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In their recent article (The neural bases of emo-
tion regulation. Nat. Rev. Neurosci. 16, 693–700 
(2015))1, Etkin, Büchel and Gross proposed 
testing emotion regulation using computa-
tional approaches that are anchored in rein-
forcement learning. Their framework classifies 
emotion regulation strategies as model-based 
(MB; computationally sophisticated, prospec-
tive processes that consider environmental 
structure) or model-free (MF; computation-
ally efficient, reflexive processes relying on past 
reinforcement)2. Although linking emotion 
regulation to computational decision making 
is valuable, here we argue that the MB versus 
MF classification may be inadequate to capture 
the complexity of emotion regulation.

The authors use extinction as a key example 
of a MF regulation strategy. During extinction, 
conditioned responses diminish as a condi-
tioned stimulus (CS) is no longer reinforced 
by an unconditioned stimulus (US). Extinction 
could be perceived as a MF strategy because it 
uses prediction error signals that emerge from 
recent reinforcement (that is, a CS no longer 
predicts an US). However, a standard obser-
vation is that after extinction learning, condi-
tioned responses tend to re-emerge over time (a 
process known as spontaneous recovery)3,4. As 
MF reinforcement learning theories describe 
extinction as the process of ‘unlearning’ the 
CS–US association5, they cannot account for 
spontaneous recovery. Rather, extinction learn-
ing across species has been shown to have MB 
features6,7. Specifically, a MB perception of the 
‘state’ in which extinction learning occurs pre-
dicts the magnitude of spontaneous recovery. 
Further, modelling conditioned responses in 
humans using a MF learning strategy alone 
fits the data more poorly than a Bayesian ‘latent 
cause’ model that incorporates MB features7. 
Thus, extinction appears to reflect a complex 

interaction of MF learning with MB state rep-
resentations8. Since even simple extinction 
learning cannot be described as purely MF, it 
is unlikely that a MB–MF distinction will use-
fully distinguish between emotion regulation 
strategies9.

The limitations of the MB–MF distinc-
tion are further highlighted by recent work 
on decision making demonstrating the pre-
dictive power of hybrid MB–MF models and 
identifying complex relationships between 
these strategies. Such conceptualizations can 
include hierarchical organization of goals 
and sub-goals, in which MB–MF processes 
exist within each other (for example, a goal is 
selected in a MF sense, but implemented using 
MB strategies10). We propose that this account 
may provide a better framework to understand 
emotion regulation. Take the example of avoid-
ance, which is a behavioural strategy prevalent 
in anxiety disorders11. The initial choice to 
avoid something aversive may be a MF process: 
it need not require a prospective model given 
its strong history of negative reinforcement 
(alleviated fear). However, once this goal has 
been selected, the steps to  carry out avoidance 
may require a ‘nested’ MB process. An individ-
ual with a height phobia may reflexively avoid 
crossing bridges on their way home (MF), but 
may use a number of flexible, complex strate-
gies (MB) to achieve this goal, such as taking a 
novel, circuitous route.

Using these nuanced classifications can pro-
vide a path forward. We propose that emotion 
regulation strategies should be classified on the 
basis of the degree to which they involve MB 
elements (for example, prospection12) and MF 
elements (for example, linking action and rein-
forcement), and the hierarchical relationships 
between them. This class ification will enable us 
to predict the utility of these strategies across 

individuals12,13 (for example, in healthy versus 
clinical populations) and contexts (for example, 
under stress14 or cognitive load15).
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