192, 189–221 (2000).

    Article  CAS  PubMed  Google Scholar 

  85. Leterrier, J. F. Water and the cytoskeleton. Cell. Mol. Biol. (Noisy-le-Grand) 47, 901–923 (2001).

    CAS  Google Scholar 

  86. Fels, J., Orlov, S. N. & Grygorczyk, R. The hydrogel nature of mammalian cytoplasm contributes to osmosensing and extracellular pH sensing. Biophys. J. 96, 4276–4285 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Janmey, P. A., Slochower, D. R., Wang, Y. H., Wen, Q. & Cebers, A. Polyelectrolyte properties of filamentous biopolymers and their consequences in biological fluids. Soft Matter 10, 1439–1449 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Verkman, A. S. Solute and macromolecule diffusion in cellular aqueous compartments. Trends Biochem. Sci. 27, 27–33 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Tuszynski, J. A., Portet, S., Dixon, J. M., Luxford, C. & Cantiello, H. F. Ionic wave propagation along actin filaments. Biophys. J. 86, 1890–1903 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kekenes-Huskey, P. M., Scott, C. E. & Atalay, S. Quantifying the influence of the crowded cytoplasm on small molecule diffusion. J. Phys. Chem. B 120, 8696–8770 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Eccles, J. C. The Physiology of Synapses (Springer-Verlag, 1964).

    Book  Google Scholar 

  92. Poo, M. M. & Young, S. H. Diffusional and electrokinetic redistribution at the synapse - a physicochemical basis of synaptic competition. J. Neurobiol. 21, 157–168 (1990).

    Article  CAS  PubMed  Google Scholar 

  93. Sylantyev, S. et al. Electric fields due to synaptic currents sharpen excitatory transmission. Science 319, 1845–1849 (2008). This study provided the first experimental demonstration of electrodiffusion phenomena affecting glutamatergic transmission in the synaptic cleft.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Xie, Z. P. & Poo, M. M. Initial events in the formation of neuromuscular synapse - rapid induction of acetylcholine-release from embryonic neuron. Proc. Natl Acad. Sci. USA 83, 7069–7073 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Groc, L. et al. Differential activity-dependent regulation of the lateral mobilities of AMPA and NMDA receptors. Nat. Neurosci. 7, 695–696 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. Ashby, M. C., Maier, S. R., Nishimune, A. & Henley, J. M. Lateral diffusion drives constitutive exchange of AMPA receptors at dendritic spines and is regulated by spine morphology. J. Neurosci. 26, 7046–7055 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Anantharam, V. et al. Combinatorial RNA splicing alters the surface-charge on the nmda receptor. Febs Lett. 305, 27–30 (1992).

    Article  CAS  PubMed  Google Scholar 

  98. Choquet, D. & Triller, A. The role of receptor diffusion in the organization of the postsynaptic membrane. Nat. Rev. Neurosci. 4, 251–265 (2003).

    Article  CAS  PubMed  Google Scholar 

  99. Seeliger, C. & Le Novere, N. Enabling surface dependent diffusion in spatial simulations using Smoldyn. BMC Res. Notes 8, 752 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Constals, A. et al. Glutamate-induced AMPA receptor desensitization increases their mobility and modulates short-term plasticity through unbinding from Stargazin. Neuron 85, 787–803 (2015).

    Article  CAS  PubMed  Google Scholar 

  101. Czondor, K. et al. Unified quantitative model of AMPA receptor trafficking at synapses. Proc. Natl Acad. Sci. USA 109, 3522–3527 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Bliss, T. & Lomo, T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J. Physiol. 232, 331–356 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ehlers, M. D., Heine, M., Groc, L., Lee, M. C. & Choquet, D. Diffusional trapping of GluR1 AMPA receptors by input-specific synaptic activity. Neuron 54, 447–460 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Meier, J., Vannier, C., Serge, A., Triller, A. & Choquet, D. Fast and reversible trapping of surface glycine receptors by gephyrin. Nat. Neurosci. 4, 253–260 (2001).

    Article  CAS  PubMed  Google Scholar 

  105. Cartailler, J., Schuss, Z. & Holcman, D. Analysis of the Poisson-Nernst-Planck equation in a ball for modeling the Voltage-Current relation in neurobiological microdomains. Phys. D-Nonlinear Phenomena 339, 39–48 (2017).

    Article  Google Scholar 

  106. Cartailler, J., Schuss, Z. & Holcman, D. Electrostatics of non-neutral biological microdomains. arXiv 1612.07941 (2016). This paper provides the most complete mathematical description to date of electrolyte electrodynamics in small cellular compartments.

  107. Shilov, V., Barany, S., Grosse, C. & Shramko, O. Field-induced disturbance of the double layer electro-neutrality and non-linear electrophoresis. Adv. Colloid Interface Sci. 104, 159–173 (2003).

    Article  CAS  PubMed  Google Scholar 

  108. Grienberger, C. & Konnerth, A. Imaging calcium in neurons. Neuron 73, 862–885 (2012).

    Article  CAS  PubMed  Google Scholar 

  109. Bauer, M., Godec, A. & Metzler, R. Diffusion of finite-size particles in two-dimensional channels with random wall configurations. Phys. Chem. Chem. Phys. 16, 6118–6128 (2014).

    Article  CAS  PubMed  Google Scholar 

  110. Zitserman, V. Y., Berezhkovskii, A. M., Pustovoit, M. A. & Bezrukov, S. M. Relaxation and fluctuations of the number of particles in a membrane channel at arbitrary particle-channel interaction. J. Chem. Phys. 129, 095101 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Mak, D. O. & Webb, W. W. Conductivity noise in transmembrane ion channels due to ion concentration fluctuations via diffusion. Biophys. J. 72, 1153–1164 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Das, S. Electric-double-layer potential distribution in multiple-layer immiscible electrolytes: effect of finite ion sizes. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 85, 012502 (2012). This paper presents a theoretical investigation that reveals how the size of ions can affect the electric field profile near charged cell membranes.

    Article  PubMed  CAS  Google Scholar 

  113. Bialek, W. & Setayeshgar, S. Physical limits to biochemical signaling. Proc. Natl Acad. Sci. USA 102, 10040–10045 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Poo, M. & Robinson, K. R. Electrophoresis of concanavalin A receptors along embryonic muscle cell membrane. Nature 265, 602–605 (1977).

    Article  CAS  PubMed  Google Scholar 

  115. Mclaughlin, S. & Poo, M. M. The role of electroosmosis in the electric-field-induced movement of charged macromolecules on the surfaces of cells. Biophys. J. 34, 85–93 (1981). This work is the first study to show experimentally and to explain theoretically the effect of electro-osmosis on the lateral redistribution of membrane components.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Rusakov, D. A., Savtchenko, L. P., Zheng, K. & Henley, J. M. Shaping the synaptic signal: molecular mobility inside and outside the cleft. Trends Neurosci. 34, 359–369 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Linliu, S., Adey, W. R. & Poo, M. M. Migration of cell-surface concanavalin a receptors in pulsed electric-fields. Biophys. J. 45, 1211–1217 (1984).

    Article  CAS  Google Scholar 

  118. Patel, N. B. & Poo, M. M. Perturbation of the direction of neurite growth by pulsed and focal electric-fields. J. Neurosci. 4, 2939–2947 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Henley, J. & Poo, M. Guiding neuronal growth cones using Ca2+ signals. Trends Cell Biol. 14, 320–330 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Dufreche, J. F., Jardat, M., Turq, P. & Bagchi, B. Electrostatic relaxation and hydrodynamic interactions for self-diffusion of ions in electrolyte solutions. J. Phys. Chem. B 112, 10264–10271 (2008).

    Article  CAS  PubMed  Google Scholar 

  121. Kobelev, V., Kolomeisky, A. B. & Panagiotopoulos, A. Z. Thermodynamics of electrolytes on anisotropic lattices. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68, 066110 (2003).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Wellcome Trust Principal Fellowship, a European Research Council Advanced Grant (323113-NETSIGNAL), a Russian Science Foundation grant (15-14-30000, Fig. 1 data) and FP7 ITN (606950 EXTRABRAIN). (101896).

Author information

Authors and Affiliations

Authors

Contributions

The authors all researched data for the article, made substantial contributions to discussions of the content, wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Dmitri A. Rusakov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Electrodiffusion

Diffusion of charged particles in electric fields.

Electrodynamic events

Time-dependent changes in electric fields or ion distributions.

Debye length

(LD). A scale over which the free charges, and therefore the electric field, are screened by an electrolytic solution.

Debye time

(tD). The average time required for an ion to travel one Debye length.

Extracellular matrix

A loose mesh, or possibly a hydrogel-like structure, composed of fibrous proteins and polysaccharides that fill the interstitial space in the brain (and other tissues).

Anisotropic media

Media that display different properties in different directions, whereas the properties of isotropic media or fields do not depend on direction.

Second-rank conductivity tensor

A measure of conductivity is a 3 × 3 array (matrix) of values that characterize medium electrical conductivity in the x, y and z directions.

Dielectric media

Media that cannot conduct electric current.

Inner Helmholtz layer

A layer that is formed in the sub-membrane space by cations that are attracted to the negatively charged cell membrane surface.

Electrical double layer

(EDL). A layer that is formed by free-diffusing electrolyte ions in the nanoscopic proximity of a charged surface, with the immediately adjacent layer of opposite-sign ions followed by a more diffuse layer of same-sign ions.

Gouy–Chapman theory

Classical formulas to describe the formation of diffuse charged layers occurring in the vicinity of a charged surface (membrane) as a result of free diffusion of small ions.

Monte Carlo

Models that rely on computational algorithms that employ random number generation to mimic naturally occurring stochastic events, such as molecular Brownian motion.

Boltzmann distribution

Sometimes called a Gibbs distribution, this is a probability distribution of the stochastically behaving particles being in a certain state.

Poisson–Boltzmann theory

Equations that describe the electrochemical potential of ions in the diffuse layer.

Continuum limit

A theoretical approximation in which, at certain limiting scale, discrete (binned) system elements are considered as a continuous parameter or feature of the system.

Van der Waals interactions

Attractive or repulsive intermolecular forces that are not related to (and are normally weaker than) covalent bonds or electrostatic forces. These interactions may include dipole interaction, hydration or lipophilicity, among others.

V*m potential

The local electric field in the membrane proximity that drives voltage sensors of ion channels and other voltage-sensitive membrane proteins.

Liquid junction potential

(LJP). A potential that arises at a non-selective boundary between two electrolytes with different ion concentrations or mobility.

Sialylation

A biochemical reaction in which sialic acid (an N- or O-substituted derivative of neuraminic acid) groups are introduced into oligosaccharides and carbohydrates as the terminal monosaccharide.

Hydrogel

An intracellular or extracellular network of polymer-like molecules that often carry a high-density surface charge, with a flexible structure sensitive to the bulk pH and osmolarity.

Intracellular organelles

Specialized subunits or multi-molecular complexes that are equipped with a specific function inside a cell.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savtchenko, L., Poo, M. & Rusakov, D. Electrodiffusion phenomena in neuroscience: a neglected companion. Nat Rev Neurosci 18, 598–612 (2017). https://doi.org/10.1038/nrn.2017.101

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn.2017.101

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing