Keep off the grass? Cannabis, cognition and addiction

Key Points

  • Cannabis contains more than 100 unique ingredients that are known as 'cannabinoids', and the proportions of these vary widely across different strains of the plant. High-Δ9-tetrahydrocannabinol (Δ9-THC) varieties with negligible levels of cannabidiol (CBD) now dominate many Western markets and are more harmful than lower-Δ9-THC, higher-CBD varieties.

  • Like other recreational drugs, Δ9-THC increases release of dopamine and opioid peptides (in preclinical studies) and alters endocannabinoid processing in the mesocorticolimbic reward system. Long-term Δ9-THC exposure leads to a downregulation of brain cannabinoid receptor function that reverses following abstinence.

  • People who try cannabis are ninefold more likely to become addicted to it than to develop psychosis. Cannabis addiction is an increasing problem globally, and no effective pharmacological treatments currently exist — this remains a major unmet clinical need.

  • The association between cannabis use and psychosis can be influenced by several vulnerability factors, including genetics, environmental factors and the frequency and type of cannabis used. Evidence linking cannabis use with the development of depression and anxiety is less consistent, although these disorders are often comorbid with cannabis addiction.

  • The acute effects of cannabis on cognitive function are well documented, and the most robust, dose-related decrements are to working and episodic memory. Its long-term cognitive effects remain controversial, are influenced by many confounds and appear to subside a month after stopping use of the drug.

  • We should ensure that global legislative changes are informed by neuroscience and public health. They should mitigate against adolescent uptake and the availability of highly potent products, including synthetic agents such as 'spice', that act as full cannabinoid receptor agonists.

Abstract

In an increasing number of states and countries, cannabis now stands poised to join alcohol and tobacco as a legal drug. Quantifying the relative adverse and beneficial effects of cannabis and its constituent cannabinoids should therefore be prioritized. Whereas newspaper headlines have focused on links between cannabis and psychosis, less attention has been paid to the much more common problem of cannabis addiction. Certain cognitive changes have also been attributed to cannabis use, although their causality and longevity are fiercely debated. Identifying why some individuals are more vulnerable than others to the adverse effects of cannabis is now of paramount importance to public health. Here, we review the current state of knowledge about such vulnerability factors, the variations in types of cannabis, and the relationship between these and cognition and addiction.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Cannabinoid 1 receptor distribution within reward-, habit- and cognition-related circuits.
Figure 2: Effects of acute or chronic exposure to cannabis on reward- and cognition-related circuits.

References

  1. 1

    Whiting, P. F. et al. Cannabinoids for medical use: a systematic review and meta-analysis. JAMA 313, 2456–2473 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. 2

    Curran, H. V. & Morgan, C. J. A. in Handbook of Cannabis Ch. 36 (ed. Pertwee, R. G.) (Oxford Univ. Press, 2014).

    Google Scholar 

  3. 3

    Volkow, N. D., Baler, R. D., Compton, W. M. & Weiss, S. R. Adverse health effects of marijuana use. N. Engl. J. Med. 370, 2219–2227 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. 4

    Hall, W. What has research over the past two decades revealed about the adverse health effects of recreational cannabis use? Addiction 110, 19–35 (2015).

    Article  PubMed  Google Scholar 

  5. 5

    United Nations Office on Drugs and Crime. World drug report (UNODC, 2015).

  6. 6

    D'Souza, D. C. et al. The psychotomimetic effects of intravenous Δ-9-tetrahydrocannabinol in healthy individuals: implications for psychosis. Neuropsychopharmacology 29, 1558–1572 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. 7

    Das, R. K. et al. Cannabidiol enhances consolidation of explicit fear extinction in humans. Psychopharmacology 226, 781–792 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. 8

    Leweke, F. et al. Cannabidiol enhances anandamide signaling and alleviates psychotic symptoms of schizophrenia. Transl. Psychiatry 2, e94 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. 9

    Bergamaschi, M. M. et al. Cannabidiol reduces the anxiety induced by simulated public speaking in treatment-naive social phobia patients. Neuropsychopharmacology 36, 1219–1226 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. 10

    Morgan, C. J., Schafer, G., Freeman, T. P. & Curran, H. V. Impact of cannabidiol on the acute memory and psychotomimetic effects of smoked cannabis: naturalistic study. Br. J. Psychiatry 197, 285–290 (2010).

    Article  PubMed  Google Scholar 

  11. 11

    Englund, A. et al. Cannabidiol inhibits THC-elicited paranoid symptoms and hippocampal-dependent memory impairment. J. Psychopharmacol. 27, 19–27 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. 12

    Pertwee, R. G. The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: Δ9-tetrahydrocannabinol, cannabidiol and Δ9-tetrahydrocannabivarin. Br. J. Pharmacol. 153, 199–215 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. 13

    Muniyappa, R. et al. Metabolic effects of chronic cannabis smoking. Diabetes Care 36, 2415–2422 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. 14

    Batalla, A. et al. Neuroimaging studies of acute effects of THC and CBD in humans and animals: a systematic review. Curr. Pharm. Des. 20, 2168–2185 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. 15

    ElSohly, M. A. et al. Changes in cannabis potency over the last two decades (1995–2014): analysis of current data in the United States. Biol. Psychiatry http://dx.doi.org/10.1016/j.biopsych.2016.01.004, (2016).

  16. 16

    Hardwick, S. & King, L. A. Home Office cannabis potency study 2008 (Home Office Scientific Development Branch United Kingdom, 2008).

    Google Scholar 

  17. 17

    Niesink, R. J., Rigter, S., Koeter, M. W. & Brunt, T. M. Potency trends of Δ9-tetrahydrocannabinol, cannabidiol and cannabinol in cannabis in the Netherlands: 2005–15. Addiction 110, 1941–1950 (2015).

    Article  PubMed  Google Scholar 

  18. 18

    Swift, W., Wong, A., Li, K. M., Arnold, J. C. & McGregor, I. S. Analysis of cannabis seizures in NSW, Australia: cannabis potency and cannabinoid profile. PLoS ONE 8, e70052 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. 19

    Di Marzo, V. et al. Enhancement of anandamide formation in the limbic forebrain and reduction of endocannabinoid contents in the striatum of Δ9-tetrahydrocannabinol-tolerant rats. J. Neurochem. 74, 1627–1635 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. 20

    Gonzalez, S. et al. Behavioral and molecular changes elicited by acute administration of SR141716 to Δ9-tetrahydrocannabinol-tolerant rats: an experimental model of cannabinoid abstinence. Drug Alcohol Depend. 74, 159–170 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. 21

    Hillard, C. J. Chapter one — the endocannabinoid signaling system in the CNS: a primer. Int. Rev. Neurobiol. 125, 1–47 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. 22

    Mechoulam, R., Hanuš, L. O., Pertwee, R. & Howlett, A. C. Early phytocannabinoid chemistry to endocannabinoids and beyond. Nat. Rev. Neurosci. 15, 757–764 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. 23

    Zhu, P. J. Endocannabinoid signaling and synaptic plasticity in the brain. Crit. Rev. Neurobiol. 18, 113–124 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. 24

    Curran, H. V., Brignell, C., Fletcher, S., Middleton, P. & Henry, J. Cognitive and subjective dose–response effects of acute oral Δ9-tetrahydrocannabinol (THC) in infrequent cannabis users. Psychopharmacology 164, 61–70 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. 25

    Crane, N. A., Schuster, R. M., Fusar-Poli, P. & Gonzalez, R. Effects of cannabis on neurocognitive functioning: recent advances, neurodevelopmental influences, and sex differences. Neuropsychol. Rev. 23, 117–137 (2013).

    Article  PubMed  Google Scholar 

  26. 26

    Bossong, M. G. et al. Effects of Δ9-tetrahydrocannabinol on human working memory function. Biol. Psychiatry 71, 693–699 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. 27

    Crean, R. D., Crane, N. A. & Mason, B. J. An evidence based review of acute and long-term effects of cannabis use on executive cognitive functions. J. Addict. Med. 5, 1–8 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  28. 28

    D'Souza, D. C. et al. Blunted psychotomimetic and amnestic effects of Δ-9-tetrahydrocannabinol in frequent users of cannabis. Neuropsychopharmacology 33, 2505–2516 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. 29

    Ramaekers, J. G. et al. Tolerance and cross-tolerance to neurocognitive effects of THC and alcohol in heavy cannabis users. Psychopharmacology 214, 391–401 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. 30

    Hirvonen, J. et al. Reversible and regionally selective downregulation of brain cannabinoid CB1 receptors in chronic daily cannabis smokers. Mol. Psychiatry 17, 642–649 (2012).This was the first study to report downregulation of CB1Rs in frequent cannabis users: the effects were reversed after 4 weeks of monitored abstinence, consistent with findings in rodents.

    Article  CAS  PubMed  Google Scholar 

  31. 31

    D'Souza, D. C. et al. Rapid changes in CB1 receptor availability in cannabis dependent males after abstinence from cannabis. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 1, 60–67 (2016).This paper reported a reversal of the downregulation of CB1Rs in frequent cannabis users after only 2 days.

    Article  PubMed  PubMed Central  Google Scholar 

  32. 32

    Bhattacharyya, S. et al. Opposite effects of Δ-9-tetrahydrocannabinol and cannabidiol on human brain function and psychopathology. Neuropsychopharmacology 35, 764–774 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. 33

    Yücel, M. et al. Hippocampal harms, protection and recovery following regular cannabis use. Transl. Psychiatry 6, e710 (2016).This cross-sectional study used hair analysis to examine the relationship between cannabinoids and hippocampal integrity, and found that chronic Δ9-THC exposure is associated with reduced hippocampal volume and N -acetylaspartate concentrations; however, these effects are not found in those individuals with CBD as well as Δ9-THC in hair or after extended abstinence from the drug.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. 34

    Han, E., Chung, H. & Song, J. M. Segmental hair analysis for 11-nor-Δ9-tetrahydrocannabinol-9-carboxylic acid and the patterns of cannabis use. J. Anal. Toxicol. 36, 195–200 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. 35

    Gonzalez, R. et al. Performance of young adult cannabis users on neurocognitive measures of impulsive behavior and their relationship to symptoms of cannabis use disorders. J. Clin. Exp. Neuropsychol. 34, 962–976 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  36. 36

    Batalla, A. et al. Structural and functional imaging studies in chronic cannabis users: a systematic review of adolescent and adult findings. PLoS ONE 8, e55821 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. 37

    Irimia, C., Polis, I. Y., Stouffer, D. & Parsons, L. H. Persistent effects of chronic Δ9-THC exposure on motor impulsivity in rats. Psychopharmacology 232, 3033–3043 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. 38

    Kucewicz, M. T., Tricklebank, M. D., Bogacz, R. & Jones, M. W. Dysfunctional prefrontal cortical network activity and interactions following cannabinoid receptor activation. J. Neurosci. 31, 15560–15568 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Goldstein, R. Z. & Volkow, N. D. Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications. Nat. Rev. Neurosci. 12, 652–669 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Lubman, D. I., Cheetham, A. & Yücel, M. Cannabis and adolescent brain development. Pharmacol. Ther. 148, 1–16 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. 41

    Schneider, M. & Koch, M. The effect of chronic peripubertal cannabinoid treatment on deficient object recognition memory in rats after neonatal mPFC lesion. Eur. Neuropsychopharmacol. 17, 180–186 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. 42

    Quinn, H. R. et al. Adolescent rats find repeated Δ9-THC less aversive than adult rats but display greater residual cognitive deficits and changes in hippocampal protein expression following exposure. Neuropsychopharmacology 33, 1113–1126 (2008).

    Article  PubMed  Google Scholar 

  43. 43

    Cha, Y. M., White, A. M., Kuhn, C. M., Wilson, W. A. & Swartzwelder, H. Differential effects of Δ9-THC on learning in adolescent and adult rats. Pharmacol. Biochem. Behav. 83, 448–455 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. 44

    Berghuis, P. et al. Endocannabinoids regulate interneuron migration and morphogenesis by transactivating the TrkB receptor. Proc. Natl Acad. Sci. USA 102, 19115–19120 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. 45

    Kim, D. & Thayer, S. A. Cannabinoids inhibit the formation of new synapses between hippocampal neurons in culture. J. Neurosci. 21, RC146 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. 46

    Mulder, J. et al. Endocannabinoid signaling controls pyramidal cell specification and long-range axon patterning. Proc. Natl Acad. Sci. USA 105, 8760–8765 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. 47

    Verrico, C. D., Gu, H., Peterson, M. L., Sampson, A. R. & Lewis, D. A. Repeated Δ9-tetrahydrocannabinol exposure in adolescent monkeys: persistent effects selective for spatial working memory. Am. J. Psychiatry 171, 416–425 (2014).This study provided proof-of-concept evidence in non-human primates that chronic exposure to exogenous cannabinoids during adolescence selectively disrupts cognitive processes that were actively developing during the time window of exposure.

    Article  PubMed  PubMed Central  Google Scholar 

  48. 48

    Jacobus, J. & Tapert, S. F. Effects of cannabis on the adolescent brain. Curr. Pharm. Des. 20, 2186–2193 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. 49

    Cheetham, A. et al. Orbitofrontal volumes in early adolescence predict initiation of cannabis use: a 4-year longitudinal and prospective study. Biol. Psychiatry 71, 684–692 (2012).

    Article  PubMed  Google Scholar 

  50. 50

    Lorenzetti, V., Solowij, N., Fornito, A., Lubman, D. I. & Yucel, M. The association between regular cannabis exposure and alterations of human brain morphology: an updated review of the literature. Curr. Pharm. Des. 20, 2138–2167 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. 51

    Jager, G., Block, R. I., Luijten, M. & Ramsey, N. F. Cannabis use and memory brain function in adolescent boys: a cross-sectional multicenter functional magnetic resonance imaging study. J. Am. Acad. Child Adolesc. Psychiatry 49, 561–572 (2010).

    PubMed  PubMed Central  Google Scholar 

  52. 52

    Ehrenreich, H. et al. Specific attentional dysfunction in adults following early start of cannabis use. Psychopharmacology 142, 295–301 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. 53

    Gruber, S. A., Sagar, K. A., Dahlgren, M. K., Racine, M. & Lukas, S. E. Age of onset of marijuana use and executive function. Psychol. Addict. Behav. 26, 496–506 (2012).

    Article  PubMed  Google Scholar 

  54. 54

    Meier, M. H. et al. Persistent cannabis users show neuropsychological decline from childhood to midlife. Proc. Natl Acad. Sci. USA 109, E2657–E2664 (2012).

    Article  PubMed  Google Scholar 

  55. 55

    Blakemore, S. J., Burnett, S. & Dahl, R. E. The role of puberty in the developing adolescent brain. Hum. Brain Mapp. 31, 926–933 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  56. 56

    Crane, N. A., Schuster, R. M., Mermelstein, R. J. & Gonzalez, R. Neuropsychological sex differences associated with age of initiated use among young adult cannabis users. J. Clin. Exp. Neuropsychol. 37, 389–401 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  57. 57

    Lenroot, R. K. & Giedd, J. N. Sex differences in the adolescent brain. Brain Cogn. 72, 46–55 (2010).

    Article  PubMed  Google Scholar 

  58. 58

    Pope, H. G., Gruber, A. J., Hudson, J. I., Huestis, M. A. & Yurgelun-Todd, D. Neuropsychological performance in long-term cannabis users. Arch. Gen. Psychiatry 58, 909–915 (2001).

    Article  PubMed  Google Scholar 

  59. 59

    Schreiner, A. M. & Dunn, M. E. Residual effects of cannabis use on neurocognitive performance after prolonged abstinence: a meta-analysis. Exp. Clin. Psychopharmacol. 20, 420–429 (2012).

    Article  PubMed  Google Scholar 

  60. 60

    Sim-Selley, L. J. Regulation of cannabinoid CB1 receptors in the central nervous system by chronic cannabinoids. Crit Rev. Neurobiol. 15, 91–119 (2003).

    Article  CAS  PubMed  Google Scholar 

  61. 61

    Fried, P., Watkinson, B. & Gray, R. Neurocognitive consequences of marihuana — a comparison with pre-drug performance. Neurotoxicol. Teratol. 27, 231–239 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. 62

    Moore, T. H. et al. Cannabis use and risk of psychotic or affective mental health outcomes: a systematic review. Lancet 370, 319–328 (2007).

    Article  PubMed  Google Scholar 

  63. 63

    Kessler, R. C. et al. Lifetime and 12-month prevalence of DSM-III-R psychiatric disorders in the United States: results from the National Comorbidity Survey. Arch. Gen. Psychiatry 51, 8–19 (1994).

    Article  CAS  PubMed  Google Scholar 

  64. 64

    Lopez-Quintero, C. et al. Probability and predictors of transition from first use to dependence on nicotine, alcohol, cannabis, and cocaine: results of the National Epidemiologic Survey on Alcohol and Related Conditions (NESARC). Drug Alcohol Depend. 115, 120–130 (2011).

    Article  PubMed  Google Scholar 

  65. 65

    Koob, G. F. & Volkow, N. D. Neurocircuitry of addiction. Neuropsychopharmacology 35, 217–238 (2010).

    Article  PubMed  Google Scholar 

  66. 66

    Nestler, E. J. Is there a common molecular pathway for addiction? Nat. Neurosci. 8, 1445–1449 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. 67

    Everitt, B. J. & Robbins, T. W. Drug addiction: updating actions to habits to compulsions ten years on. Annu. Rev. Psychol. 67, 23–50 (2016).

    Article  PubMed  Google Scholar 

  68. 68

    Badiani, A., Belin, D., Epstein, D., Calu, D. & Shaham, Y. Opiate versus psychostimulant addiction: the differences do matter. Nat. Rev. Neurosci. 12, 685–700 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. 69

    Fratta, W. & Fattore, L. Molecular mechanisms of cannabinoid addiction. Curr. Opin. Neurobiol. 23, 487–492 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. 70

    European Monitoring Centre for Drugs and Drug Addiction. European drug report (EMCDDA, 2015).

  71. 71

    Budney, A. J., Hughes, J. R., Moore, B. A. & Vandrey, R. Review of the validity and significance of cannabis withdrawal syndrome. Am. J. Psychiatry 161, 1967–1977 (2004).

    Article  PubMed  Google Scholar 

  72. 72

    Allsop, D. J., Norberg, M. M., Copeland, J., Fu, S. & Budney, A. J. The Cannabis Withdrawal Scale development: patterns and predictors of cannabis withdrawal and distress. Drug Alcohol Depend. 119, 123–129 (2011).

    Article  PubMed  Google Scholar 

  73. 73

    Budney, A. J., Vandrey, R. G., Hughes, J. R., Moore, B. A. & Bahrenburg, B. Oral Δ9-tetrahydrocannabinol suppresses cannabis withdrawal symptoms. Drug Alcohol Depend. 86, 22–29 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. 74

    Rodriguez de Fonseca, F., Carrera, M. R., Navarro, M., Koob, G. F. & Weiss, F. Activation of corticotropin-releasing factor in the limbic system during cannabinoid withdrawal. Science 276, 2050–2054 (1997).

    Article  CAS  PubMed  Google Scholar 

  75. 75

    Caberlotto, L., Rimondini, R., Hansson, A., Eriksson, S. & Heilig, M. Corticotropin-releasing hormone (CRH) mRNA expression in rat central amygdala in cannabinoid tolerance and withdrawal: evidence for an allostatic shift? Neuropsychopharmacology 29, 15–22 (2004).References 74 and 75 were the first to demonstrate that Δ9-THC withdrawal is associated with increased levels of the stress neuropeptide CRF in the amygdala, which probably contributes to negative affective states and diminished brain reward function; this withdrawal-related effect is also common to many other classes of abused drugs, including nicotine, alcohol and opiates.

    Article  CAS  PubMed  Google Scholar 

  76. 76

    Zorrilla, E. P., Logrip, M. L. & Koob, G. F. Corticotropin releasing factor: a key role in the neurobiology of addiction. Front. Neuroendocrinol. 35, 234–244 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. 77

    Vandrey, R., Budney, A., Hughes, J. & Liguori, A. A within-subject comparison of withdrawal symptoms during abstinence from cannabis, tobacco, and both substances. Drug Alcohol Depend. 92, 48–54 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. 78

    Justinova, Z., Goldberg, S. R., Heishman, S. J. & Tanda, G. Self-administration of cannabinoids by experimental animals and human marijuana smokers. Pharmacol. Biochem. Behav. 81, 285–299 (2005).This comprehensive review considers the reinforcing effects and abuse liability of Δ9-THC and related cannabinoids as investigated in both human and animal studies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. 79

    Freeman, T. P. et al. Just say 'know': how do cannabinoid concentrations influence users' estimates of cannabis potency and the amount they roll in joints? Addiction 109, 1686–1694 (2014).

    Article  PubMed  Google Scholar 

  80. 80

    van der Pol, P. et al. Cross-sectional and prospective relation of cannabis potency, dosing and smoking behaviour with cannabis dependence: an ecological study. Addiction 109, 1101–1109 (2014).

    Article  PubMed  Google Scholar 

  81. 81

    Freeman, T. & Winstock, A. Examining the profile of high-potency cannabis and its association with severity of cannabis dependence. Psychol. Med. 45, 3181–3189 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. 82

    Morgan, C. J., Freeman, T. P., Schafer, G. L. & Curran, H. V. Cannabidiol attenuates the appetitive effects of Δ9-tetrahydrocannabinol in humans smoking their chosen cannabis. Neuropsychopharmacology 35, 1879–1885 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. 83

    Field, M., Marhe, R. & Franken, I. H. The clinical relevance of attentional bias in substance use disorders. CNS Spectr. 19, 225–230 (2014).

    Article  PubMed  Google Scholar 

  84. 84

    Hindocha, C. et al. Acute effects of Δ9-tetrahydrocannabinol, cannabidiol and their combination on facial emotion recognition: a randomised, double-blind, placebo-controlled study in cannabis users. Eur. Neuropsychopharmacol. 25, 325–334 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. 85

    Haney, M. et al. Oral cannabidiol does not alter the subjective, reinforcing or cardiovascular effects of smoked cannabis. Neuropsychopharmacology http://dx.doi.org/10.1038/npp.2015.367, (2016).

  86. 86

    Braida, D., Iosue, S., Pegorini, S. & Sala, M. Δ9-tetrahydrocannabinol-induced conditioned place preference and intracerebroventricular self-administration in rats. Eur. J. Pharmacol. 506, 63–69 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. 87

    Zangen, A., Solinas, M., Ikemoto, S., Goldberg, S. R. & Wise, R. A. Two brain sites for cannabinoid reward. J. Neurosci. 26, 4901–4907 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. 88

    Gardner, E. L. et al. Facilitation of brain stimulation reward by Δ9-tetrahydrocannabinol. Psychopharmacology 96, 142–144 (1988).

    Article  CAS  PubMed  Google Scholar 

  89. 89

    Vlachou, S., Nomikos, G. G. & Panagis, G. CB1 cannabinoid receptor agonists increase intracranial self-stimulation thresholds in the rat. Psychopharmacology 179, 498–508 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. 90

    Vlachou, S., Nomikos, G. G., Stephens, D. N. & Panagis, G. Lack of evidence for appetitive effects of Δ9-tetrahydrocannabinol in the intracranial self-stimulation and conditioned place preference procedures in rodents. Behav. Pharmacol. 18, 311–319 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. 91

    Sanudo-Pena, M. C. et al. Endogenous cannabinoids as an aversive or counter-rewarding system in the rat. Neurosci. Lett. 223, 125–128 (1997).

    Article  CAS  PubMed  Google Scholar 

  92. 92

    Cheer, J. F., Kendall, D. A. & Marsden, C. A. Cannabinoid receptors and reward in the rat: a conditioned place preference study. Psychopharmacology 151, 25–30 (2000).

    Article  CAS  PubMed  Google Scholar 

  93. 93

    Winstock, A. R. & Barratt, M. J. Synthetic cannabis: a comparison of patterns of use and effect profile with natural cannabis in a large global sample. Drug Alcohol Depend. 131, 106–111 (2013).

    Article  CAS  PubMed  Google Scholar 

  94. 94

    Justinova, Z., Tanda, G., Redhi, G. H. & Goldberg, S. R. Self-administration of Δ9-tetrahydrocannabinol (THC) by drug naive squirrel monkeys. Psychopharmacology 169, 135–140 (2003).

    Article  CAS  PubMed  Google Scholar 

  95. 95

    Fattore, L., Cossu, G., Martellotta, C. M. & Fratta, W. Intravenous self-administration of the cannabinoid CB1 receptor agonist WIN 55,212-2 in rats. Psychopharmacology 156, 410–416 (2001).

    Article  CAS  PubMed  Google Scholar 

  96. 96

    Lecca, D., Cacciapaglia, F., Valentini, V. & Di Chiara, G. Monitoring extracellular dopamine in the rat nucleus accumbens shell and core during acquisition and maintenance of intravenous WIN 55,212-2 self-administration. Psychopharmacology 188, 63–74 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. 97

    Parsons, L. H. & Hurd, Y. L. Endocannabinoid signaling in reward and addiction. Nat. Rev. Neurosci. 16, 579–594 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. 98

    Serrano, A. & Parsons, L. H. Endocannabinoid influence in drug reinforcement, dependence and addiction-related behaviors. Pharmacol. Ther. 132, 215–241 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. 99

    Ceccarini, J. et al. [18F]MK-9470 PET measurement of cannabinoid CB1 receptor availability in chronic cannabis users. Addict. Biol. 20, 357–367 (2014).

    Article  CAS  Google Scholar 

  100. 100

    Breivogel, C. S. et al. Chronic Δ9-tetrahydrocannabinol treatment produces a time-dependent loss of cannabinoid receptors and cannabinoid receptor-activated G proteins in rat brain. J. Neurochem. 73, 2447–2459 (1999).

    Article  CAS  PubMed  Google Scholar 

  101. 101

    Dudok, B. et al. Cell-specific STORM super-resolution imaging reveals nanoscale organization of cannabinoid signaling. Nat. Neurosci. 18, 75–86 (2015).This study used nanoscale imaging and electrophysiological techniques to demonstrate greater CB1R expression and influence on perisomatically projecting versus dendritically projecting GABAergic interneurons in the mouse hippocampus, and that persistent deficits in hippocampal LTP following chronic Δ9-THC exposure result from near-complete loss of CB1R at somatic synapses.

    Article  CAS  PubMed  Google Scholar 

  102. 102

    Sim-Selley, L. J. et al. Prolonged recovery rate of CB1 receptor adaptation after cessation of long-term cannabinoid administration. Mol. Pharmacol. 70, 986–996 (2006).

    Article  CAS  PubMed  Google Scholar 

  103. 103

    Hoffman, A. F., Oz, M., Caulder, T. & Lupica, C. R. Functional tolerance and blockade of long-term depression at synapses in the nucleus accumbens after chronic cannabinoid exposure. J. Neurosci. 23, 4815–4820 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. 104

    Mato, S. et al. A single in vivo exposure to Δ9-THC blocks endocannabinoid-mediated synaptic plasticity. Nat. Neurosci. 7, 585–586 (2004).References 103 and 104 were among the first to demonstrate that Δ9-THC exposure disrupts synaptic plasticity of nucleus accumbens neurons in rodents.

    Article  CAS  PubMed  Google Scholar 

  105. 105

    Schlosburg, J. E. et al. Inhibitors of endocannabinoid-metabolizing enzymes reduce precipitated withdrawal responses in THC-dependent mice. AAPS J. 11, 342–352 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. 106

    Castelli, M. P. et al. Dysregulation of the endogenous cannabinoid system in adult rats prenatally treated with the cannabinoid agonist WIN 55,212-2. Eur. J. Pharmacol. 573, 11–19 (2007).

    Article  CAS  PubMed  Google Scholar 

  107. 107

    Morgan, C. J. et al. Cerebrospinal fluid anandamide levels, cannabis use and psychotic-like symptoms. Br. J. Psychiatry 202, 381–382 (2013).

    Article  PubMed  Google Scholar 

  108. 108

    Muhl, D. et al. Increased CB2 mRNA and anandamide in human blood after cessation of cannabis abuse. Naunyn Schmiedebergs Arch. Pharmacol. 387, 691–695 (2014).

    Article  CAS  PubMed  Google Scholar 

  109. 109

    Bossong, M. G. et al. Further human evidence for striatal dopamine release induced by administration of Δ9-tetrahydrocannabinol (THC): selectivity to limbic striatum. Psychopharmacology 232, 2723–2729 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. 110

    Nutt, D. J., Lingford-Hughes, A., Erritzoe, D. & Stokes, P. A. The dopamine theory of addiction: 40 years of highs and lows. Nat. Rev. Neurosci. 16, 305–312 (2015).

    Article  CAS  PubMed  Google Scholar 

  111. 111

    Cheer, J. F., Wassum, K. M., Heien, M. L., Phillips, P. E. & Wightman, R. M. Cannabinoids enhance subsecond dopamine release in the nucleus accumbens of awake rats. J. Neurosci. 24, 4393–4400 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. 112

    Chen, J., Marmur, R., Pulles, A., Paredes, W. & Gardner, E. L. Ventral tegmental microinjection of Δ9-tetrahydrocannabinol enhances ventral tegmental somatodendritic dopamine levels but not forebrain dopamine levels: evidence for local neural action by marijuana's psychoactive ingredient. Brain Res. 621, 65–70 (1993).

    Article  CAS  PubMed  Google Scholar 

  113. 113

    Tanda, G., Pontieri, F. E. & Di Chiara, G. Cannabinoid and heroin activation of mesolimbic dopamine transmission by a common μ1 opioid receptor mechanism. Science 276, 2048–2050 (1997).

    Article  CAS  PubMed  Google Scholar 

  114. 114

    Diana, M., Melis, M., Muntoni, A. L. & Gessa, G. L. Mesolimbic dopaminergic decline after cannabinoid withdrawal. Proc. Natl Acad. Sci. USA 95, 10269–10273 (1998).

    Article  CAS  PubMed  Google Scholar 

  115. 115

    Tanda, G., Loddo, P. & Di Chiara, G. Dependence of mesolimbic dopamine transmission on Δ9-tetrahydrocannabinol. Eur. J. Pharmacol. 376, 23–26 (1999).

    Article  CAS  PubMed  Google Scholar 

  116. 116

    Bloomfield, M. A. et al. Dopaminergic function in cannabis users and its relationship to cannabis-induced psychotic symptoms. Biol. Psychiatry 75, 470–478 (2014).

    Article  CAS  PubMed  Google Scholar 

  117. 117

    Ghazzaoui, R. & Abi-Dargham, A. Imaging dopamine transmission parameters in cannabis dependence. Prog. Neuropsychopharmacol. Biol. Psychiatry 52, 28–32 (2014).

    Article  CAS  PubMed  Google Scholar 

  118. 118

    Manzanares, J. et al. Chronic administration of cannabinoids regulates proenkephalin mRNA levels in selected regions of the rat brain. Brain Res. Mol. Brain Res. 55, 126–132 (1998).

    Article  CAS  PubMed  Google Scholar 

  119. 119

    Valverde, O. et al. Δ9-tetrahydrocannabinol releases and facilitates the effects of endogenous enkephalins: reduction in morphine withdrawal syndrome without change in rewarding effect. Eur. J. Neurosci. 13, 1816–1824 (2001).

    Article  CAS  PubMed  Google Scholar 

  120. 120

    Braida, D., Pozzi, M., Parolaro, D. & Sala, M. Intracerebral self-administration of the cannabinoid receptor agonist CP 55,940 in the rat: interaction with the opioid system. Eur. J. Pharmacol. 413, 227–234 (2001).

    Article  CAS  PubMed  Google Scholar 

  121. 121

    Justinova, Z., Tanda, G., Munzar, P. & Goldberg, S. R. The opioid antagonist naltrexone reduces the reinforcing effects of Δ9-tetrahydrocannabinol (THC) in squirrel monkeys. Psychopharmacology 173, 186–194 (2004).

    Article  CAS  PubMed  Google Scholar 

  122. 122

    Haney, M. et al. Naltrexone maintenance decreases cannabis self-administration and subjective effects in daily cannabis smokers. Neuropsychopharmacology 40, 2489–2498 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. 123

    Delfs, J. M., Zhu, Y., Druhan, J. P. & Aston-Jones, G. Noradrenaline in the ventral forebrain is critical for opiate withdrawal-induced aversion. Nature 403, 430–434 (2000).

    Article  CAS  PubMed  Google Scholar 

  124. 124

    Moranta, D., Esteban, S. & Garcia-Sevilla, J. A. Chronic treatment and withdrawal of the cannabinoid agonist WIN 55,212-2 modulate the sensitivity of presynaptic receptors involved in the regulation of monoamine syntheses in rat brain. Naunyn Schmiedebergs Arch. Pharmacol. 379, 61–72 (2009).

    Article  CAS  PubMed  Google Scholar 

  125. 125

    Page, M. E., Oropeza, V. C. & Van Bockstaele, E. J. Local administration of a cannabinoid agonist alters norepinephrine efflux in the rat frontal cortex. Neurosci. Lett. 431, 1–5 (2008).

    Article  CAS  PubMed  Google Scholar 

  126. 126

    Jentsch, J. D., Andrusiak, E., Tran, A., Bowers, M. B. & Roth, R. H. Δ9-tetrahydrocannabinol increases prefrontal cortical catecholaminergic utilization and impairs spatial working memory in the rat: blockade of dopaminergic effects with HA966. Neuropsychopharmacology 16, 426–432 (1997).

    Article  CAS  PubMed  Google Scholar 

  127. 127

    Carvalho, A. F. & Van Bockstaele, E. J. Cannabinoid modulation of noradrenergic circuits: implications for psychiatric disorders. Prog. Neuropsychopharmacol. Biol. Psychiatry 38, 59–67 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. 128

    Coffey, C., Carlin, J. B., Lynskey, M., Li, N. & Patton, G. C. Adolescent precursors of cannabis dependence: findings from the Victorian Adolescent Health Cohort Study. Br. J. Psychiatry 182, 330–336 (2003).

    Article  PubMed  Google Scholar 

  129. 129

    Hines, L. A. et al. Onset of opportunity to use cannabis and progression from opportunity to dependence: are influences consistent across transitions? Drug Alcohol Depend. 160, 57–64 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  130. 130

    Hindocha, C. et al. Associations between cigarette smoking and cannabis dependence: a longitudinal study of young cannabis users in the United Kingdom. Drug Alcohol Depend. 148, 165–171 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  131. 131

    Chen, C.-Y., O'Brien, M. S. & Anthony, J. C. Who becomes cannabis dependent soon after onset of use? Epidemiological evidence from the United States: 2000–2001. Drug Alcohol Depend. 79, 11–22 (2005).

    Article  PubMed  Google Scholar 

  132. 132

    Verweij, K. J. et al. Genetic and environmental influences on cannabis use initiation and problematic use: a meta-analysis of twin studies. Addiction 105, 417–430 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  133. 133

    Agrawal, A. & Lynskey, M. T. Candidate genes for cannabis use disorders: findings, challenges and directions. Addiction 104, 518–532 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  134. 134

    Uhl, G. R. et al. “Higher order” addiction molecular genetics: convergent data from genome-wide association in humans and mice. Biochem. Pharmacol. 75, 98–111 (2008).

    Article  CAS  PubMed  Google Scholar 

  135. 135

    Cooper, K., Chatters, R., Kaltenthaler, E. & Wong, R. Psychological and psychosocial interventions for cannabis cessation in adults: a systematic review short report. Health Technol. Assess. 19, 1–130 (2015).

    PubMed  PubMed Central  Google Scholar 

  136. 136

    Marshall, K., Gowing, L., Ali, R. & Le Foll, B. Pharmacotherapies for cannabis dependence. Cochrane Database Syst. Rev. 12, CD008940 (2014).

    Google Scholar 

  137. 137

    Mason, B. J. et al. A proof-of-concept randomized controlled study of gabapentin: effects on cannabis use, withdrawal and executive function deficits in cannabis-dependent adults. Neuropsychopharmacology 37, 1689–1698 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. 138

    Gray, K. M. et al. A double-blind randomized controlled trial of N-acetylcysteine in cannabis-dependent adolescents. Am. J. Psychiatry 169, 805–812 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  139. 139

    Levin, F. R. et al. Dronabinol for the treatment of cannabis dependence: a randomized, double-blind, placebo-controlled trial. Drug Alcohol Depend. 116, 142–150 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. 140

    Allsop, D. J. et al. Nabiximols as an agonist replacement therapy during cannabis withdrawal: a randomized clinical trial. JAMA Psychiatry 71, 281–291 (2014).

    Article  CAS  PubMed  Google Scholar 

  141. 141

    Lutz, B., Marsicano, G., Maldonado, R. & Hillard, C. J. The endocannabinoid system in guarding against fear, anxiety and stress. Nat. Rev. Neurosci. 16, 705–718 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. 142

    Murillo-Rodriguez, E. et al. The emerging role of the endocannabinoid system in the sleep–wake cycle modulation. Cent. Nerv. Syst. Agents Med. Chem. 11, 189–196 (2011).

    Article  CAS  PubMed  Google Scholar 

  143. 143

    Weinstein, A. M. & Gorelick, D. A. Pharmacological treatment of cannabis dependence. Curr. Pharm. Des. 17, 1351–1358 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. 144

    Clapper, J. R., Mangieri, R. A. & Piomelli, D. The endocannabinoid system as a target for the treatment of cannabis dependence. Neuropharmacology 56 (Suppl. 1), 235–243 (2009).

    Article  CAS  PubMed  Google Scholar 

  145. 145

    van der Pol, P. et al. Mental health differences between frequent cannabis users with and without dependence and the general population. Addiction 108, 1459–1469 (2013).

    Article  PubMed  Google Scholar 

  146. 146

    Degenhardt, L., Hall, W. & Lynskey, M. Testing hypotheses about the relationship between cannabis use and psychosis. Drug Alcohol Depend. 71, 37–48 (2003).

    Article  PubMed  Google Scholar 

  147. 147

    Flórez-Salamanca, L. et al. Probability and predictors of cannabis use disorders relapse: results of the National Epidemiologic Survey on Alcohol and Related Conditions (NESARC). Drug Alcohol Depend. 132, 127–133 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  148. 148

    Christensen, R., Kristensen, P. K., Bartels, E. M., Bliddal, H. & Astrup, A. Efficacy and safety of the weight-loss drug rimonabant: a meta-analysis of randomised trials. Lancet 370, 1706–1713 (2007).

    Article  CAS  PubMed  Google Scholar 

  149. 149

    Nissen, S. E. et al. Effect of rimonabant on progression of atherosclerosis in patients with abdominal obesity and coronary artery disease: the STRADIVARIUS randomized controlled trial. JAMA 299, 1547–1560 (2008).

    Article  CAS  PubMed  Google Scholar 

  150. 150

    Valverde, O. & Torrens, M. CB1 receptor-deficient mice as a model for depression. Neuroscience 204, 193–206 (2012).

    Article  CAS  PubMed  Google Scholar 

  151. 151

    Zanelati, T. V., Biojone, C., Moreira, F. A., Guimaraes, F. S. & Joca, S. R. Antidepressant-like effects of cannabidiol in mice: possible involvement of 5-HT1A receptors. Br. J. Pharmacol. 159, 122–128 (2010).

    Article  CAS  PubMed  Google Scholar 

  152. 152

    Moreira, F. A. & Wotjak, C. T. in Behavioral Neurobiology of Anxiety and Its Treatment (eds Stein, M. B. & Steckler, T.) 429–450 (Springer, 2010).

    Google Scholar 

  153. 153

    Sidhpura, N. & Parsons, L. H. Endocannabinoid-mediated synaptic plasticity and addiction-related behavior. Neuropharmacology 61, 1070–1087 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. 154

    Morgan, C. et al. Sub-chronic impact of cannabinoids in street cannabis on cognition, psychotic-like symptoms and psychological well-being. Psychol. Med. 42, 391–400 (2012).

    Article  CAS  PubMed  Google Scholar 

  155. 155

    Buckner, J. D. & Carroll, K. M. Effect of anxiety on treatment presentation and outcome: results from the Marijuana Treatment Project. Psychiatry Res. 178, 493–500 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  156. 156

    Van Dam, N. T., Bedi, G. & Earleywine, M. Characteristics of clinically anxious versus non-anxious regular, heavy marijuana users. Addict. Behav. 37, 1217–1223 (2012).

    Article  PubMed  Google Scholar 

  157. 157

    Schafer, G. et al. Investigating the interaction between schizotypy, divergent thinking and cannabis use. Conscious. Cogn. 21, 292–298 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  158. 158

    Weiland, B. J. et al. Daily marijuana use is not associated with brain morphometric measures in adolescents or adults. J. Neurosci. 35, 1505–1512 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. 159

    Yücel, M. et al. The impact of cannabis use on cognitive functioning in patients with schizophrenia: a meta-analysis of existing findings and new data in a first-episode sample. Schizophr. Bull. 38, 316–330 (2012).

    Article  PubMed  Google Scholar 

  160. 160

    Hindocha, C., Freeman, T. P., Winstock, A. R. & Lynskey, M. T. Vaping cannabis (marijuana) has the potential to reduce tobacco smoking in cannabis users. Addiction 111, 375 (2015).

    Article  PubMed  Google Scholar 

  161. 161

    Hasin, D. S. et al. Prevalence of marijuana use disorders in the United States between 2001–2002 and 2012–2013. JAMA Psychiatry 72, 1235–1242 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  162. 162

    Nutt, D. J., King, L. A. & Nichols, D. E. Effects of Schedule I drug laws on neuroscience research and treatment innovation. Nat. Rev. Neurosci. 14, 577–585 (2013).

    Article  CAS  PubMed  Google Scholar 

  163. 163

    Mokrysz, C. et al. Are IQ and educational outcomes in teenagers related to their cannabis use? A prospective cohort study. J. Psychopharmacol. 30, 159–168 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. 164

    Jackson, N. J. et al. Impact of adolescent marijuana use on intelligence: results from two longitudinal twin studies. Proc. Natl Acad. Sci. USA 113, E500–E508 (2016).References 163 and 164 both examined associations between adolescent cannabis use and IQ by using data from large longitudinal cohorts in the United Kingdom and United States; both papers suggest that there are non-causal explanations for the observed associations between adolescent cannabis use and lower IQ.

    Article  CAS  PubMed  Google Scholar 

  165. 165

    Temple, E. C., Brown, R. F. & Hine, D. W. The 'grass ceiling': limitations in the literature hinder our understanding of cannabis use and its consequences. Addiction 106, 238–244 (2011).An insightful review covering methodological inconsistencies in cannabis research, offering useful guidance for future research.

    Article  PubMed  Google Scholar 

  166. 166

    Fergusson, D. M., Horwood, L. J. & Beautrais, A. L. Cannabis and educational achievement. Addiction 98, 1681–1692 (2003).

    Article  PubMed  Google Scholar 

  167. 167

    Silins, E. et al. Young adult sequelae of adolescent cannabis use: an integrative analysis. Lancet Psychiatry 1, 286–293 (2014).

    Article  PubMed  Google Scholar 

  168. 168

    Lynskey, M. T. & Hall, W. The effects of adolescent cannabis use on educational attainment: a review. Addiction 95, 1621–1630 (2000).

    Article  CAS  PubMed  Google Scholar 

  169. 169

    Townsend, L., Flisher, A. J. & King, G. A systematic review of the relationship between high school dropout and substance use. Clin. Child Fam. Psychol. Rev. 10, 295–317 (2007).

    Article  PubMed  Google Scholar 

  170. 170

    Verweij, K. J., Huizink, A. C., Agrawal, A., Martin, N. G. & Lynskey, M. T. Is the relationship between early-onset cannabis use and educational attainment causal or due to common liability? Drug Alcohol Depend. 133, 580–586 (2013).

    Article  PubMed  Google Scholar 

  171. 171

    Bloomfield, M. A., Morgan, C. J., Kapur, S., Curran, H. V. & Howes, O. D. The link between dopamine function and apathy in cannabis users: an [18F]-DOPA PET imaging study. Psychopharmacology 231, 2251–2259 (2014).

    Article  CAS  PubMed  Google Scholar 

  172. 172

    McCaffrey, D. F., Liccardo Pacula, R., Han, B. & Ellickson, P. Marijuana use and high school dropout: the influence of unobservables. Health Econ. 19, 1281–1299 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  173. 173

    Hooper, S. R., Woolley, D. & De Bellis, M. D. Intellectual, neurocognitive, and academic achievement in abstinent adolescents with cannabis use disorder. Psychopharmacology 231, 1467–1477 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. 174

    Stiby, A. I. et al. Adolescent cannabis and tobacco use and educational outcomes at age 16: birth cohort study. Addiction 110, 658–668 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  175. 175

    Grant, J. D. et al. Associations of alcohol, nicotine, cannabis, and drug use/dependence with educational attainment: evidence from cotwin-control analyses. Alcohol. Clin. Exp. Res. 36, 1412–1420 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  176. 176

    Large, M., Sharma, S., Compton, M. T., Slade, T. & Nielssen, O. Cannabis use and earlier onset of psychosis: a systematic meta-analysis. Arch. Gen. Psychiatry 68, 555–561 (2011).

    Article  PubMed  Google Scholar 

  177. 177

    Morgan, C. J. A., Freeman, T. P., Powell, J. & Curran, H. V. AKT1 genotype moderates the acute psychotomimetic effects of naturalistically smoked cannabis in young cannabis smokers. Transl. Psychiatry 6, e738 (2016).This is the largest study to date conducted on the acute response to cannabis and shows that psychotic-like symptoms in young healthy cannabis users are predicted by their AKT1 genotype, replicating the same effect observed in schizophrenia (see references 178 and 179).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. 178

    Di Forti, M. et al. Confirmation that the AKT1 (rs2494732) genotype influences the risk of psychosis in cannabis users. Biol. Psychiatry 72, 811–816 (2012).

    Article  CAS  PubMed  Google Scholar 

  179. 179

    van Winkel, R., van Beveren, N. J., Simons, C. & Genetic Risk and Outcome of Psychosis (GROUP) Investigators. AKT1 moderation of cannabis-induced cognitive alterations in psychotic disorder. Neuropsychopharmacology 36, 2529–2537 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. 180

    Di Forti, M. et al. Proportion of patients in south London with first-episode psychosis attributable to use of high potency cannabis: a case-control study. Lancet Psychiatry 2, 233–238 (2015).The risk of individuals having a psychotic disorder was roughly threefold higher in those saying they used skunk (which contains high concentrations of Δ9-THC and negligible CBD) and fivefold higher in those reporting daily skunk use, compared with non-users; hash (which has a lower Δ9-THC content and more CBD) did not affect risk of a psychotic disorder.

    Article  PubMed  Google Scholar 

  181. 181

    Morgan, C. J. & Curran, H. V. Effects of cannabidiol on schizophrenia-like symptoms in people who use cannabis. Br. J. Psychiatry 192, 306–307 (2008).The first study to show that psychosis-like symptoms are greater in those whose hair contains only Δ9-THC than in those whose hair contains both Δ9-THC and CBD or no cannabinoids — suggesting a protective effect of CBD.

    Article  PubMed  Google Scholar 

  182. 182

    Leweke, F. M., Giuffrida, A., Wurster, U., Emrich, H. M. & Piomelli, D. Elevated endogenous cannabinoids in schizophrenia. Neuroreport 10, 1665–1669 (1999).

    Article  CAS  PubMed  Google Scholar 

  183. 183

    Koethe, D. et al. Anandamide elevation in cerebrospinal fluid in initial prodromal states of psychosis. Br. J. Psychiatry 194, 371–372 (2009).

    Article  PubMed  Google Scholar 

  184. 184

    Di Marzo, V. Targeting the endocannabinoid system: to enhance or reduce? Nat. Rev. Drug Discov. 7, 438–455 (2008).

    Article  CAS  PubMed  Google Scholar 

  185. 185

    Volk, D. W. & Lewis, D. A. The role of endocannabinoid signaling in cortical inhibitory neuron dysfunction in schizophrenia. Biol. Psychiatry http://dx.doi.org/10.1016/j.biopsych.2015.06.015, (2015).

  186. 186

    American Psychiatric Association. (eds) Diagnostic and Statistical Manual of Mental Disorders 5th edn (American Psychiatric Publishing, 2013).

  187. 187

    American Psychiatric Association. (eds) Diagnostic and Statistical Manual of Mental Disorders 4th edn text revision (American Psychiatric Publishing, 2000).

  188. 188

    Kandel, D. B. et al. Stages and Pathways of Drug Involvement: Examining the Gateway Hypothesis. (Cambridge Univ. Press, 2002).

    Google Scholar 

  189. 189

    Fergusson, D. M., Boden, J. M. & Horwood, L. J. Cannabis use and other illicit drug use: testing the cannabis gateway hypothesis. Addiction 101, 556–569 (2006).

    Article  PubMed  Google Scholar 

  190. 190

    Lynskey, M. T. et al. Escalation of drug use in early-onset cannabis users versus co-twin controls. JAMA 289, 427–433 (2003).

    Article  PubMed  Google Scholar 

  191. 191

    Cadoni, C., Simola, N., Espa, E., Fenu, S. & Di Chiara, G. Strain dependence of adolescent cannabis influence on heroin reward and mesolimbic dopamine transmission in adult Lewis and Fischer 344 rats. Addict. Biol. 20, 132–142 (2015).

    Article  CAS  PubMed  Google Scholar 

  192. 192

    Tomasiewicz, H. C. et al. Proenkephalin mediates the enduring effects of adolescent cannabis exposure associated with adult opiate vulnerability. Biol. Psychiatry 72, 803–810 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. 193

    Higuera-Matas, A. et al. Augmented acquisition of cocaine self-administration and altered brain glucose metabolism in adult female but not male rats exposed to a cannabinoid agonist during adolescence. Neuropsychopharmacology 33, 806–813 (2008).

    Article  CAS  PubMed  Google Scholar 

  194. 194

    Szutorisz, H. et al. Parental THC exposure leads to compulsive heroin-seeking and altered striatal synaptic plasticity in the subsequent generation. Neuropsychopharmacology 39, 1315–1323 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. 195

    MacCoun, R. & Reuter, P. Evaluating alternative cannabis regimes. Br. J. Psychiatry 178, 123–128 (2001).

    Article  CAS  PubMed  Google Scholar 

  196. 196

    Panlilio, L. V., Zanettini, C., Barnes, C., Solinas, M. & Goldberg, S. R. Prior exposure to THC increases the addictive effects of nicotine in rats. Neuropsychopharmacology 38, 1198–1208 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. 197

    Solinas, M., Panlilio, L. & Goldberg, S. Exposure to Δ9-tetrahydrocannabinol (THC) increases subsequent heroin taking but not heroin's reinforcing efficacy: a self-administration study in rats. Neuropsychopharmacology 29, 1301–1311 (2004).

    Article  CAS  PubMed  Google Scholar 

  198. 198

    Panlilio, L. V., Solinas, M., Matthews, S. A. & Goldberg, S. R. Previous exposure to THC alters the reinforcing efficacy and anxiety-related effects of cocaine in rats. Neuropsychopharmacology 32, 646–657 (2007).

    Article  CAS  PubMed  Google Scholar 

  199. 199

    Patton, G. C., Coffey, C., Carlin, J. B., Sawyer, S. M. & Lynskey, M. Reverse gateways? Frequent cannabis use as a predictor of tobacco initiation and nicotine dependence. Addiction 100, 1518–1525 (2005).

    Article  PubMed  Google Scholar 

  200. 200

    Rubino, T. et al. Chronic Δ9-tetrahydrocannabinol during adolescence provokes sex-dependent changes in the emotional profile in adult rats: behavioral and biochemical correlates. Neuropsychopharmacology 33, 2760–2771 (2008).

    Article  CAS  PubMed  Google Scholar 

  201. 201

    Carlezon, W. A. & Thomas, M. J. Biological substrates of reward and aversion: a nucleus accumbens activity hypothesis. Neuropharmacology 56 (Suppl. 1), 122–132 (2009).

    Article  CAS  PubMed  Google Scholar 

  202. 202

    Glass, M., Dragunow, M. & Faull, R. L. Cannabinoid receptors in the human brain: a detailed anatomical and quantitative autoradiographic study in the fetal, neonatal and adult human brain. Neuroscience 77, 299–318 (1997).

    Article  CAS  PubMed  Google Scholar 

  203. 203

    Wang, X., Dow-Edwards, D., Keller, E. & Hurd, Y. L. Preferential limbic expression of the cannabinoid receptor mRNA in the human fetal brain. Neuroscience 118, 681–694 (2003).

    Article  CAS  PubMed  Google Scholar 

  204. 204

    Herkenham, M. et al. Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. J. Neurosci. 11, 563–583 (1991).

    Article  CAS  PubMed  Google Scholar 

  205. 205

    Egertova, M. & Elphick, M. R. Localisation of cannabinoid receptors in the rat brain using antibodies to the intracellular C-terminal tail of CB1 . J. Comp. Neurol. 422, 159–171 (2000).

    Article  CAS  PubMed  Google Scholar 

  206. 206

    Tsou, K., Brown, S., Sanudo-Pena, M. C., Mackie, K. & Walker, J. M. Immunohistochemical distribution of cannabinoid CB1 receptors in the rat central nervous system. Neuroscience 83, 393–411 (1998).

    Article  CAS  PubMed  Google Scholar 

  207. 207

    Hoffman, A. F. & Lupica, C. R. Direct actions of cannabinoids on synaptic transmission in the nucleus accumbens: a comparison with opioids. J. Neurophysiol. 85, 72–83 (2001).

    Article  CAS  PubMed  Google Scholar 

  208. 208

    Pistis, M., Muntoni, A. L., Pillolla, G. & Gessa, G. L. Cannabinoids inhibit excitatory inputs to neurons in the shell of the nucleus accumbens: an in vivo electrophysiological study. Eur. J. Neurosci. 15, 1795–1802 (2002).

    Article  PubMed  Google Scholar 

  209. 209

    Tzavara, E. T., Wade, M. & Nomikos, G. G. Biphasic effects of cannabinoids on acetylcholine release in the hippocampus: site and mechanism of action. J. Neurosci. 23, 9374–9384 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. 210

    Pisanu, A., Acquas, E., Fenu, S. & Di Chiara, G. Modulation of Δ9-THC-induced increase of cortical and hippocampal acetylcholine release by μ opioid and D1 dopamine receptors. Neuropharmacology 50, 661–670 (2006).

    Article  CAS  PubMed  Google Scholar 

  211. 211

    Pistis, M. et al. Δ9-tetrahydrocannabinol decreases extracellular GABA and increases extracellular glutamate and dopamine levels in the rat prefrontal cortex: an in vivo microdialysis study. Brain Res. 948, 155–158 (2002).

    Article  CAS  PubMed  Google Scholar 

  212. 212

    Higuera-Matas, A. et al. Periadolescent exposure to cannabinoids alters the striatal and hippocampal dopaminergic system in the adult rat brain. Eur. Neuropsychopharmacol. 20, 895–906 (2010).

    Article  CAS  PubMed  Google Scholar 

  213. 213

    Ellgren, M., Spano, S. M. & Hurd, Y. L. Adolescent cannabis exposure alters opiate intake and opioid limbic neuronal populations in adult rats. Neuropsychopharmacology 32, 607–615 (2007).

    Article  CAS  PubMed  Google Scholar 

  214. 214

    Morel, L. J., Giros, B. & Dauge, V. Adolescent exposure to chronic Δ9-tetrahydrocannabinol blocks opiate dependence in maternally deprived rats. Neuropsychopharmacology 34, 2469–2476 (2009).

    Article  CAS  PubMed  Google Scholar 

  215. 215

    van der Pol, P. et al. Predicting the transition from frequent cannabis use to cannabis dependence: a three-year prospective study. Drug Alcohol Depend. 133, 352–359 (2013).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the US National Institutes of Health to L.H.P. (AA020404, AA006420, AA022249 and AA017447) and by grants from the UK Medical Research Council to H.V.C. and C.J.A.M. (G0800268; MR/K015524/1).

Author information

Affiliations

Authors

Corresponding author

Correspondence to H. Valerie Curran.

Ethics declarations

Competing interests

C.J.A.M. has been a consultant for Janssen and GlaxoSmithKline. D.A.L. currently receives investigator-initiated research support from Pfizer and in 2012–2014 served as a consultant in the areas of target identification and validation and new compound development for Autifony, Bristol-Myers Squibb, Concert Pharmaceuticals and Sunovion. H.V.C., T.P.F., C.M. and L.H.P. declare no competing interests.

PowerPoint slides

Glossary

Psychosis

A mental disturbance characterized by aberrant perceptions (hallucinations) and thoughts (delusions) that causes an individual to lose touch with external reality.

Long-term potentiation

(LTP). A lasting increase in the strength of neurotransmission at a synapse that is implicated in learning and memory.

Long-term depression

(LTD). An enduring decrease in the strength of neurotransmission at a synapse that is implicated learning and memory.

Episodic memory

Personal, contextualized autobiographical memory of past experiences.

Working memory

The capacity to hold information 'online' (maintenance) and manipulate it.

Cannabis abuse

Cannabis use that is problematic for various aspects of an individual's life (for example, causing occupational, educational or social problems) or that is carried out in dangerous contexts.

Cannabis dependence

A group of severe consequences of repeated cannabis use, including tolerance to effects, withdrawal symptoms upon cessation, dysregulation of use, increased involvement with cannabis at the expense of other activities, and continued use despite the problems it causes.

Reinforcement

A learning process through which particular stimuli or events (such as familiar drug-taking environments, or pleasant drug effects) influence the likelihood or strength of behaviour, such as drug seeking.

Intracranial self-stimulation

(ICSS). An operant paradigm in which animals perform a behavioural response to receive brief electrical pulses into specific regions in the brain reward pathways.

Conditioned place preference

A Pavlovian conditioning procedure used to index the motivational properties of drug experience. Typically, the time spent in an environment associated with drug intoxication is compared with that spent in a neutral context.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Curran, H., Freeman, T., Mokrysz, C. et al. Keep off the grass? Cannabis, cognition and addiction. Nat Rev Neurosci 17, 293–306 (2016). https://doi.org/10.1038/nrn.2016.28

Download citation

Further reading