Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Evaluating cell reprogramming, differentiation and conversion technologies in neuroscience

Key Points

  • Since the discovery of induced pluripotent stem cell (iPSC) reprograming, many protocols to generate human neural cells, including specific neuronal subtypes, astrocytes and other glial cells have emerged.

  • Guided differentiation protocols for the production of specific brain cell subtypes from human pluripotent stem cells (hPSCs) follow known developmental pathways. The precise combination of molecular cues allows scientists to guide neural commitment, early regionalization and cell type specification to develop cultures enriched for specific neuronal subtypes.

  • The generation of functional neurons and glia from hPSCs can be markedly improved by controlling the cellular environment in vitro, and advances in developing optimized culture scaffolds, culture media and 3D neural organoid cultures enhance our ability to provide more sophisticated tissue models of the brain. Authentic models of physiological human neuronal tissue in vitro will provide novel means to study human neuronal development and disease.

  • Functional neural cell cultures can also be obtained by converting primary human somatic cells, such as skin fibroblasts, directly into neurons or glia. Direct conversion into induced neurons (iNs) is typically achieved through the overexpression of pro-neuronal transcription factors; alternative methods based on RNA interference or small molecules are also being developed.

  • Direct conversion of human somatic cells into defined neuronal subtypes can be achieved through combined overexpression of general pro-neuronal drivers and secondary lineage-specifying transcription factors.

  • The increasing number of available methods to generate different neural cell types from human skin cells demands a careful consideration of practical as well as conceptual differences between hPSC differentiation and direct conversion methods. Practical concerns may include duration, difficulty, costs, efficiency, available cell numbers and subtypes that can be generated by a certain method; conceptual differences encompass the influence of the respective reprogramming method on the genomic identity of the derived cell culture (for example, clonal or mosaic), their epigenetic state (for example, rejuvenation), as well as whether a certain method recapitulates relevant neurodevelopmental and maturation.

Abstract

The scarcity of live human brain cells for experimental access has for a long time limited our ability to study complex human neurological disorders and elucidate basic neuroscientific mechanisms. A decade ago, the development of methods to reprogramme somatic human cells into induced pluripotent stem cells enabled the in vitro generation of a wide range of neural cells from virtually any human individual. The growth of methods to generate more robust and defined neural cell types through reprogramming and direct conversion into induced neurons has led to the establishment of various human reprogramming-based neural disease models.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reprogramming or direct conversion to generate neural cells.
Figure 2: Stages of neural differentiation in vitro and in vivo.
Figure 3: Methods for direct iN conversion.
Figure 4: Comparing iPSC differentiation and direct iN conversion.

Similar content being viewed by others

References

  1. Kola, I. & Landis, J. Can the pharmaceutical industry reduce attrition rates? Nat. Rev. Drug Discov. 3, 711–715 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Rubin, L. L. Stem cells and drug discovery: the beginning of a new era? Cell 132, 549–552 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007). The first publication to describe the reprogramming of human fibroblasts into iPSCs using defined transcription factors.

    Article  CAS  PubMed  Google Scholar 

  4. Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Park, I.-H. et al. Disease-specific induced pluripotent stem cells. Cell 134, 877–886 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Vierbuchen, T. et al. Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463, 1035–1041 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pang, Z. P. et al. Induction of human neuronal cells by defined transcription factors. Nature 26, 220–223 (2011). References 6 and 7 provide the first demonstrations that mouse and human fibroblasts can be efficiently converted into functional neurons using defined transcription factors.

    Article  CAS  Google Scholar 

  8. Xu, J., Du, Y. & Deng, H. Direct lineage reprogramming: strategies, mechanisms, and applications. Cell Stem Cell 16, 119–134 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Prescott, S. L. et al. Enhancer divergence and cis-regulatory evolution in the human and chimp neural crest. Cell 163, 68–83 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Marchetto, M. C. N. et al. Differential L1 regulation in pluripotent stem cells of humans and apes. Nature 503, 525–529 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Koch, P. et al. Excitation-induced ataxin-3 aggregation in neurons from patients with Machado–Joseph disease. Nature 480, 543–546 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Brennand, K. J. et al. Modelling schizophrenia using human induced pluripotent stem cells. Nature 473, 221–225 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chambers, S. M. et al. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat. Biotechnol. 27, 275–280 (2009). This paper describes a strategy for increasing the efficiency of neural differentiation of hPSCs by inhibiting SMAD signalling and was the first to introduce the sophisticated use of small molecules in hPSC differentiation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Maury, Y. et al. Combinatorial analysis of developmental cues efficiently converts human pluripotent stem cells into multiple neuronal subtypes. Nat. Biotechnol. 33, 89–96 (2014).

    Article  PubMed  CAS  Google Scholar 

  15. Vierbuchen, T. & Wernig, M. Direct lineage conversions: unnatural but useful? Nat. Biotechnol. 29, 892–907 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wichterle, H., Lieberam, I., Porter, J. A. & Jessell, T. M. Directed differentiation of embryonic stem cells into motor neurons. Cell 110, 385–397 (2002). One of the first studies to identify the key events in early mammalian neural commitment and regionalization and apply them to the differentiation of stem cells to a specific neuronal subtype in vitro.

    Article  CAS  PubMed  Google Scholar 

  17. Farkas, L. M. & Huttner, W. B. The cell biology of neural stem and progenitor cells and its significance for their proliferation versus differentiation during mammalian brain development. Curr. Opin. Cell Biol. 20, 707–715 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Pasca, S. P. et al. Using iPSC-derived neurons to uncover cellular phenotypes associated with Timothy syndrome. Nat. Med. 17, 1657–1662 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fasano, C. A., Chambers, S. M., Lee, G., Tomishima, M. J. & Studer, L. Efficient derivation of functional floor plate tissue from human embryonic stem cells. Cell Stem Cell 6, 336–347 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kriks, S. et al. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson's disease. Nature 480, 547–551 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fuccillo, M., Joyner, A. L. & Fishell, G. Morphogen to mitogen: the multiple roles of hedgehog signalling in vertebrate neural development. Nat. Rev. Neurosci. 7, 772–783 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Liu, A. & Niswander, L. A. Bone morphogenetic protein signalling and vertebrate nervous system development. Nat. Rev. Neurosci. 6, 945–954 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Ciani, L. & Salinas, P. C. WNTS in the vertebrate nervous system: from patterning to neuronal connectivity. Nat. Rev. Neurosci. 6, 351–362 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Mason, I. Initiation to end point: the multiple roles of fibroblast growth factors in neural development. Nat. Rev. Neurosci. 8, 583–596 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Maden, M. Retinoic acid in the development, regeneration and maintenance of the nervous system. Nat. Rev. Neurosci. 8, 755–765 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Danjo, T. et al. Subregional specification of embryonic stem cell-derived ventral telencephalic tissues by timed and combinatory treatment with extrinsic signals. J. Neurosci. 31, 1919–1933 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Eiraku, M. et al. Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell 3, 519–532 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Elkabetz, Y. et al. Human ES cell-derived neural rosettes reveal a functionally distinct early neural stem cell stage. Genes Dev. 22, 152–165 (2008). This was the first highly sophisticated study to classify the different types of NPCs that can be derived from hPSCs and demonstrate that in vitro neural differentiation follows the rules of in vivo development.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Peljto, M. & Wichterle, H. Programming embryonic stem cells to neuronal subtypes. Curr. Opin. Neurobiol. 21, 43–51 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Yu, D. X. et al. Modeling hippocampal neurogenesis using human pluripotent stem cells. Stem Cell Rep. 2, 295–310 (2014).

    Article  CAS  Google Scholar 

  31. Fasano, C. A. et al. Bmi-1 cooperates with Foxg1 to maintain neural stem cell self-renewal in the forebrain. Genes Dev. 23, 561–574 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Maroof, A. M. et al. Directed differentiation and functional maturation of cortical interneurons from human embryonic stem cells. Cell Stem Cell 12, 559–572 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nicholas, C. R. et al. Functional maturation of hPSC-derived forebrain interneurons requires an extended timeline and mimics human neural development. Cell Stem Cell 12, 573–586 (2013). References 32 and 33 showed that a combination of small-molecule approaches to induce ventral telencephalic fate and inhibition of WNT and SMAD signalling was able to induce MGE-like interneuron progenitors from hPSCs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shi, Y., Kirwan, P., Smith, J., Robinson, H. P. C. & Livesey, F. J. Human cerebral cortex development from pluripotent stem cells to functional excitatory synapses. Nat. Neurosci. 15, 477–486 (2012). This paper presents a comprehensive protocol to simulate cortical development based on hPSCs.

    Article  CAS  PubMed  Google Scholar 

  35. Espuny-Camacho, I. et al. Pyramidal neurons derived from human pluripotent stem cells integrate efficiently into mouse brain circuits in vivo. Neuron 77, 440–456 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Lancaster, M. A. et al. Cerebral organoids model human brain development and microcephaly. Nature 510, 373–379 (2013).

    Article  CAS  Google Scholar 

  37. Li, X. J. et al. Coordination of sonic hedgehog and Wnt signaling determines ventral and dorsal telencephalic neuron types from human embryonic stem cells. Development 136, 4055–4063 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shi, Y., Kirwan, P. & Livesey, F. J. Directed differentiation of human pluripotent stem cells to cerebral cortex neurons and neural networks. Nat. Protoc. 7, 1836–1846 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Gorris, R. et al. Pluripotent stem cell-derived radial glia-like cells as stable intermediate for efficient generation of human oligodendrocytes. Glia 63, 2152–2167 (2015).

    Article  PubMed  Google Scholar 

  40. Noctor, S. C., MartInez-CerdeNo, V., Ivic, L. & Kriegstein, A. R. Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat. Neurosci. 7, 136–144 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Leone, D. P., Srinivasan, K., Chen, B., Alcamo, E. & McConnell, S. K. The determination of projection neuron identity in the developing cerebral cortex. Curr. Opin. Neurobiol. 18, 28–35 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chen, B. et al. The Fezf2Ctip2 genetic pathway regulates the fate choice of subcortical projection neurons in the developing cerebral cortex. Proc. Natl Acad. Sci. USA 105, 11382–11387 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Alcamo, E. A. et al. Satb2 regulates callosal projection neuron identity in the developing cerebral cortex. Neuron 57, 364–377 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Soldner, F. et al. Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations. Cell 146, 318–331 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Reinhardt, P. et al. Genetic correction of a LRRK2 mutation in human iPSCs links parkinsonian neurodegeneration to ERK-dependent changes in gene expression. Cell Stem Cell 12, 354–367 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Cho, M. S., Hwang, D.-Y. & Kim, D.-W. Efficient derivation of functional dopaminergic neurons from human embryonic stem cells on a large scale. Nat. Protoc. 3, 1888–1894 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Swistowski, A. et al. Xeno-free defined conditions for culture of human embryonic stem cells, neural stem cells and dopaminergic neurons derived from them. PLoS ONE 4, e6233 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Boyer, L. F., Campbell, B., Larkin, S., Mu, Y. & Gage, F. H. Dopaminergic differentiation of human pluripotent cells. Curr. Protoc. Stem Cell Biol. http://dx.doi.org/10.1002/9780470151808.sc01h06s22 (2012).

  49. Ganat, Y. M. et al. Identification of embryonic stem cell-derived midbrain dopaminergic neurons for engraftment. J. Clin. Invest. 122, 2928–2939 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Arlotta, P. et al. Neuronal subtype-specific genes that control corticospinal motor neuron development in vivo. Neuron 45, 207–221 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Molyneaux, B. J., Arlotta, P., Menezes, J. R. L. & Macklis, J. D. Neuronal subtype specification in the cerebral cortex. Nat. Rev. Neurosci. 8, 427–437 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Lodato, S. et al. Gene co-regulation by Fezf2 selects neurotransmitter identity and connectivity of corticospinal neurons. Nat. Neurosci. 17, 1046–1054 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ruby, K. M. & Zheng, B. Gene targeting in a HUES line of human embryonic stem cells via electroporation. Stem Cells 27, 1496–1506 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Di Giorgio, F. P., Boulting, G. L., Bobrowicz, S. & Eggan, K. C. Human embryonic stem cell-derived motor neurons are sensitive to the toxic effect of glial cells carrying an ALS-causing mutation. Cell Stem Cell 3, 637–648 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Marchetto, M. C. N. et al. Non-cell-autonomous effect of human SOD1. Cell Stem Cell 3, 649–657 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Dimos, J. T. et al. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 321, 1218–1221 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Amoroso, M. W. et al. Accelerated high-yield generation of limb-innervating motor neurons from human stem cells. J. Neurosci. 33, 574–586 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ebert, A. D. & Svendsen, C. N. Stem cell model of spinal muscular atrophy. Arch. Neurol. 67, 665–669 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Ng, S.-Y. et al. Genome-wide RNA-Seq of human motor neurons implicates selective ER stress activation in spinal muscular atrophy. Cell Stem Cell 17, 569–584 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Egawa, N. et al. Drug screening for ALS using patient-specific induced pluripotent stem cells. Sci. Transl Med. 4, 145ra104 (2012).

    Article  PubMed  CAS  Google Scholar 

  61. Wonders, C. P. & Anderson, S. A. The origin and specification of cortical interneurons. Nat. Rev. Neurosci. 7, 687–696 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Chao, H.-T. et al. Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes. Nature 468, 263–269 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lewis, D. A., Curley, A. A., Glausier, J. R. & Volk, D. W. Cortical parvalbumin interneurons and cognitive dysfunction in schizophrenia. Trends Neurosci. 35, 57–67 (2012).

    Article  CAS  PubMed  Google Scholar 

  64. Glass, C. K., Saijo, K., Winner, B., Marchetto, M. C. & Gage, F. H. Mechanisms underlying inflammation in neurodegeneration. Cell 140, 918–934 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Verkhratsky, A. & Parpura, V. Astrogliopathology in neurological, neurodevelopmental and psychiatric disorders. Neurobiol. Dis. 85, 254–261 (2016).

    Article  PubMed  Google Scholar 

  66. Eroglu, C. & Barres, B. A. Regulation of synaptic connectivity by glia. Nature 468, 223–231 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chung, W.-S., Allen, N. J. & Eroglu, C. Astrocytes control synapse formation, function, and elimination. Cold Spring Harbor Perspect. Biol. 7, a020370 (2015).

    Article  CAS  Google Scholar 

  68. Krencik, R., Weick, J. P., Liu, Y., Zhang, Z.-J. & Zhang, S.-C. Specification of transplantable astroglial subtypes from human pluripotent stem cells. Nat. Biotechnol. 29, 528–534 (2011). This is a key study describing the derivation of astrocytes from hPSCs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Krencik, R. & Zhang, S.-C. Directed differentiation of functional astroglial subtypes from human pluripotent stem cells. Nat. Protoc. 6, 1710–1717 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhang, P.-W. et al. Generation of GFAP::GFP astrocyte reporter lines from human adult fibroblast-derived iPS cells using zinc-finger nuclease technology. Glia 64, 63–75 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Pfeiffer, S. E., Warrington, A. E. & Bansal, R. The oligodendrocyte and its many cellular processes. Trends Cell Biol. 3, 191–197 (1993).

    Article  CAS  PubMed  Google Scholar 

  72. Rogister, B., Ben-Hur, T. & Dubois-Dalcq, M. From neural stem cells to myelinating oligodendrocytes. Mol. Cell. Neurosci. 14, 287–300 (1999).

    Article  CAS  PubMed  Google Scholar 

  73. Grinspan, J. Cells and signaling in oligodendrocyte development. J. Neuropathol. Exp. Neurol. 61, 297–306 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. Schachner, M., Kim, S. K. & Zehnle, R. Developmental expression in central and peripheral nervous system of oligodendrocyte cell surface antigens (O antigens) recognized by monoclonal antibodies. Dev. Biol. 83, 328–338 (1981).

    Article  CAS  PubMed  Google Scholar 

  75. Douvaras, P. & Fossati, V. Generation and isolation of oligodendrocyte progenitor cells from human pluripotent stem cells. Nat. Protoc. 10, 1143–1154 (2015).

    Article  CAS  PubMed  Google Scholar 

  76. Kerman, B. E. et al. In vitro myelin formation using embryonic stem cells. Development 142, 2213–2225 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hu, B. Y., Du, Z. W., Li, X. J., Ayala, M. & Zhang, S. C. Human oligodendrocytes from embryonic stem cells: conserved SHH signaling networks and divergent FGF effects. Development 136, 1443–1452 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Johansson, J. U. et al. Prostaglandin signaling suppresses beneficial microglial function in Alzheimer's disease models. J. Clin. Invest. 125, 350–364 (2015).

    Article  PubMed  Google Scholar 

  79. Zhong, Z. et al. Activated protein C therapy slows ALS-like disease in mice by transcriptionally inhibiting SOD1 in motor neurons and microglia cells. J. Clin. Invest. 119, 3437–3449 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. De Boer, A. S. et al. Genetic validation of a therapeutic target in a mouse model of ALS. Sci. Transl Med. 6, 248ra104 (2014).

    Article  PubMed  CAS  Google Scholar 

  81. Crotti, A. et al. Mutant Huntingtin promotes autonomous microglia activation via myeloid lineage-determining factors. Nat. Neurosci. 17, 513–521 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Nayak, D., Roth, T. L. & McGavern, D. B. Microglia development and function. Annu. Rev. Immunol. 32, 367–402 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Tabar, V. & Studer, L. Pluripotent stem cells in regenerative medicine: challenges and recent progress. Nat. Rev. Genet. 15, 82–92 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lassar, A. B., Paterson, B. M. & Weintraub, H. Transfection of a DNA locus that mediates the conversion of 10T1/2 fibroblasts to myoblasts. Cell 47, 649–656 (1986).

    Article  CAS  PubMed  Google Scholar 

  85. Davis, R. L., Weintraub, H. & Lassar, A. B. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51, 987–1000 (1987).

    Article  CAS  PubMed  Google Scholar 

  86. Berninger, B. et al. Functional properties of neurons derived from in vitro reprogrammed postnatal astroglia. J. Neurosci. 27, 8654–8664 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Heinrich, C. et al. Directing astroglia from the cerebral cortex into subtype specific functional neurons. PLoS Biol. 8, e1000373 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Son, E. Y. et al. Conversion of mouse and human fibroblasts into functional spinal motor neurons. Cell Stem Cell 9, 205–218 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Pfisterer, U. et al. Direct conversion of human fibroblasts to dopaminergic neurons. Proc. Natl Acad. Sci. USA 108, 10343–10348 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Chambers, S. M. & Studer, L. Cell fate plug and play: direct reprogramming and induced pluripotency. Cell 145, 827–830 (2011).

    Article  CAS  PubMed  Google Scholar 

  91. Yang, N., Ng, Y. H., Pang, Z. P., Südhof, T. C. & Wernig, M. Induced neuronal cells: how to make and define a neuron. Cell Stem Cell 9, 517–525 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Iwafuchi-Doi, M. & Zaret, K. S. Pioneer transcription factors in cell reprogramming. Genes Dev. 28, 2679–2692 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Soufi, A., Donahue, G. & Zaret, K. S. Facilitators and impediments of the pluripotency reprogramming factors' initial engagement with the genome. Cell 151, 994–1004 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Soufi, A. et al. Pioneer transcription factors target partial DNA motifs on nucleosomes to initiate reprogramming. Cell 161, 555–568 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wapinski, O. L. et al. Hierarchical mechanisms for direct reprogramming of fibroblasts to neurons. Cell 155, 621–635 (2013). This study analysed the binding sites of iN factors and indicated a sequential order of transcription factor action during direct conversion.

    Article  CAS  PubMed  Google Scholar 

  96. Castro, D. S. & Guillemot, F. Old and new functions of proneural factors revealed by the genome-wide characterization of their transcriptional targets. Cell Cycle 10, 4026–4031 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Marro, S. et al. Direct lineage conversion of terminally differentiated hepatocytes to functional neurons. Cell Stem Cell 9, 374–382 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Liu, M.-L. et al. Small molecules enable neurogenin 2 to efficiently convert human fibroblasts into cholinergic neurons. Nat. Commun. 4, 2183 (2013).

    Article  PubMed  CAS  Google Scholar 

  99. Vadodaria, K. C. et al. Generation of functional human serotonergic neurons from. Mol. Psychiatry 21, 49–61 (2015).

    Article  PubMed  CAS  Google Scholar 

  100. Lau, S., Ottosson, D. R., Jakobsson, J. & Parmar, M. Direct neural conversion from human fibroblasts using self-regulating and nonintegrating viral vectors. Cell Rep. 9, 1673–1680 (2014).

    Article  CAS  PubMed  Google Scholar 

  101. Sun, Y. et al. Neurogenin promotes neurogenesis and inhibits glial differentiation by independent mechanisms. Cell 104, 365–376 (2001).

    Article  CAS  PubMed  Google Scholar 

  102. Ladewig, J. et al. Small molecules enable highly efficient neuronal conversion of human fibroblasts. Nat. Methods 9, 575–578 (2012).

    Article  CAS  PubMed  Google Scholar 

  103. Zhao, P., Zhu, T., Lu, X., Zhu, J. & Li, L. Neurogenin 2 enhances the generation of patient-specific induced neuronal cells. Brain Res. 1615, 51–60 (2015).

    Article  CAS  PubMed  Google Scholar 

  104. Masserdotti, G. et al. Transcriptional mechanisms of proneural factors and REST in regulating neuronal reprogramming of astrocytes. Cell Stem Cell 17, 74–88 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Pollak, J. et al. ASCL1 reprograms mouse Müller glia into neurogenic retinal progenitors. Development 140, 2619–2631 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Fishman, V. S. et al. Cell divisions are not essential for the direct conversion of fibroblasts into neuronal cells. Cell Cycle 14, 1188–1196 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Sun, C.-K. et al. Senescence impairs direct conversion of human somatic cells to neurons. Nat. Commun. 5, 4112 (2014).

    Article  CAS  PubMed  Google Scholar 

  108. Yoo, A. S. et al. MicroRNA-mediated conversion of human fibroblasts to neurons. Nature 476, 228–231 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ambasudhan, R. et al. Direct reprogramming of adult human fibroblasts to functional neurons under defined conditions. Cell Stem Cell 9, 113–118 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Xue, Y. et al. Direct conversion of fibroblasts to neurons by reprogramming PTB-regulated microRNA circuits. Cell 152, 82–96 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Lunyak, V. V. & Rosenfeld, M. G. No rest for REST: REST/NRSF regulation of neurogenesis. Cell 121, 499–501 (2005).

    Article  CAS  PubMed  Google Scholar 

  112. Ballas, N. & Mandel, G. The many faces of REST oversee epigenetic programming of neuronal genes. Curr. Opin. Neurobiol. 15, 500–506 (2005).

    Article  CAS  PubMed  Google Scholar 

  113. Li, X. et al. Small-molecule-driven direct reprogramming of mouse fibroblasts into functional neurons. Cell Stem Cell 17, 195–203 (2015).

    Article  CAS  PubMed  Google Scholar 

  114. Hu, W. et al. Direct conversion of normal and Alzheimer's disease human fibroblasts into neuronal cells by small molecules. Cell Stem Cell 17, 204–212 (2015). References 113 and 114 were back-to-back publications demonstrating the chemical compound-only direct conversion of mouse and human fibroblasts into functional neurons.

    Article  CAS  PubMed  Google Scholar 

  115. Petrik, D. et al. Functional and mechanistic exploration of an adult neurogenesis-promoting small molecule. FASEB J. 26, 3148–3162 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Edri, R. et al. Analysing human neural stem cell ontogeny by consecutive isolation of Notch active neural progenitors. Nat. Commun. 6, 6500 (2015).

    Article  CAS  PubMed  Google Scholar 

  117. Stott, S. R. W. et al. Foxa1 and Foxa2 are required for the maintenance of dopaminergic properties in ventral midbrain neurons at late embryonic stages. J. Neurosci. 33, 8022–8034 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Andersson, E. et al. Identification of intrinsic determinants of midbrain dopamine neurons. Cell 124, 393–405 (2006). Outstanding publication that identified a key transcription factor involved in midbrain dopaminergic neurodevelopment in vivo and subsequently used the identified factor for the generation of dopaminergic neurons from mouse ESCs.

    Article  CAS  PubMed  Google Scholar 

  119. Caiazzo, M. et al. Direct generation of functional dopaminergic neurons from mouse and human fibroblasts. Nature 476, 224–227 (2012). One of the first publications to demonstrate the use of lineage-specifying transcription factors, including the one identified in reference 118, to induce specific iN subtypes from human fibroblasts.

    Article  CAS  Google Scholar 

  120. Liu, X. et al. Direct reprogramming of human fibroblasts into dopaminergic neuron-like cells. Cell Res. 22, 321–332 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Kiyasova, V. & Gaspar, P. Development of raphe serotonin neurons from specification to guidance. Eur. J. Neurosci. 34, 1553–1562 (2011).

    Article  PubMed  Google Scholar 

  122. Xu, Z. et al. Direct conversion of human fibroblasts to induced serotonergic neurons. Mol. Psychiatry 21, 62–70 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Victor, M. B. et al. Generation of human striatal neurons by microRNA-dependent direct conversion of fibroblasts. Neuron 84, 311–323 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Blanchard, J. W. et al. Selective conversion of fibroblasts into peripheral sensory neurons. Nat. Neurosci. 18, 25–35 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Caiazzo, M. et al. Direct conversion of fibroblasts into functional astrocytes by defined transcription factors. Stem Cell Rep. 4, 25–36 (2015).

    Article  CAS  Google Scholar 

  126. Yang, N. et al. Generation of oligodendroglial cells by direct lineage conversion. Nat. Biotechnol. 31, 434–439 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Najm, F. J. et al. Transcription factor-mediated reprogramming of fibroblasts to expandable, myelinogenic oligodendrocyte progenitor cells. Nat. Biotechnol. 31, 426–433 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Mitchell, R. R. et al. Activation of neural cell fate programs toward direct conversion of adult human fibroblasts into tri-potent neural progenitors using OCT-4. Stem Cells Dev. 23, 1937–1946 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Polo, J. M. et al. A molecular roadmap of reprogramming somatic cells into iPS cells. Cell 151, 1617–1632 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Thier, M. et al. Direct conversion of fibroblasts into stably expandable neural stem cells. Cell Stem Cell 10, 473–479 (2012).

    Article  CAS  PubMed  Google Scholar 

  131. Meyer, S., Wörsdörfer, P., Günther, K., Thier, M. & Edenhofer, F. Derivation of adult human fibroblasts and their direct conversion into expandable neural progenitor cells. J. Vis. Exp. 101, e52831 (2015).

    Google Scholar 

  132. Ring, K. L. et al. Direct reprogramming of mouse and human fibroblasts into multipotent neural stem cells with a single factor. Cell Stem Cell 11, 100–109 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Lujan, E., Chanda, S., Ahlenius, H., Südhof, T. C. & Wernig, M. Direct conversion of mouse fibroblasts to self-renewing, tripotent neural precursor cells. Proc. Natl Acad. Sci. USA 109, 2527–2532 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Han, D. W. et al. Direct reprogramming of fibroblasts into neural stem cells by defined factors. Cell Stem Cell 10, 465–472 (2012).

    Article  CAS  PubMed  Google Scholar 

  135. Kim, Y. J. et al. Generation of multipotent induced neural crest by direct reprogramming of human postnatal fibroblasts with a single transcription factor. Cell Stem Cell 15, 497–506 (2014).

    Article  CAS  PubMed  Google Scholar 

  136. Yu, K.-R. et al. Rapid and efficient direct conversion of human adult somatic cells into neural stem cells by HMGA2/let-7b. Cell Rep. 10, 441–452 (2015).

    Article  CAS  PubMed  Google Scholar 

  137. Margariti, A., Kelaini, S. & Cochrane, A. Direct reprogramming of adult cells: avoiding the pluripotent state. Stem Cells Cloning 7, 19–29 (2014).

    PubMed  PubMed Central  Google Scholar 

  138. Aasen, T. et al. Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat. Biotechnol. 26, 1276–1284 (2008).

    Article  CAS  PubMed  Google Scholar 

  139. Griesi-Oliveira, K. et al. Modeling non-syndromic autism and the impact of TRPC6 disruption in human neurons. Mol. Psychiatry 20, 1350–1365 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Tamaoki, N. et al. Dental pulp cells for induced pluripotent stem cell banking. J. Dent. Res. 89, 773–778 (2010).

    Article  CAS  PubMed  Google Scholar 

  141. Chou, B.-K. et al. A facile method to establish human induced pluripotent stem cells from adult blood cells under feeder-free and xeno-free culture conditions: a clinically compliant approach. Stem Cells Transl Med. 4, 320–332 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Giorgetti, A. et al. Generation of induced pluripotent stem cells from human cord blood cells with only two factors: Oct4 and Sox2. Nat. Protoc. 5, 811–820 (2010).

    Article  CAS  PubMed  Google Scholar 

  143. Seki, T. et al. Generation and characterization of functional cardiomyocytes derived from human T cell-derived induced pluripotent stem cells. PLoS ONE 9, e85645 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Zhou, T. et al. Generation of human induced pluripotent stem cells from urine samples. Nat. Protoc. 7, 2080–2089 (2012).

    Article  CAS  PubMed  Google Scholar 

  145. Cassady, J. P. et al. Direct lineage conversion of adult mouse liver cells and B lymphocytes to neural stem cells. Stem Cell Rep. 3, 948–956 (2014).

    Article  CAS  Google Scholar 

  146. Addis, R. C. et al. Efficient conversion of astrocytes to functional midbrain dopaminergic neurons using a single polycistronic vector. PLoS ONE 6, e28719 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Karow, M. et al. Reprogramming of pericyte-derived cells of the adult human brain into induced neuronal cells. Cell Stem Cell 11, 471–476 (2012).

    Article  CAS  PubMed  Google Scholar 

  148. Yang, Y. et al. Direct conversion of adipocyte progenitors into functional neurons. Cell. Reprogram. 15, 484–489 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Chanda, S. et al. Generation of induced neuronal cells by the single reprogramming factor ASCL1. Stem Cell Rep. 3, 282–296 (2014).

    Article  CAS  Google Scholar 

  150. Zhang, Y. et al. Rapid single-step induction of functional neurons from human pluripotent stem cells. Neuron 78, 785–798 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Thoma, E. C. et al. Ectopic expression of neurogenin 2 alone is sufficient to induce differentiation of embryonic stem cells into mature neurons. PLoS ONE 7, e38651 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Bissonnette, C. J. et al. The controlled generation of functional basal forebrain cholinergic neurons from human embryonic stem cells. Stem Cells 29, 802–811 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Theka, I. et al. Rapid generation of functional dopaminergic neurons from human induced pluripotent stem cells through a single-step procedure using cell lineage transcription factors. Stem Cells Transl Med. 2, 473–479 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Mong, J. et al. Transcription factor-induced lineage programming of noradrenaline and motor neurons from embryonic stem cells. Stem Cells 32, 609–622 (2014).

    Article  CAS  PubMed  Google Scholar 

  155. Kim, H. J. et al. REST regulates non-cell-autonomous neuronal differentiation and maturation of neural progenitor cells via secretogranin II. J. Neurosci. 35, 14872–14884 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Koch, P., Opitz, T., Steinbeck, J. A., Ladewig, J. & Brüstle, O. A rosette-type, self-renewing human ES cell-derived neural stem cell with potential for in vitro instruction and synaptic integration. Proc. Natl Acad. Sci. USA 106, 3225–3230 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Falk, A. et al. Capture of neuroepithelial-like stem cells from pluripotent stem cells provides a versatile system for in vitro production of human neurons. PLoS ONE 7, e29597 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Chen, Q., Fischer, A., Reagan, J. D., Yan, L. J. & Ames, B. N. Oxidative DNA damage and senescence of human diploid fibroblast cells. Proc. Natl Acad. Sci. USA 92, 4337–4341 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Mertens, J. et al. Differential responses to lithium in hyperexcitable neurons from patients with bipolar disorder. Nature 527, 95–99 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Burkhardt, M. F. et al. A cellular model for sporadic ALS using patient-derived induced pluripotent stem cells. Mol. Cell. Neurosci. 56, 355–364 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Israel, M. A. et al. Probing sporadic and familial Alzheimer's disease using induced pluripotent stem cells. Nature 482, 216–220 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Maherali, N. et al. Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 1, 55–70 (2007).

    Article  CAS  PubMed  Google Scholar 

  163. Meissner, A. et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454, 766–770 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Guenther, M. G. et al. Chromatin structure and gene expression programs of human embryonic and induced pluripotent stem cells. Cell Stem Cell 7, 249–257 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Suhr, S. T. et al. Mitochondrial rejuvenation after induced pluripotency. PLoS ONE 5, e14095 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Prigione, A. et al. Mitochondrial-associated cell death mechanisms are reset to an embryonic-like state in aged donor-derived ips cells harboring chromosomal aberrations. PLoS ONE 6, e27352 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Bershteyn, M. et al. Cell-autonomous correction of ring chromosomes in human induced pluripotent stem cells. Nature 507, 99–103 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Rando, T. A. & Chang, H. Y. Aging, rejuvenation, and epigenetic reprogramming: resetting the aging clock. Cell 148, 46–57 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Lapasset, L. et al. Rejuvenating senescent and centenarian human cells by reprogramming through the pluripotent state. Genes Dev. 25, 2248–2253 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Miller, J. D. et al. Human iPSC-based modeling of late-onset disease via progerin-induced aging. Cell Stem Cell 13, 691–705 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Frobel, J. et al. Epigenetic rejuvenation of mesenchymal stromal cells derived from induced pluripotent stem cells. Stem Cell Rep. 3, 414–422 (2014). Somatic cells were reprogrammed into iPSCs and subsequently re-differentiated into the original cell type; epigenetic analysis demonstrated that iPSC reprogramming erases epigenetic information and rejuvenates somatic cells.

    Article  CAS  Google Scholar 

  172. Studer, L., Vera, E. & Cornacchia, D. Programming and reprogramming cellular age in the era of induced pluripotency. Cell Stem Cell 16, 591–600 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Yang, Y. et al. Enhanced rejuvenation in induced pluripotent stem cell-derived neurons compared with directly converted neurons from an aged mouse. Stem Cells Dev. 24, 2767–2777 (2015).

    Article  CAS  PubMed  Google Scholar 

  174. Mertens, J. et al. Directly reprogrammed human neurons retain aging-associated transcriptomic signatures and reveal age-related nucleocytoplasmic defects. Cell Stem Cell 17, 705–718 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Ziller, M. J. et al. Dissecting neural differentiation regulatory networks through epigenetic footprinting. Nature 518, 355–359 (2015).

    Article  CAS  PubMed  Google Scholar 

  176. Lee, G. et al. Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature 461, 402–406 (2010).

    Article  CAS  Google Scholar 

  177. Marchetto, M. C. N. et al. A model for neural developmentand treatment of Rett syndrome using human induced pluripotent stem cells. Cell 143, 527–539 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Samaco, R. C., Hogart, A. & LaSalle, J. M. Epigenetic overlap in autism-spectrum neurodevelopmental disorders: MECP2 deficiency causes reduced expression of UBE3A and GABRB3. Hum. Mol. Genet. 14, 483–492 (2005).

    Article  CAS  PubMed  Google Scholar 

  179. Rapoport, J. L., Giedd, J. N. & Gogtay, N. Neurodevelopmental model of schizophrenia: update 2012. Mol. Psychiatry 17, 1228–1238 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Sanches, M., Keshavan, M. S., Brambilla, P. & Soares, J. C. Neurodevelopmental basis of bipolar disorder: a critical appraisal. Prog. Neuropsychopharmacol. Biol. Psychiatry 32, 1617–1627 (2008).

    Article  PubMed  Google Scholar 

  181. Konopka, G. et al. Modeling the functional genomics of autism using human neurons. Mol. Psychiatry 17, 202–214 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Abyzov, A. et al. Somatic copy number mosaicism in human skin revealed by induced pluripotent stem cells. Nature 492, 438–442 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. McConnell, M. J. et al. Mosaic copy number variation in human neurons. Science 342, 632–637 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Varela, C. et al. Recurrent genomic instability of chromosome 1q in neural derivatives of human embryonic stem cells. J. Clin. Invest. 122, 569–574 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Pasi, C. E. et al. Genomic instability in induced stem cells. Cell Death Differ. 18, 745–753 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Sun, Y. et al. Hippo/YAP-mediated rigidity-dependent motor neuron differentiation of human pluripotent stem cells. Nat. Mater. 13, 599–604 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Bardy, C. et al. Neuronal medium that supports basic synaptic functions and activity of human neurons in vitro. Proc. Natl Acad. Sci. USA 112, e2725–e2734 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Fatehullah, A., Tan, S. H. & Barker, N. Organoids as an in vitro model of human development and disease. Nat. Cell Biol. 18, 246–254 (2016).

    Article  PubMed  CAS  Google Scholar 

  189. Passier, R., Orlova, V. & Mummery, C. Complex tissue and disease modeling using hiPSCs. Cell Stem Cell 18, 309–321 (2016).

    Article  CAS  PubMed  Google Scholar 

  190. Thomson, J. A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).

    Article  CAS  PubMed  Google Scholar 

  191. Lewis, T. L. Jr, Courchet, J. & Polleux, F. Cellular and molecular mechanisms underlying axon formation, growth, and branching. J. Cell Biol. 202, 837–848 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Berg, D. A., Belnoue, L., Song, H. & Simon, A. Neurotransmitter-mediated control of neurogenesis in the adult vertebrate brain. Development 140, 2548–2561 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Choquet, D. & Triller, A. The dynamic synapse. Neuron 80, 691–703 (2013).

    Article  CAS  PubMed  Google Scholar 

  194. Ding, B. et al. Temporal regulation of nuclear factor one occupancy by calcineurin/NFAT governs a voltage-sensitive developmental switch in late maturing neurons. J. Neurosci. 33, 2860–2872 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Okazawa, M. et al. Role of calcineurin signaling in membrane potential-regulated maturation of cerebellar granule cells. J. Neurosci. 29, 2938–2947 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Colasante, G. et al. rapid conversion of fibroblasts into functional forebrain GABAergic interneurons by direct genetic reprogramming. Cell Stem Cell 17, 719–734 (2015).

    Article  CAS  PubMed  Google Scholar 

  197. Hu, K. Vectorology and factor delivery in induced pluripotent stem cell reprogramming. Stem Cells Dev. 23, 1301–1315 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Sommer, C. A. & Mostoslavsky, G. Experimental approaches for the generation of induced pluripotent stem cells. Stem Cell Res. Ther. 1, 26 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  199. Um, S. H. Delivering factors for reprogramming a somatic cell to pluripotency. Int. J. Stem Cells 5, 6–11 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Adler, A. F. et al. Nonviral direct conversion of primary mouse embryonic fibroblasts to neuronal cells. Mol. Ther. Nucleic Acids 1, e32 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  201. Shi, Z. & Jiao, J. Direct lineage conversion: induced neuronal cells and induced neural stem cells. Protein Cell 3, 826–833 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Garitaonandia, I. et al. Increased risk of genetic and epigenetic instability in human embryonic stem cells associated with specific culture conditions. PLoS ONE 10, e0118307 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  203. Umegaki-Arao, N. et al. Induced pluripotent stem cells from human revertant keratinocytes for the treatment of epidermolysis bullosa. Sci. Transl Med. 6, 264ra164 (2014).

    Article  PubMed  CAS  Google Scholar 

  204. Folmes, C. D. L. et al. Disease-causing mitochondrial heteroplasmy segregated within induced pluripotent stem cell clones derived from a patient with MELAS. Stem Cells 31, 1298–1308 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Brennand, K. et al. Phenotypic differences in hiPSC NPCs derived from patients with schizophrenia. Mol. Psychiatry 20, 361–368 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank M. L. Gage for editorial comments and J. R. Herdy and S. T. Schafer for helpful discussions. This work was supported by the G. Harold and Leila Y. Mathers Charitable Foundation, the JPB Foundation, Ipsen Pharma, The Leona M. and Harry B. Helmsley Charitable Trust grant #2012-PG-MED002, the Paul G. Allen Foundation, Janssen, and the American Federation for Aging Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fred H. Gage.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Induced pluripotent stem cells

(iPSCs). Pluripotent stem cells created from differentiated somatic cell types, such as fibroblasts, by reprogramming with a set of transcription factors or other approaches.

Direct conversion

This term (also known as direct cell fate conversion, lineage conversion or transdifferentiation) describes the forced identity change of a somatic cell — for example, a fibroblast — directly into another related or unrelated somatic cell — such as a neuron — by means of transcription factors or other approaches.

Epigenetic

Describes changes in gene function that occur through changes to the genome that do not involve altering the DNA sequence. Examples of epigenetic events include DNA methylation, histone acetylation or X-chromosome inactivation. Epigenetic changes control biological processes such as differentiation, cell type identity or ageing.

Human pluripotent stem cells

(hPSCs). Stem cells that have the potential to form any cell type of the human body. They include human embryonic stem cells (hESCs) and human induced pluripotent stem cells (iPSCs). All hPSCs have the same ability to differentiate into cells of distinct lineages, such as neurons.

Human embryonic stem cells

(hESCs). Pluripotent stem cells that are derived from the inner cell mass of the developing blastocyst.

Mitogens

Proteins or chemical compounds that induce cell division by triggering mitosis. Proliferation of stem cells during development in vivo and in vitro depends on mitogen-induced signalling, whereas mitogen-deprivation induces stem cell differentiation.

Morphogens

Proteins or chemical compounds that define the relative position of stem and progenitor cells in the developing organ in vivo and thereby lay out the pattern for the spatial organization of cellular subtypes within the same tissue. In vitro, morphogens are used to pattern stem and progenitor cells such as neural progenitor cells (NPCs) to promote the generation of a desired cellular subtype that is associated with a certain tissue region in vivo.

Neural progenitor cells

(NPCs). A broad term describing stem and progenitor cells of the nervous system. There are many types of NPCs during neural development and in the adult brain that all share the characteristics of proliferation and multipotency, meaning that they can give rise to enlarged numbers of differentiated neurons and glia.

Neural rosette

The developmental signature of neural progenitors in cultures of differentiating human pluripotent stem cells; rosettes are radial arrangements of columnar cells that express many of the proteins expressed in neuroepithelial cells in the neural tube.

Radial glial cells

A subtype of neural progenitor cells that span the radial axis of the developing cortex and serve as precursors or guides for newly born postmitotic neurons on their way into the mantle zone.

Embryoid bodies

Aggregates of pluripotent stem cells that are in the process of differentiation. The 3D structure of embryoid bodies is thought to provide a cellular environment that promotes the differentiation of pluripotent cells into desired cell types in several differentiation protocols.

Short interfering RNA

(siRNA). Short double-stranded RNA molecules that silence gene expression in a sequence-specific manner by a process termed RNA interference.

Genetic mosaicism

The presence of a variety of genetically distinct populations of cells within one individual. Differences in the cellular genotypes may comprise single-nucleotide polymorphisms (SNPs), indels, copy number variations and loss of heterozygosity. Such genetic changes can be caused by viral insertions, endogenous retrotransposition, DNA damage or repair and other mechanisms and may arise during development or later in life.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mertens, J., Marchetto, M., Bardy, C. et al. Evaluating cell reprogramming, differentiation and conversion technologies in neuroscience. Nat Rev Neurosci 17, 424–437 (2016). https://doi.org/10.1038/nrn.2016.46

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn.2016.46

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing