Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

You are viewing this page in draft mode.

Neural correlates of consciousness: progress and problems

An Erratum to this article was published on 06 May 2016

This article has been updated

Key Points

  • The neuronal correlates of consciousness (NCC) are the minimum neuronal mechanisms jointly sufficient for any one specific conscious experience. It is important to distinguish full NCC (the neural substrate supporting experience in general, irrespective of its specific content), content-specific NCC (the neural substrate supporting a particular content of experience — for example, faces, whether seen, dreamt or imagined) and background conditions (factors that enable consciousness, but do not contribute directly to the content of experience — for example, arousal systems that ensure adequate excitability of the NCC).

  • The no-report paradigm allows the NCC to be distinguished from events or processes — such as selective attention, memory and response preparation — that are associated with, precede or follow conscious experience. In such paradigms, trials with explicit reports are included along with trials without explicit reports, during which indirect physiological measures are used to infer what the participant is perceiving.

  • The best candidates for full and content-specific NCC are located in the posterior cerebral cortex, in a temporo-parietal-occipital hot zone. The content-specific NCC may be any particular subset of neurons within this hot zone that supports specific phenomenological distinctions, such as faces.

  • The two most widely used electrophysiological signatures of consciousness — gamma range oscillations and the P3b event-related potential — can be dissociated from conscious experiences and are more closely correlated with selective attention and novelty, respectively.

  • New electroencephalography- or functional MRI-based variables that measure the extent to which neuronal activity is both differentiated and integrated across the cortical sheet allow the NCC to be identified more precisely. Moreover, a combined transcranial magnetic stimulation–electroencephalography procedure can predict the presence or absence of consciousness in healthy people who are awake, deeply sleeping or under different types of anaesthesia, and in patients with disorders of consciousness, at the single-person level.

  • Extending the NCC derived from studies in people who can speak about the presence and quality of consciousness to patients with severe brain injuries, fetuses and newborn infants, non-mammalian species and intelligent machines is more challenging. For these purposes, it is essential to combine experimental studies to identify the NCC with a theoretical approach that characterizes in a principled manner what consciousness is and what is required of its physical substrate.

Abstract

There have been a number of advances in the search for the neural correlates of consciousness — the minimum neural mechanisms sufficient for any one specific conscious percept. In this Review, we describe recent findings showing that the anatomical neural correlates of consciousness are primarily localized to a posterior cortical hot zone that includes sensory areas, rather than to a fronto-parietal network involved in task monitoring and reporting. We also discuss some candidate neurophysiological markers of consciousness that have proved illusory, and measures of differentiation and integration of neural activity that offer more promising quantitative indices of consciousness.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Identifying the neural correlates of consciousness.
Figure 2: Identifying content-specific and full neural correlates of consciousness.
Figure 3: Candidate neurophysiological markers of consciousness.
Figure 4: Neural differentiation and integration as neural correlates of consciousness.

Change history

  • 06 May 2016

    The traces in panel e of Figure 3 were incorrectly colour coded. The colour coding has been corrected in the online version of the article.

References

  1. 1

    Tononi, G. The integrated information theory of consciousness: an updated account. Arch. Ital. Biol. 150, 56–90 (2012).

    CAS  PubMed  Google Scholar 

  2. 2

    Posner, J. B., Saper, C. B., Schiff, N. D. & Plum, F. Plum and Posner's Diagnosis of Stupor and Coma (Oxford University Press, 2007). Describes the canonical clinical tests for disorders of consciousness.

    Google Scholar 

  3. 3

    Rees, G., Kreiman, G. & Koch, C. Neural correlates of consciousness in humans. Nat. Rev. Neurosci. 3, 261–270 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. 4

    Faivre, N., Salomon, R. & Blanke, O. Visual consciousness and bodily self-consciousness. Curr. Opin. Neurol. 28, 23–28 (2015).

    Article  PubMed  Google Scholar 

  5. 5

    Merrick, C., Godwin, C., Geisler, M. & Morsella, E. The olfactory system as the gateway to the neural correlates of consciousness. Front. Psychol. 4, 1011 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  6. 6

    Gallace, A. & Spence, C. The cognitive and neural correlates of 'tactile consciousness': a multisensory perspective. Conscious. Cogn. 17, 370–407 (2008).

    Article  PubMed  Google Scholar 

  7. 7

    Fleming, S. M. & Dolan, R. J. The neural basis of metacognitive ability. Phil. Trans. R. Soc. B 367, 1338–1349 (2012).

    Article  PubMed  Google Scholar 

  8. 8

    Laureys, S. The neural correlate of (un)awareness: lessons from the vegetative state. Trends Cogn. Sci. 9, 556–559 (2005).

    Article  PubMed  Google Scholar 

  9. 9

    Giacino, J. T., Kalmar, K. & Whyte, J. The JFK Coma Recovery Scale — Revised: measurement characteristics and diagnostic utility. Arch. Phys. Med. Rehabil. 85, 2020–2029 (2004).

    Article  PubMed  Google Scholar 

  10. 10

    Schnakers, C. et al. Diagnostic accuracy of the vegetative and minimally conscious state: clinical consensus versus standardized neurobehavioral assessment. BMC Neurol. 9, 35 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  11. 11

    Owen, A. M. et al. Detecting awareness in the vegetative state. Science 313, 1402 (2006). The first study to use fMRI to infer consciousness in a behaviourally non-responsive patient in a vegetative state.

    Article  CAS  PubMed  Google Scholar 

  12. 12

    Kunimoto, C., Miller, J. & Pashler, H. Confidence and accuracy of near-threshold discrimination responses. Conscious. Cogn. 10, 294–340 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. 13

    Reingold, E. M. & Merikle, P. M. Using direct and indirect measures to study perception without awareness. Percept. Psychophys. 44, 563–575 (1988).

    Article  CAS  PubMed  Google Scholar 

  14. 14

    Weiskrantz, L. Is blindsight just degraded normal vision? Exp. Brain Res. 192, 413–416 (2009).

    Article  PubMed  Google Scholar 

  15. 15

    Snodgrass, M., Bernat, E. & Shevrin, H. Unconscious perception: a model-based approach to method and evidence. Percept. Psychophys. 66, 846–867 (2004).

    Article  PubMed  Google Scholar 

  16. 16

    Sandberg, K., Timmermans, B., Overgaard, M. & Cleeremans, A. Measuring consciousness: is one measure better than the other? Conscious. Cogn. 19, 1069–1078 (2010). A study comparing different behavioural measures of consciousness.

    Article  PubMed  Google Scholar 

  17. 17

    Del Cul, A., Baillet, S. & Dehaene, S. Brain dynamics underlying the nonlinear threshold for access to consciousness. PLoS Biol. 5, e260 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. 18

    Cowey, A. & Stoerig, P. Blindsight in monkeys. Nature 373, 247–249 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. 19

    Kepecs, A., Uchida, N., Zariwala, H. A. & Mainen, Z. F. Neural correlates, computation and behavioural impact of decision confidence. Nature 455, 227–231 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. 20

    Leopold, D. A. Primary visual cortex: awareness and blindsight. Annu. Rev. Neurosci. 35, 91–109 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Crick, F. & Koch, C. Towards a neurobiological theory of consciousness. Semin. Neurosci. 2, 263–275 (1990). One of the principal publications that triggered the contemporary search for the NCC.

    Google Scholar 

  22. 22

    Koch, C. The Quest for Consciousness: a Neurobiological Approach (Roberts, 2004).

    Google Scholar 

  23. 23

    Baars, B. A. Cognitive Theory of Consciousness (Cambridge Univ. Press, 1988). Introduces the global workspace theory of consciousness.

    Google Scholar 

  24. 24

    Blake, R. & Logothetis, N. K. Visual competition. Nat. Rev. Neurosci. 3, 13–21 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. 25

    Tsuchiya, N. & Koch, C. Continuous flash suppression reduces negative afterimages. Nat. Neurosci. 8, 1096–1101 (2005). Reports the discovery of a widely used long-lasting visual masking technique.

    Article  CAS  PubMed  Google Scholar 

  26. 26

    Imamoglu, F., Kahnt, T., Koch, C. & Haynes, J. D. Changes in functional connectivity support conscious object recognition. Neuroimage 63, 1909–1917 (2012).

    Article  PubMed  Google Scholar 

  27. 27

    Breitmeyer, B. G. & Ögmen, H. Recent models and findings in visual backward masking: a comparison, review, and update. Percept. Psychophys. 62, 1572–1595 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. 28

    Francis, G. Quantitative theories of metacontrast masking. Psychol. Rev. 107, 768–785 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. 29

    Koivisto, M. & Revonsuo, A. Event-related brain potential correlates of visual awareness. Neurosci. Biobehav. Rev. 34, 922–934 (2010).

    Article  PubMed  Google Scholar 

  30. 30

    Miller, S. M. Closing in on the constitution of consciousness. Front. Psychol. 5, 1293 (2014).

    PubMed  PubMed Central  Google Scholar 

  31. 31

    Aru, J., Bachmann, T., Singer, W. & Melloni, L. Distilling the neural correlates of consciousness. Neurosci. Biobehav. Rev. 36, 737–746 (2012).

    Article  PubMed  Google Scholar 

  32. 32

    de Graaf, T. A., Hsieh, P.-J. & Sack, A. T. The 'correlates' in neural correlates of consciousness. Neurosci. Biobehav. Rev. 36, 191–197 (2012).

    Article  PubMed  Google Scholar 

  33. 33

    Aru, J. et al. Local category-specific gamma band responses in the visual cortex do not reflect conscious perception. J. Neurosci. 32, 14909–14914 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. 34

    Pitts, M. A., Metzler, S. & Hillyard, S. A. Isolating neural correlates of conscious perception from neural correlates of reporting one's perception. Front. Psychol. 5, 1078 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  35. 35

    Tsuchiya, N., Wilke, M., Frässle, S. & Lamme, V. A. No-report paradigms: extracting the true neural correlates of consciousness. Trends Cogn. Sci. 19, 757–770 (2015).

    Article  PubMed  Google Scholar 

  36. 36

    Frässle, S., Sommer, J., Jansen, A., Naber, M. & Einhäuser, W. Binocular rivalry: frontal activity relates to introspection and action but not to perception. J. Neurosci. 34, 1738–1747 (2014). Pioneering application of a no-report paradigm to study binocular rivalry.

    Article  CAS  PubMed  Google Scholar 

  37. 37

    Maquet, P. et al. Functional neuroanatomy of human slow wave sleep. J. Neurosci. 17, 2807–2812 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. 38

    Massimini, M. et al. Breakdown of cortical effective connectivity during sleep. Science 309, 2228–2232 (2005). The first study to use TMS and EEG to measure the breakdown of causal integration and differentiation during slow wave sleep.

    Article  CAS  PubMed  Google Scholar 

  39. 39

    Alkire, M. T., Hudetz, A. G. & Tononi, G. Consciousness and anesthesia. Science 322, 876–880 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Brown, E. N., Lydic, R. & Schiff, N. D. General anesthesia, sleep, and coma. N. Engl. J. Med. 363, 2638–2650 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Laureys, S., Owen, A. M. & Schiff, N. D. Brain function in coma, vegetative state, and related disorders. Lancet Neurol. 3, 537–546 (2004).

    Article  PubMed  Google Scholar 

  42. 42

    Gosseries, O., Di, H., Laureys, S. & Boly, M. Measuring consciousness in severely damaged brains. Annu. Rev. Neurosci. 37, 457–478 (2014). A comprehensive review of clinical and neuroimaging aspects of disorders of consciousness.

    Article  CAS  PubMed  Google Scholar 

  43. 43

    Hohwy, J. The neural correlates of consciousness: new experimental approaches needed? Conscious. Cogn. 18, 428–438 (2009).

    Article  PubMed  Google Scholar 

  44. 44

    Siclari, F., LaRocque, J. J., Bernardi, G., Postle, B. R. & Tononi, G. The neural correlates of consciousness in sleep: a no-task, within-state paradigm. Preprint at http://biorxiv.org/content/early/2014/12/30/012443 (2014).

  45. 45

    Herculano-Houzel, S. The remarkable, yet not extraordinary, human brain as a scaled-up primate brain and its associated cost. Proc. Natl Acad. Sci. USA 109 (Suppl. 1), 10661–10668 (2012).

    Article  PubMed  Google Scholar 

  46. 46

    Baumann, O. et al. Consensus paper: the role of the cerebellum in perceptual processes. Cerebellum 14, 197–220 (2015).

    Article  PubMed  Google Scholar 

  47. 47

    Lemon, R. N. & Edgley, S. A. Life without a cerebellum. Brain 133, 652–654 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. 48

    Yu, F., Jiang, Q. J., Sun, X. Y. & Zhang, R. W. A new case of complete primary cerebellar agenesis: clinical and imaging findings in a living patient. Brain 138, e353 (2015). A case study of a patient born without a cerebellum who lives a normal life.

    Article  PubMed  Google Scholar 

  49. 49

    Moruzzi, G. & Magoun, H. W. Brain stem reticular formation and activation of the EEG. Electroencephalogr. Clin. Neurophysiol. 1, 455–473 (1949).

    Article  CAS  PubMed  Google Scholar 

  50. 50

    Parvizi, J. & Damasio, A. R. Neuroanatomical correlates of brainstem coma. Brain 126, 1524–1536 (2003).

    Article  PubMed  Google Scholar 

  51. 51

    Parvizi, J. & Damasio, A. Consciousness and the brainstem. Cognition 79, 135–160 (2001). An up-to-date account of the current understanding of the role of the brainstem in enabling consciousness.

    Article  CAS  PubMed  Google Scholar 

  52. 52

    Nir, Y. et al. Regional slow waves and spindles in human sleep. Neuron 70, 153–169 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. 53

    Brown, R. E., Basheer, R., McKenna, J. T., Strecker, R. E. & McCarley, R. W. Control of sleep and wakefulness. Physiol. Rev. 92, 1087–1187 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. 54

    Siclari, F., Larocque, J. J., Postle, B. R. & Tononi, G. Assessing sleep consciousness within subjects using a serial awakening paradigm. Front. Psychol. 4, 542 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  55. 55

    Bhatia, K. P. & Marsden, C. D. The behavioural and motor consequences of focal lesions of the basal ganglia in man. Brain 117, 859–876 (1994).

    Article  PubMed  Google Scholar 

  56. 56

    Wijdicks, E. F. & Cranford, R. E. Clinical diagnosis of prolonged states of impaired consciousness in adults. Mayo Clin. Proc. 80, 1037–1046 (2005).

    Article  PubMed  Google Scholar 

  57. 57

    Lutkenhoff, E. S. et al. Thalamic and extrathalamic mechanisms of consciousness after severe brain injury. Ann. Neurol. 78, 68–76 (2015).

    Article  PubMed  Google Scholar 

  58. 58

    Jain, S. K. et al. Bilateral large traumatic basal ganglia haemorrhage in a conscious adult: a rare case report. Brain Inj. 27, 500–503 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. 59

    Straussberg, R. et al. Familial infantile bilateral striatal necrosis: clinical features and response to biotin treatment. Neurology 59, 983–989 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. 60

    Caparros-Lefebvre, D., Destee, A. & Petit, H. Late onset familial dystonia: could mitochondrial deficits induce a diffuse lesioning process of the whole basal ganglia system? J. Neurol. Neurosurg. Psychiatry 63, 196–203 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. 61

    Alexander, G. E., DeLong, M. R. & Strick, P. L. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu. Rev. Neurosci. 9, 357–381 (1986).

    Article  CAS  PubMed  Google Scholar 

  62. 62

    McHaffie, J. G., Stanford, T. R., Stein, B. E., Coizet, V. & Redgrave, P. Subcortical loops through the basal ganglia. Trends Neurosci. 28, 401–407 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. 63

    Torgerson, C. M., Irimia, A., Goh, S. Y. & Van Horn, J. D. The DTI connectivity of the human claustrum. Hum. Brain Mapp. 36, 827–838 (2015).

    Article  PubMed  Google Scholar 

  64. 64

    Crick, F. C. & Koch, C. What is the function of the claustrum? Phil. Trans. R. Soc. B 360, 1271–1279 (2005).

    Article  PubMed  Google Scholar 

  65. 65

    Koubeissi, M. Z., Bartolomei, F., Beltagy, A. & Picard, F. Electrical stimulation of a small brain area reversibly disrupts consciousness. Epilepsy Behav. 37, 32–35 (2014).

    Article  PubMed  Google Scholar 

  66. 66

    Damasio, A., Damasio, H. & Tranel, D. Persistence of feelings and sentience after bilateral damage of the insula. Cereb. Cortex 23, 833–846 (2013).

    Article  PubMed  Google Scholar 

  67. 67

    Bogen, J. E. On the neurophysiology of consciousness: I. An overview. Conscious. Cogn. 4, 52–62 (1995).

    Article  CAS  PubMed  Google Scholar 

  68. 68

    Van der Werf, Y. D., Witter, M. P. & Groenewegen, H. J. The intralaminar and midline nuclei of the thalamus. Anatomical and functional evidence for participation in processes of arousal and awareness. Brain Res. Brain Res. Rev. 39, 107–140 (2002).

    Article  PubMed  Google Scholar 

  69. 69

    Schiff, N. D. et al. Behavioural improvements with thalamic stimulation after severe traumatic brain injury. Nature 448, 600–603 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. 70

    Jones, E. G. A new view of specific and nonspecific thalamocortical connections. Adv. Neurol. 77, 49–71; discussion 72–73 (1998).

    CAS  PubMed  Google Scholar 

  71. 71

    Theyel, B. B., Llano, D. A. & Sherman, S. M. The corticothalamocortical circuit drives higher-order cortex in the mouse. Nat. Neurosci. 13, 84–88 (2010).

    Article  CAS  PubMed  Google Scholar 

  72. 72

    Fuller, P. M., Sherman, D., Pedersen, N. P., Saper, C. B. & Lu, J. Reassessment of the structural basis of the ascending arousal system. J. Comp. Neurol. 519, 933–956 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  73. 73

    Laureys, S. et al. Cortical processing of noxious somatosensory stimuli in the persistent vegetative state. Neuroimage 17, 732–741 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. 74

    Lehky, S. R. & Maunsell, J. H. No binocular rivalry in the LGN of alert macaque monkeys. Vision Res. 36, 1225–1234 (1996).

    Article  CAS  PubMed  Google Scholar 

  75. 75

    Wilke, M., Mueller, K. M. & Leopold, D. A. Neural activity in the visual thalamus reflects perceptual suppression. Proc. Natl Acad. Sci. USA 106, 9465–9470 (2009).

    Article  PubMed  Google Scholar 

  76. 76

    Panagiotaropoulos, T. I., Kapoor, V. & Logothetis, N. K. Subjective visual perception: from local processing to emergent phenomena of brain activity. Phil. Trans. R. Soc. B 369, 20130534 (2014).

    Article  PubMed  Google Scholar 

  77. 77

    Boly, M. et al. Connectivity changes underlying spectral EEG changes during propofol-induced loss of consciousness. J. Neurosci. 32, 7082–7090 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. 78

    Velly, L. J. et al. Differential dynamic of action on cortical and subcortical structures of anesthetic agents during induction of anesthesia. Anesthesiology 107, 202–212 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. 79

    Magnin, M. et al. Thalamic deactivation at sleep onset precedes that of the cerebral cortex in humans. Proc. Natl Acad. Sci. USA 107, 3829–3833 (2010).

    Article  PubMed  Google Scholar 

  80. 80

    Crick, F. & Koch, C. Are we aware of neural activity in primary visual cortex? Nature 375, 121–123 (1995). Proposes that neurons in V1 are not the neural correlates of visual consciousness.

    Article  CAS  PubMed  Google Scholar 

  81. 81

    Silvanto, J. Is primary visual cortex necessary for visual awareness? Trends Neurosci. 37, 618–619 (2014).

    Article  CAS  PubMed  Google Scholar 

  82. 82

    Jiang, Y., Zhou, K. & He, S. Human visual cortex responds to invisible chromatic flicker. Nat. Neurosci. 10, 657–662 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. 83

    He, S. & MacLeod, D. I. Orientation-selective adaptation and tilt after-effect from invisible patterns. Nature 411, 473–476 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. 84

    Haynes, J. D. & Rees, G. Predicting the orientation of invisible stimuli from activity in human primary visual cortex. Nat. Neurosci. 8, 686–691 (2005). A study showing that the haemodynamic response in human V1 contains information not accessible to subjects during a visual masking task.

    Article  CAS  PubMed  Google Scholar 

  85. 85

    Logothetis, N. K. Single units and conscious vision. Phil. Trans. R. Soc. Lond. B 353, 1801–1818 (1998). A review of Logothetis' classic single-neuron studies in the visual cortex of monkeys undergoing binocular competition.

    Article  CAS  Google Scholar 

  86. 86

    Leopold, D. A. & Logothetis, N. K. Multistable phenomena: changing views in perception. Trends Cogn. Sci. 3, 254–264 (1999).

    Article  CAS  PubMed  Google Scholar 

  87. 87

    Polonsky, A., Blake, R., Braun, J. & Heeger, D. J. Neuronal activity in human primary visual cortex correlates with perception during binocular rivalry. Nat. Neurosci. 3, 1153–1159 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. 88

    Lee, S. H., Blake, R. & Heeger, D. J. Traveling waves of activity in primary visual cortex during binocular rivalry. Nat. Neurosci. 8, 22–23 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. 89

    Harrison, S. A. & Tong, F. Decoding reveals the contents of visual working memory in early visual areas. Nature 458, 632–635 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. 90

    Donner, T. H., Sagi, D., Bonneh, Y. S. & Heeger, D. J. Opposite neural signatures of motion-induced blindness in human dorsal and ventral visual cortex. J. Neurosci. 28, 10298–10310 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. 91

    Weiskrantz, L. Blindsight revisited. Curr. Opin. Neurobiol. 6, 215–220 (1996).

    Article  CAS  PubMed  Google Scholar 

  92. 92

    Horton, J. C. & Hoyt, W. F. Quadrantic visual field defects. A hallmark of lesions in extrastriate (V2/V3) cortex. Brain 114, 1703–1718 (1991).

    Article  PubMed  Google Scholar 

  93. 93

    Mazzi, C., Mancini, F. & Savazzi, S. Can IPS reach visual awareness without V1? Evidence from TMS in healthy subjects and hemianopic patients. Neuropsychologia 64C, 134–144 (2014).

    Article  Google Scholar 

  94. 94

    Zeki, S. A Vision of the Brain (Blackwell Scientific, 1993).

    Google Scholar 

  95. 95

    Pollen, D. A. Fundamental requirements for primary visual perception. Cereb. Cortex 18, 1991–1998 (2008).

    Article  PubMed  Google Scholar 

  96. 96

    Oizumi, M., Albantakis, L. & Tononi, G. From the phenomenology to the mechanisms of consciousness: integrated information theory 3.0. PLoS Comput. Biol. 10, e1003588 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. 97

    Meyer, K. Primary sensory cortices, top-down projections and conscious experience. Prog. Neurobiol. 94, 408–417 (2011).

    Article  PubMed  Google Scholar 

  98. 98

    Wiegand, K. & Gutschalk, A. Correlates of perceptual awareness in human primary auditory cortex revealed by an informational masking experiment. Neuroimage 61, 62–69 (2012).

    Article  PubMed  Google Scholar 

  99. 99

    Cauller, L. J. & Kulics, A. T. The neural basis of the behaviorally relevant N1 component of the somatosensory-evoked potential in SI cortex of awake monkeys: evidence that backward cortical projections signal conscious touch sensation. Exp. Brain Res. 84, 607–619 (1991).

    Article  CAS  PubMed  Google Scholar 

  100. 100

    Goodale, M. A. & Milner, D. A. Sight Unseen: an Exploration of Conscious and Unconscious Vision (Oxford Univ. Press, 2004).

    Google Scholar 

  101. 101

    Grill-Spector, K. & Weiner, K. S. The functional architecture of the ventral temporal cortex and its role in categorization. Nat. Rev. Neurosci. 15, 536–548 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. 102

    Karnath, H. O., Ruter, J., Mandler, A. & Himmelbach, M. The anatomy of object recognition — visual form agnosia caused by medial occipitotemporal stroke. J. Neurosci. 29, 5854–5862 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. 103

    Milner, A. D. Is visual processing in the dorsal stream accessible to consciousness? Proc. Biol. Sci. 279, 2289–2298 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. 104

    Konen, C. S. & Kastner, S. Two hierarchically organized neural systems for object information in human visual cortex. Nat. Neurosci. 11, 224–231 (2008).

    Article  CAS  PubMed  Google Scholar 

  105. 105

    Kravitz, D. J., Saleem, K. S., Baker, C. I. & Mishkin, M. A new neural framework for visuospatial processing. Nat. Rev. Neurosci. 12, 217–230 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. 106

    Bagattini, C., Mazzi, C. & Savazzi, S. Waves of awareness for occipital and parietal phosphenes perception. Neuropsychologia 70C, 114–125 (2015).

    Article  Google Scholar 

  107. 107

    Laureys, S., Lemaire, C., Maquet, P., Phillips, C. & Franck, G. Cerebral metabolism during vegetative state and after recovery to consciousness. J. Neurol. Neurosurg. Psychiatry 67, 121 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. 108

    Kaisti, K. K. et al. Effects of surgical levels of propofol and sevoflurane anesthesia on cerebral blood flow in healthy subjects studied with positron emission tomography. Anesthesiology 96, 1358–1370 (2002).

    Article  CAS  PubMed  Google Scholar 

  109. 109

    Maquet, P. Functional neuroimaging of normal human sleep by positron emission tomography. J. Sleep Res. 9, 207–231 (2000).

    Article  CAS  PubMed  Google Scholar 

  110. 110

    Kajimura, N. et al. Activity of midbrain reticular formation and neocortex during the progression of human non-rapid eye movement sleep. J. Neurosci. 19, 10065–10073 (1999).

    Article  CAS  PubMed  Google Scholar 

  111. 111

    Vogt, B. A. & Laureys, S. Posterior cingulate, precuneal and retrosplenial cortices: cytology and components of the neural network correlates of consciousness. Prog. Brain Res. 150, 205–217 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  112. 112

    Bai, X. et al. Dynamic time course of typical childhood absence seizures: EEG, behavior, and functional magnetic resonance imaging. J. Neurosci. 30, 5884–5893 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. 113

    Safavi, S., Kapoor, V., Logothetis, N. K. & Panagiotaropoulos, T. I. Is the frontal lobe involved in conscious perception? Front. Psychol. 5, 1063 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  114. 114

    Melloni, L., Schwiedrzik, C. M., Muller, N., Rodriguez, E. & Singer, W. Expectations change the signatures and timing of electrophysiological correlates of perceptual awareness. J. Neurosci. 31, 1386–1396 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. 115

    Sandberg, K. et al. Distinct MEG correlates of conscious experience, perceptual reversals and stabilization during binocular rivalry. Neuroimage 100, 161–175 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  116. 116

    Andersen, L. M., Pedersen, M. N., Sandberg, K. & Overgaard, M. Occipital MEG activity in the early time range (<300 ms) predicts graded changes in perceptual consciousness. Cereb. Cortex http://dx.doi.org/10.1093/cercor/bhv108 (2015).

  117. 117

    Noy, N. et al. Ignition's glow: ultra-fast spread of global cortical activity accompanying local “ignitions” in visual cortex during conscious visual perception. Conscious. Cogn. 35, 206–224 (2015).

    Article  CAS  PubMed  Google Scholar 

  118. 118

    Nir, Y. & Tononi, G. Dreaming and the brain: from phenomenology to neurophysiology. Trends Cogn. Sci. 14, 88–100 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  119. 119

    Postle, B. R. The cognitive neuroscience of visual short-term memory. Curr. Opin. Behav. Sci. 1, 40–46 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  120. 120

    Selimbeyoglu, A. & Parvizi, J. Electrical stimulation of the human brain: perceptual and behavioral phenomena reported in the old and new literature. Front. Hum. Neurosci. 4, 46 (2010).

    PubMed  PubMed Central  Google Scholar 

  121. 121

    Rangarajan, V. et al. Electrical stimulation of the left and right human fusiform gyrus causes different effects in conscious face perception. J. Neurosci. 34, 12828–12836 (2014). Demonstrates that electrical stimulation of the right but not the left fusiform face regions in humans with implanted electrodes causes changes in visual face perception.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. 122

    Desmurget, M. et al. Movement intention after parietal cortex stimulation in humans. Science 324, 811–813 (2009). A neurosurgical account reporting that direct electrical stimulation of the posterior parietal cortex causes a conscious intention to move without an actual motor response.

    Article  CAS  PubMed  Google Scholar 

  123. 123

    Brickner, R. M. Brain of patient A. after bilateral frontal lobectomy; status of frontal-lobe problem. AMA Arch. Neurol. Psychiatry 68, 293–313 (1952). A classic account of a patient with an almost complete bilateral frontal lobectomy who was clearly conscious.

    Article  CAS  PubMed  Google Scholar 

  124. 124

    Hebb, D. O. & Penfield, W. Human behavior after extensive bilateral removal from the frontal lobes. Arch. Neurol. Psychiatry 42, 421–438 (1940).

    Article  Google Scholar 

  125. 125

    Fulton, J. F. Functional Localization in Relation to Frontal Lobotomy (Oxford Univ. Press, 1949).

    Google Scholar 

  126. 126

    Mettler, F. A. Selective Partial Ablation of the Frontal Cortex, a Correlative Study of its Effects on Human Psychotic Subjects (Hoebar, 1949).

    Google Scholar 

  127. 127

    Markowitsch, H. J. & Kessler, J. Massive impairment in executive functions with partial preservation of other cognitive functions: the case of a young patient with severe degeneration of the prefrontal cortex. Exp. Brain Res. 133, 94–102 (2000).

    Article  CAS  PubMed  Google Scholar 

  128. 128

    Mataró, M. et al. Long-term effects of bilateral frontal brain lesion: 60 years after injury with an iron bar. Arch. Neurol. 58, 1139–1142 (2001).

    Article  PubMed  Google Scholar 

  129. 129

    VanRullen, R. & Koch, C. Visual selective behavior can be triggered by a feed-forward process. J. Cogn. Neurosci. 15, 209–217 (2003).

    Article  PubMed  Google Scholar 

  130. 130

    Schmidt, T. & Schmidt, F. Processing of natural images is feedforward: a simple behavioral test. Atten. Percept. Psychophys. 71, 594–606 (2009).

    Article  PubMed  Google Scholar 

  131. 131

    Koivisto, M., Kastrati, G. & Revonsuo, A. Recurrent processing enhances visual awareness but is not necessary for fast categorization of natural scenes. J. Cogn. Neurosci. 26, 223–231 (2014).

    Article  PubMed  Google Scholar 

  132. 132

    Lamme, V. A. & Roelfsema, P. R. The distinct modes of vision offered by feedforward and recurrent processing. Trends Neurosci. 23, 571–579 (2000). Argues that a rapid, sensory-driven feedforward wave of neural activity mediates unconscious behaviour, whereas top-down feedback gives rise to conscious experience.

    Article  CAS  PubMed  Google Scholar 

  133. 133

    Tang, H. et al. Spatiotemporal dynamics underlying object completion in human ventral visual cortex. Neuron 83, 736–748 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. 134

    Super, H., Spekreijse, H. & Lamme, V. A. Two distinct modes of sensory processing observed in monkey primary visual cortex (V1). Nat. Neurosci. 4, 304–310 (2001).

    Article  CAS  PubMed  Google Scholar 

  135. 135

    Auksztulewicz, R., Spitzer, B. & Blankenburg, F. Recurrent neural processing and somatosensory awareness. J. Neurosci. 32, 799–805 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. 136

    Sachidhanandam, S., Sreenivasan, V., Kyriakatos, A., Kremer, Y. & Petersen, C. C. Membrane potential correlates of sensory perception in mouse barrel cortex. Nat. Neurosci. 16, 1671–1677 (2013). A study showing how transgenic mice and molecular tools can be applied to study the neuronal circuitry underlying tactile perception.

    Article  CAS  PubMed  Google Scholar 

  137. 137

    Boly, M. et al. Preserved feedforward but impaired top-down processes in the vegetative state. Science 332, 858–862 (2011).

    Article  CAS  PubMed  Google Scholar 

  138. 138

    Ku, S. W., Lee, U., Noh, G. J., Jun, I. G. & Mashour, G. A. Preferential inhibition of frontal-to-parietal feedback connectivity is a neurophysiologic correlate of general anesthesia in surgical patients. PLoS ONE 6, e25155 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. 139

    Tononi, G. & Edelman, G. M. Consciousness and complexity. Science 282, 1846–1851 (1998).

    Article  CAS  PubMed  Google Scholar 

  140. 140

    Lamme, V. A. F. Towards a true neural stance on consciousness. Trends Cogn. Sci. 10, 494–501 (2006).

    Article  PubMed  Google Scholar 

  141. 141

    Dehaene, S. & Naccache, L. Towards a cognitive neuroscience of consciousness: basic evidence and a workspace framework. Cognition 79, 1–37 (2001).

    Article  CAS  PubMed  Google Scholar 

  142. 142

    Dehaene, S. & Changeux, J.-P. Experimental and theoretical approaches to conscious processing. Neuron 70, 200–227 (2011). A recent account of the neuronal global workspace theory of consciousness.

    Article  CAS  PubMed  Google Scholar 

  143. 143

    Butti, C., Santos, M., Uppal, N. & Hof, P. R. Von Economo neurons: clinical and evolutionary perspectives. Cortex 49, 312–326 (2013).

    Article  PubMed  Google Scholar 

  144. 144

    Livingstone, M. S. & Hubel, D. H. Effects of sleep and arousal on the processing of visual information in the cat. Nature 291, 554–561 (1981).

    Article  CAS  PubMed  Google Scholar 

  145. 145

    Larkum, M. A cellular mechanism for cortical associations: an organizing principle for the cerebral cortex. Trends Neurosci. 36, 141–151 (2013).

    Article  CAS  PubMed  Google Scholar 

  146. 146

    Harris, K. D. & Shepherd, G. M. The neocortical circuit: themes and variations. Nat. Neurosci. 18, 170–181 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. 147

    Douglas, R. J. & Martin, K. A. Neuronal circuits of the neocortex. Annu. Rev. Neurosci. 27, 419–451 (2004).

    Article  CAS  PubMed  Google Scholar 

  148. 148

    Binzegger, T., Douglas, R. J. & Martin, K. A. Topology and dynamics of the canonical circuit of cat V1. Neural Netw. 22, 1071–1078 (2009).

    Article  CAS  PubMed  Google Scholar 

  149. 149

    Markov, N. T. et al. Anatomy of hierarchy: feedforward and feedback pathways in macaque visual cortex. J. Comp. Neurol. 522, 225–259 (2014).

    Article  PubMed  Google Scholar 

  150. 150

    Zhang, S. et al. Long-range and local circuits for top-down modulation of visual cortex processing. Science 345, 660–665 (2014). A study analysing the circuits mediating top-down visual attention in transgenic mice using optogenetics.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. 151

    Maier, A., Adams, G. K., Aura, C. & Leopold, D. A. Distinct superficial and deep laminar domains of activity in the visual cortex during rest and stimulation. Front. Syst. Neurosci. 4, 31 (2010).

    PubMed  PubMed Central  Google Scholar 

  152. 152

    Buffalo, E. A., Fries, P., Landman, R., Buschman, T. J. & Desimone, R. Laminar differences in gamma and alpha coherence in the ventral stream. Proc. Natl Acad. Sci. USA 108, 11262–11267 (2011).

    Article  PubMed  Google Scholar 

  153. 153

    Funk, C.M., Honjoh, S., Rodriguez, A.V., Cirelli, C. & Tononi, G. Local slow waves in superficial layers of primary cortical areas during REM sleep. Curr. Biol. 26, 396–403 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. 154

    Sakata, S. & Harris, K. D. Laminar structure of spontaneous and sensory-evoked population activity in auditory cortex. Neuron 64, 404–418 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. 155

    Shew, W. L. & Plenz, D. The functional benefits of criticality in the cortex. Neuroscientist 19, 88–100 (2013).

    Article  PubMed  Google Scholar 

  156. 156

    He, B. J. & Raichle, M. E. The fMRI signal, slow cortical potential and consciousness. Trends Cogn. Sci. 13, 302–309 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  157. 157

    Libet, B., Alberts, W. W., Wright, E. W. Jr & Feinstein, B. Responses of human somatosensory cortex to stimuli below threshold for conscious sensation. Science 158, 1597–1600 (1967).

    Article  CAS  PubMed  Google Scholar 

  158. 158

    Pins, D. & Ffytche, D. The neural correlates of conscious vision. Cereb. Cortex 13, 461–474 (2003).

    Article  PubMed  Google Scholar 

  159. 159

    Fitzgerald, R. D. et al. Direct current auditory evoked potentials during wakefulness, anesthesia, and emergence from anesthesia. Anesth. Analg. 92, 154–160 (2001).

    Article  CAS  PubMed  Google Scholar 

  160. 160

    Arezzo, J. C., Vaughan, H. G. Jr & Legatt, A. D. Topography and intracranial sources of somatosensory evoked potentials in the monkey. II. Cortical components. Electroencephalogr. Clin. Neurophysiol. 51, 1–18 (1981).

    Article  CAS  PubMed  Google Scholar 

  161. 161

    Cauller, L. J. & Kulics, A. T. A comparison of awake and sleeping cortical states by analysis of the somatosensory-evoked response of postcentral area 1 in rhesus monkey. Exp. Brain Res. 72, 584–592 (1988).

    Article  CAS  PubMed  Google Scholar 

  162. 162

    Gray, C. M., Konig, P., Engel, A. K. & Singer, W. Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338, 334–337 (1989). A study that triggered new research into the functional relevance of synchronized spiking in the gamma range for perceptual processes.

    Article  CAS  PubMed  Google Scholar 

  163. 163

    Singer, W. Time as coding space? Curr. Opin. Neurobiol. 9, 189–194 (1999).

    Article  CAS  PubMed  Google Scholar 

  164. 164

    Roelfsema, P. R., Engel, A. K., Konig, P. & Singer, W. Visuomotor integration is associated with zero time-lag synchronization among cortical areas. Nature 385, 157–161 (1997).

    Article  CAS  PubMed  Google Scholar 

  165. 165

    Munk, M. H., Roelfsema, P. R., Konig, P., Engel, A. K. & Singer, W. Role of reticular activation in the modulation of intracortical synchronization. Science 272, 271–274 (1996).

    Article  CAS  PubMed  Google Scholar 

  166. 166

    Herculano-Houzel, S., Munk, M. H., Neuenschwander, S. & Singer, W. Precisely synchronized oscillatory firing patterns require electroencephalographic activation. J. Neurosci. 19, 3992–4010 (1999).

    Article  CAS  PubMed  Google Scholar 

  167. 167

    Fries, P., Roelfsema, P. R., Engel, A. K., Konig, P. & Singer, W. Synchronization of oscillatory responses in visual cortex correlates with perception in interocular rivalry. Proc. Natl Acad. Sci. USA 94, 12699–12704 (1997).

    Article  CAS  PubMed  Google Scholar 

  168. 168

    Rodriguez, E. et al. Perception's shadow: long-distance synchronization of human brain activity. Nature 397, 430–433 (1999).

    Article  CAS  PubMed  Google Scholar 

  169. 169

    Melloni, L. et al. Synchronization of neural activity across cortical areas correlates with conscious perception. J. Neurosci. 27, 2858–2865 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. 170

    Wyart, V. & Tallon-Baudry, C. Neural dissociation between visual awareness and spatial attention. J. Neurosci. 28, 2667–2679 (2008). One of several recent papers arguing that visual attention can operate independently of visual consciousness.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. 171

    Imas, O. A., Ropella, K. M., Ward, B. D., Wood, J. D. & Hudetz, A. G. Volatile anesthetics disrupt frontal-posterior recurrent information transfer at gamma frequencies in rat. Neurosci. Lett. 387, 145–150 (2005).

    Article  CAS  PubMed  Google Scholar 

  172. 172

    Murphy, M. J. et al. Propofol anesthesia and sleep: a high-density EEG study. Sleep 34, 283-91A (2011).

    Article  PubMed  Google Scholar 

  173. 173

    Pockett, S. & Holmes, M. D. Intracranial EEG power spectra and phase synchrony during consciousness and unconsciousness. Conscious. Cogn. 18, 1049–1055 (2009).

    Article  PubMed  Google Scholar 

  174. 174

    Luo, Q. et al. Visual awareness, emotion, and gamma band synchronization. Cereb. Cortex 19, 1896–1904 (2009).

    Article  PubMed  Google Scholar 

  175. 175

    Hermes, D., Miller, K. J., Wandell, B. A. & Winawer, J. Stimulus dependence of gamma oscillations in human visual cortex. Cereb. Cortex 25, 2951–2959 (2015). A study showing that many perceived images do not evoke gamma band activity as assessed by subdural electrodes placed above the visual cortex in patients with epilepsy.

    Article  CAS  PubMed  Google Scholar 

  176. 176

    Ray, S. & Maunsell, J. H. Network rhythms influence the relationship between spike-triggered local field potential and functional connectivity. J. Neurosci. 31, 12674–12682 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. 177

    Sutton, S., Braren, M., Zubin, J. & John, E. R. Evoked-potential correlates of stimulus uncertainty. Science 150, 1187–1188 (1965).

    Article  CAS  PubMed  Google Scholar 

  178. 178

    Sergent, C., Baillet, S. & Dehaene, S. Timing of the brain events underlying access to consciousness during the attentional blink. Nat. Neurosci. 8, 1391–1400 (2005).

    Article  CAS  PubMed  Google Scholar 

  179. 179

    Pitts, M. A., Martínez, A. & Hillyard, S. A. Visual processing of contour patterns under conditions of inattentional blindness. J. Cogn. Neurosci. 24, 287–303 (2012).

    Article  PubMed  Google Scholar 

  180. 180

    Silverstein, B. H., Snodgrass, M., Shevrin, H. & Kushwaha, R. P3b, consciousness, and complex unconscious processing. Cortex 73, 216–227 (2015). Demonstrates that unconscious stimuli can trigger a P3b.

    Article  PubMed  Google Scholar 

  181. 181

    Sitt, J. D. et al. Large scale screening of neural signatures of consciousness in patients in a vegetative or minimally conscious state. Brain 137, 2258–2270 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  182. 182

    Kotchoubey, B. Event-related potential measures of consciousness: two equations with three unknowns. Prog. Brain Res. 150, 427–444 (2005).

    Article  PubMed  Google Scholar 

  183. 183

    Fischer, C., Luaute, J. & Morlet, D. Event-related potentials (MMN and novelty P3) in permanent vegetative or minimally conscious states. Clin. Neurophysiol. 121, 1032–1042 (2010).

    Article  PubMed  Google Scholar 

  184. 184

    Holler, Y. et al. Preserved oscillatory response but lack of mismatch negativity in patients with disorders of consciousness. Clin. Neurophysiol. 122, 1744–1754 (2011).

    Article  PubMed  Google Scholar 

  185. 185

    Faugeras, F. et al. Probing consciousness with event-related potentials in the vegetative state. Neurology 77, 264–268 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. 186

    King, J. R. et al. Single-trial decoding of auditory novelty responses facilitates the detection of residual consciousness. Neuroimage 83, 726–738 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. 187

    Tzovara, A., Simonin, A., Oddo, M., Rossetti, A. O. & De Lucia, M. Neural detection of complex sound sequences in the absence of consciousness. Brain 138, 1160–1166 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  188. 188

    Railo, H., Koivisto, M. & Revonsuo, A. Tracking the processes behind conscious perception: a review of event-related potential correlates of visual consciousness. Conscious. Cogn. 20, 972–983 (2011). A pioneering description of the visual awareness negativity, one of the most specific evoked-potential correlates of visual experience.

    Article  PubMed  Google Scholar 

  189. 189

    Steriade, M. Corticothalamic resonance, states of vigilance and mentation. Neuroscience 101, 243–276 (2000).

    Article  CAS  PubMed  Google Scholar 

  190. 190

    Steriade, M., Timofeev, I. & Grenier, F. Natural waking and sleep states: a view from inside neocortical neurons. J. Neurophysiol. 85, 1969–1985 (2001).

    Article  CAS  PubMed  Google Scholar 

  191. 191

    McCormick, D. A., Wang, Z. & Huguenard, J. Neurotransmitter control of neocortical neuronal activity and excitability. Cereb. Cortex 3, 387–398 (1993).

    Article  CAS  PubMed  Google Scholar 

  192. 192

    Schiff, N. D. Central thalamic deep-brain stimulation in the severely injured brain: rationale and proposed mechanisms of action. Ann. NY Acad. Sci. 1157, 101–116 (2009).

    Article  PubMed  Google Scholar 

  193. 193

    Timofeev, I., Grenier, F., Bazhenov, M., Sejnowski, T. J. & Steriade, M. Origin of slow cortical oscillations in deafferented cortical slabs. Cereb. Cortex 10, 1185–1199 (2000).

    Article  CAS  PubMed  Google Scholar 

  194. 194

    Fernandez-Espejo, D. et al. Diffusion weighted imaging distinguishes the vegetative state from the minimally conscious state. Neuroimage 54, 103–112 (2011).

    Article  PubMed  Google Scholar 

  195. 195

    Kertai, M. D., Whitlock, E. L. & Avidan, M. S. Brain monitoring with electroencephalography and the electroencephalogram-derived bispectral index during cardiac surgery. Anesth. Analg. 114, 533–546 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  196. 196

    Purdon, P. L. et al. Electroencephalogram signatures of loss and recovery of consciousness from propofol. Proc. Natl Acad. Sci. USA 110, E1142–E1151 (2013).

    Article  PubMed  Google Scholar 

  197. 197

    Schiff, N. D., Nauvel, T. & Victor, J. D. Large-scale brain dynamics in disorders of consciousness. Curr. Opin. Neurobiol. 25, 7–14 (2014).

    Article  CAS  PubMed  Google Scholar 

  198. 198

    Westmoreland, B. F., Klass, D. W., Sharbrough, F. W. & Reagan, T. J. Alpha-coma. Electroencephalographic, clinical, pathologic, and etiologic correlations. Arch. Neurol. 32, 713–718 (1975).

    Article  CAS  PubMed  Google Scholar 

  199. 199

    Gökyiğit, A. & Calişkan, A. Diffuse spike-wave status of 9-year duration without behavioral change or intellectual decline. Epilepsia 36, 210–213 (1995).

    Article  PubMed  Google Scholar 

  200. 200

    Vuilleumier, P., Assal, F., Blanke, O. & Jallon, P. Distinct behavioral and EEG topographic correlates of loss of consciousness in absences. Epilepsia 41, 687–693 (2000).

    Article  CAS  PubMed  Google Scholar 

  201. 201

    Nobili, L. et al. Local aspects of sleep: observations from intracerebral recordings in humans. Prog. Brain Res. 199, 219–232 (2012).

    Article  PubMed  Google Scholar 

  202. 202

    Forgacs, P. B. et al. Preservation of electroencephalographic organization in patients with impaired consciousness and imaging-based evidence of command-following. Ann. Neurol. 76, 869–879 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  203. 203

    Synek, V. M. Prognostically important EEG coma patterns in diffuse anoxic and traumatic encephalopathies in adults. J. Clin. Neurophysiol. 5, 161–174 (1988).

    Article  CAS  PubMed  Google Scholar 

  204. 204

    Hudetz, A. G., Liu, X. & Pillay, S. Dynamic repertoire of intrinsic brain states is reduced in propofol-induced unconsciousness. Brain Connect. 5, 10–22 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  205. 205

    Barttfeld, P. et al. Signature of consciousness in the dynamics of resting-state brain activity. Proc. Natl Acad. Sci. USA 112, 887–892 (2015).

    Article  CAS  PubMed  Google Scholar 

  206. 206

    Solovey, G. et al. Loss of consciousness is associated with stabilization of cortical activity. J. Neurosci. 35, 10866–10877 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. 207

    Sigl, J. C. & Chamoun, N. G. An introduction to bispectral analysis for the electroencephalogram. J. Clin. Monit. 10, 392–404 (1994).

    Article  CAS  PubMed  Google Scholar 

  208. 208

    Sara, M. et al. Functional isolation within the cerebral cortex in the vegetative state: a nonlinear method to predict clinical outcomes. Neurorehabil. Neural Repair 25, 35–42 (2011).

    Article  PubMed  Google Scholar 

  209. 209

    Gosseries, O. et al. Automated EEG entropy measurements in coma, vegetative state/unresponsive wakefulness syndrome and minimally conscious state. Funct. Neurol. 26, 25–30 (2011).

    PubMed  PubMed Central  Google Scholar 

  210. 210

    Tagliazucchi, E. & Laufs, H. Decoding wakefulness levels from typical fMRI resting-state data reveals reliable drifts between wakefulness and sleep. Neuron 82, 695–708 (2014).

    Article  CAS  PubMed  Google Scholar 

  211. 211

    Achard, S. et al. Hubs of brain functional networks are radically reorganized in comatose patients. Proc. Natl Acad. Sci. USA 109, 20608–20613 (2012).

    Article  PubMed  Google Scholar 

  212. 212

    Monti, M. M. et al. Dynamic change of global and local information processing in propofol-induced loss and recovery of consciousness. PLoS Comput. Biol. 9, e1003271 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  213. 213

    King, J. R. et al. Information sharing in the brain indexes consciousness in noncommunicative patients. Curr. Biol. 23, 1914–1919 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. 214

    Marinazzo, D. et al. Directed information transfer in scalp electroencephalographic recordings: insights on disorders of consciousness. Clin. EEG Neurosci. 45, 33–39 (2014).

    Article  PubMed  Google Scholar 

  215. 215

    Chennu, S. et al. Spectral signatures of reorganised brain networks in disorders of consciousness. PLoS Comput. Biol. 10, e1003887 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. 216

    Supp, G. G., Siegel, M., Hipp, J. F. & Engel, A. K. Cortical hypersynchrony predicts breakdown of sensory processing during loss of consciousness. Curr. Biol. 21, 1988–1993 (2011).

    Article  CAS  PubMed  Google Scholar 

  217. 217

    Arthuis, M. et al. Impaired consciousness during temporal lobe seizures is related to increased long-distance cortical-subcortical synchronization. Brain 132, 2091–2101 (2009).

    Article  PubMed  Google Scholar 

  218. 218

    Kaskinoro, K. et al. Wide inter-individual variability of bispectral index and spectral entropy at loss of consciousness during increasing concentrations of dexmedetomidine, propofol, and sevoflurane. Br. J. Anaesth. 107, 573–580 (2011).

    Article  CAS  PubMed  Google Scholar 

  219. 219

    Casali, A. G. et al. A theoretically based index of consciousness independent of sensory processing and behavior. Sci. Transl. Med. 5, 198ra105 (2013). The first study to use a combined TMS and EEG paradigm to quantify the level of consciousness under a variety of conditions and at the level of individual patients.

    Article  PubMed  Google Scholar 

  220. 220

    Sarasso, S. et al. Consciousness and complexity during unresponsiveness induced by propofol, xenon, and ketamine. Curr. Biol. 25, 3099–3105 (2015).

    Article  CAS  PubMed  Google Scholar 

  221. 221

    Miller, S. (ed.) The Constitution of Phenomenal Consciousness: Toward a Science and Theory (John Benjamins Publishing, 2015). A recent book discussing conceptual and empirical issues related to the NCC.

    Book  Google Scholar 

  222. 222

    Revonsuo, A. in Neural Correlates of Consciousness. (ed. Metzinger, T.) 57–76 (MIT Press, 2000).

    Google Scholar 

  223. 223

    Coltheart, V. Fleeting Memories: Cognition of Brief Visual Stimuli. (MIT Press, 1999).

    Google Scholar 

  224. 224

    Tononi, G., Boly, M., Massimini, M. & Koch, C. Integrated information theory: from consciousness to its physical substrate. Nat. Rev Neurosci. (in the press)

  225. 225

    Monti, M. M. et al. Willful modulation of brain activity in disorders of consciousness. N. Engl. J. Med. 362, 579–589 (2010).

    Article  CAS  PubMed  Google Scholar 

  226. 226

    Schiff, N. et al. Residual cerebral activity and behavioural fragments can remain in the persistently vegetative brain. Brain 125, 1210–1234 (2002).

    Article  PubMed  Google Scholar 

  227. 227

    Zadra, A., Desautels, A., Petit, D. & Montplaisir, J. Somnambulism: clinical aspects and pathophysiological hypotheses. Lancet Neurol. 12, 285–294 (2013).

    Article  PubMed  Google Scholar 

  228. 228

    Bassetti, C., Vella, S., Donati, F., Wielepp, P. & Weder, B. SPECT during sleepwalking. Lancet 356, 484–485 (2000).

    Article  CAS  PubMed  Google Scholar 

  229. 229

    Terzaghi, M. et al. Dissociated local arousal states underlying essential clinical features of non-rapid eye movement arousal parasomnia: an intracerebral stereo-electroencephalographic study. J. Sleep Res. 21, 502–506 (2012).

    Article  PubMed  Google Scholar 

  230. 230

    Blumenfeld, H. Impaired consciousness in epilepsy. Lancet Neurol. 11, 814–826 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  231. 231

    Langston, J. W. & Palfreman, J. The Case of the Frozen Addicts (Pantheon, 1995).

    Google Scholar 

  232. 232

    Northoff, G. et al. Right lower prefronto-parietal cortical dysfunction in akinetic catatonia: a combined study of neuropsychology and regional cerebral blood flow. Psychol. Med. 30, 583–596 (2000).

    Article  CAS  PubMed  Google Scholar 

  233. 233

    Lagercrantz, H. & Changeux, J. P. The emergence of human consciousness: from fetal to neonatal life. Pediatr. Res. 65, 255–260 (2009). Addresses the question of when a newborn infant first experiences anything, and the neuronal events that occur in the developing brain around that time.

    Article  PubMed  Google Scholar 

  234. 234

    Kouider, S. et al. A neural marker of perceptual consciousness in infants. Science 340, 376–380 (2013).

    Article  CAS  PubMed  Google Scholar 

  235. 235

    Dawkins, M. S. Through Our Eyes Only? (Oxford Univ. Press on Demand, 1998).

    Book  Google Scholar 

  236. 236

    Griffin, D. R. Animal Minds (University of Chicago Press, 2001).

    Book  Google Scholar 

  237. 237

    Edelman, D. & Seth, A. K. Animal consciousness: a synthetic approach. Trends Neurosci. 32, 476–484 (2009).

    Article  CAS  PubMed  Google Scholar 

  238. 238

    Koch, C. & Laurent, G. Complexity and the nervous system. Science 284, 96–98 (1999).

    Article  CAS  PubMed  Google Scholar 

  239. 239

    Berlin, H. A. The neural basis of the dynamic unconscious. Neuropsychoanalysis 13, 1–68 (2011).

    Google Scholar 

  240. 240

    Hassin, R. R. Yes it can: on the functional abilities of the human unconscious. Persp. Psychol. Sci. 8, 195–207 (2013). An edited volume describing a series of experiments that demonstrate non-conscious processing under a variety of laboratory and real-life conditions.

    Article  Google Scholar 

  241. 241

    Hassin, R. R., Uleman, J. S. & Bargh, J. A. The New Unconscious (Oxford Univ. Press, 2005).

    Google Scholar 

  242. 242

    Sklar, A. Y. et al. Reading and doing arithmetic nonconsciously. Proc. Natl Acad. Sci. USA 109, 19614–19619 (2012).

    Article  PubMed  Google Scholar 

  243. 243

    Kouider, S. & Dehaene, S. Levels of processing during non-conscious perception: a critical review of visual masking. Phil. Trans. R. Soc. B 362, 857–875 (2007).

    Article  PubMed  Google Scholar 

  244. 244

    Mudrik, L., Breska, A., Lamy, D. & Deouell, L. Y. Integration without awareness: expanding the limits of unconscious processing. Psychol. Sci. 22, 764–770 (2011).

    Article  PubMed  Google Scholar 

  245. 245

    Giurfa, M., Zhang, S., Jenett, A., Menzel, R. & Srinivasan, M. V. The concepts of 'sameness' and 'difference' in an insect. Nature 410, 930–933 (2001).

    Article  CAS  PubMed  Google Scholar 

  246. 246

    Tononi, G. & Koch, C. Consciousness: here, there, and everywhere? Phil. Trans. R. Soc. B http://dx.doi.org/10.1098/rstb.2014.0167 (2015).

  247. 247

    Steriade, M., Amzica, F. & Contreras, D. Synchronization of fast (30–40 Hz) spontaneous cortical rhythms during brain activation. J. Neurosci. 16, 392–417 (1996).

    Article  CAS  PubMed  Google Scholar 

  248. 248

    Steriade, M. Arousal: revisiting the reticular activating system. Science 272, 225–226 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank laboratory members and colleagues for their various contributions to the work presented here. This work was supported by the Templeton World Charity Foundation, the McDonnell Foundation and the Distinguished Chair in Consciousness Science (University of Wisconsin) to G.T. and by the EU project 686764 'Luminous' to M.M. C.K. thanks the Allen Institute for Brain Science founders, P. G. Allen and J. Allen, for their vision, encouragement and support.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Christof Koch or Giulio Tononi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (box)

Consciousness and other cognitive functions (PDF 133 kb)

PowerPoint slides

Glossary

Neural correlates of consciousness

(NCC). The minimum neural mechanisms jointly sufficient for any one specific conscious experience.

No-report paradigm

A paradigm in which trials with explicit report are included along with trials without explicit report, during which indirect physiological measures are used to infer what the participant is perceiving. This paradigm allows the neural correlates of consciousness to be distinguished from events or processes that are associated with, precede or follow conscious experience.

Hot zone

A temporo-parietal-occipital zone of the posterior cerebral cortex where the best current anatomical candidates for full and content-specific neural correlates of consciousness in the human brain are located. The content-specific neural correlates of consciousness may be any particular subset of neurons within this hot zone that supports specific phenomenological distinctions, such as faces.

Vegetative state

A disorder of consciousness that occurs in some patients with brain injury. The patients remain unresponsive and show no purposeful behaviour, but retain the ability to spontaneously open their eyes and maintain autonomic reflexes.

Content-specific NCC

(Content-specific neural correlates of consciousness). The neural substrate supporting a particular content of experience (for example, faces) whether seen, dreamt or imagined.

Transcranial magnetic stimulation

(TMS). A method of non-invasive brain stimulation, in which a magnetic field is induced by an electrical current in a coil placed onto the skull to induce neuronal activity in the underlying cortex.

Full NCC

(Full neural correlates of consciousness). The neural substrate supporting experience in general, irrespective of its specific content.

Background conditions

Factors that enable consciousness, but do not contribute directly to the content of experience.

Binocular rivalry

An experimental paradigm used to evoke bi-stable percepts in which one image is presented to the left eye of the participant and a different image is presented to the right eye; rather than seeing a juxtaposition or fusion of both images, participants see one or the other object alternately.

Coma

A disorder of consciousness occurring in some patients with brain injury, in which the patient remains in an enduring, sleep-like state of immobility and unresponsiveness, with their eyes closed, from which they cannot be aroused.

Abulic

A state associated with impairment in decision making and loss of self-initiated actions.

Phosphene

A visual experience, in particular featuring flashes of light, that occurs in response to direct mechanical, electrical or magnetic stimulation of the visual cortex.

Auditory oddball paradigm

A sequence of auditory stimuli in which the last stimulus differs from the preceding stimuli; for example, a sequence of low-frequency tones followed by a single high-frequency tone

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Koch, C., Massimini, M., Boly, M. et al. Neural correlates of consciousness: progress and problems. Nat Rev Neurosci 17, 307–321 (2016). https://doi.org/10.1038/nrn.2016.22

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing