Review Article | Published:

Neural correlates of consciousness: progress and problems

Nature Reviews Neuroscience volume 17, pages 307321 (2016) | Download Citation

  • An Erratum to this article was published on 06 May 2016

This article has been updated

Abstract

There have been a number of advances in the search for the neural correlates of consciousness — the minimum neural mechanisms sufficient for any one specific conscious percept. In this Review, we describe recent findings showing that the anatomical neural correlates of consciousness are primarily localized to a posterior cortical hot zone that includes sensory areas, rather than to a fronto-parietal network involved in task monitoring and reporting. We also discuss some candidate neurophysiological markers of consciousness that have proved illusory, and measures of differentiation and integration of neural activity that offer more promising quantitative indices of consciousness.

Key points

  • The neuronal correlates of consciousness (NCC) are the minimum neuronal mechanisms jointly sufficient for any one specific conscious experience. It is important to distinguish full NCC (the neural substrate supporting experience in general, irrespective of its specific content), content-specific NCC (the neural substrate supporting a particular content of experience — for example, faces, whether seen, dreamt or imagined) and background conditions (factors that enable consciousness, but do not contribute directly to the content of experience — for example, arousal systems that ensure adequate excitability of the NCC).

  • The no-report paradigm allows the NCC to be distinguished from events or processes — such as selective attention, memory and response preparation — that are associated with, precede or follow conscious experience. In such paradigms, trials with explicit reports are included along with trials without explicit reports, during which indirect physiological measures are used to infer what the participant is perceiving.

  • The best candidates for full and content-specific NCC are located in the posterior cerebral cortex, in a temporo-parietal-occipital hot zone. The content-specific NCC may be any particular subset of neurons within this hot zone that supports specific phenomenological distinctions, such as faces.

  • The two most widely used electrophysiological signatures of consciousness — gamma range oscillations and the P3b event-related potential — can be dissociated from conscious experiences and are more closely correlated with selective attention and novelty, respectively.

  • New electroencephalography- or functional MRI-based variables that measure the extent to which neuronal activity is both differentiated and integrated across the cortical sheet allow the NCC to be identified more precisely. Moreover, a combined transcranial magnetic stimulation–electroencephalography procedure can predict the presence or absence of consciousness in healthy people who are awake, deeply sleeping or under different types of anaesthesia, and in patients with disorders of consciousness, at the single-person level.

  • Extending the NCC derived from studies in people who can speak about the presence and quality of consciousness to patients with severe brain injuries, fetuses and newborn infants, non-mammalian species and intelligent machines is more challenging. For these purposes, it is essential to combine experimental studies to identify the NCC with a theoretical approach that characterizes in a principled manner what consciousness is and what is required of its physical substrate.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Change history

  • 06 May 2016

    The traces in panel e of Figure 3 were incorrectly colour coded. The colour coding has been corrected in the online version of the article.

References

  1. 1.

    The integrated information theory of consciousness: an updated account. Arch. Ital. Biol. 150, 56–90 (2012).

  2. 2.

    , , & Plum and Posner's Diagnosis of Stupor and Coma (Oxford University Press, 2007). Describes the canonical clinical tests for disorders of consciousness.

  3. 3.

    , & Neural correlates of consciousness in humans. Nat. Rev. Neurosci. 3, 261–270 (2002).

  4. 4.

    , & Visual consciousness and bodily self-consciousness. Curr. Opin. Neurol. 28, 23–28 (2015).

  5. 5.

    , , & The olfactory system as the gateway to the neural correlates of consciousness. Front. Psychol. 4, 1011 (2014).

  6. 6.

    & The cognitive and neural correlates of 'tactile consciousness': a multisensory perspective. Conscious. Cogn. 17, 370–407 (2008).

  7. 7.

    & The neural basis of metacognitive ability. Phil. Trans. R. Soc. B 367, 1338–1349 (2012).

  8. 8.

    The neural correlate of (un)awareness: lessons from the vegetative state. Trends Cogn. Sci. 9, 556–559 (2005).

  9. 9.

    , & The JFK Coma Recovery Scale — Revised: measurement characteristics and diagnostic utility. Arch. Phys. Med. Rehabil. 85, 2020–2029 (2004).

  10. 10.

    et al. Diagnostic accuracy of the vegetative and minimally conscious state: clinical consensus versus standardized neurobehavioral assessment. BMC Neurol. 9, 35 (2009).

  11. 11.

    et al. Detecting awareness in the vegetative state. Science 313, 1402 (2006). The first study to use fMRI to infer consciousness in a behaviourally non-responsive patient in a vegetative state.

  12. 12.

    , & Confidence and accuracy of near-threshold discrimination responses. Conscious. Cogn. 10, 294–340 (2001).

  13. 13.

    & Using direct and indirect measures to study perception without awareness. Percept. Psychophys. 44, 563–575 (1988).

  14. 14.

    Is blindsight just degraded normal vision? Exp. Brain Res. 192, 413–416 (2009).

  15. 15.

    , & Unconscious perception: a model-based approach to method and evidence. Percept. Psychophys. 66, 846–867 (2004).

  16. 16.

    , , & Measuring consciousness: is one measure better than the other? Conscious. Cogn. 19, 1069–1078 (2010). A study comparing different behavioural measures of consciousness.

  17. 17.

    , & Brain dynamics underlying the nonlinear threshold for access to consciousness. PLoS Biol. 5, e260 (2007).

  18. 18.

    & Blindsight in monkeys. Nature 373, 247–249 (1995).

  19. 19.

    , , & Neural correlates, computation and behavioural impact of decision confidence. Nature 455, 227–231 (2008).

  20. 20.

    Primary visual cortex: awareness and blindsight. Annu. Rev. Neurosci. 35, 91–109 (2012).

  21. 21.

    & Towards a neurobiological theory of consciousness. Semin. Neurosci. 2, 263–275 (1990). One of the principal publications that triggered the contemporary search for the NCC.

  22. 22.

    The Quest for Consciousness: a Neurobiological Approach (Roberts, 2004).

  23. 23.

    Cognitive Theory of Consciousness (Cambridge Univ. Press, 1988). Introduces the global workspace theory of consciousness.

  24. 24.

    & Visual competition. Nat. Rev. Neurosci. 3, 13–21 (2002).

  25. 25.

    & Continuous flash suppression reduces negative afterimages. Nat. Neurosci. 8, 1096–1101 (2005). Reports the discovery of a widely used long-lasting visual masking technique.

  26. 26.

    , , & Changes in functional connectivity support conscious object recognition. Neuroimage 63, 1909–1917 (2012).

  27. 27.

    & Recent models and findings in visual backward masking: a comparison, review, and update. Percept. Psychophys. 62, 1572–1595 (2000).

  28. 28.

    Quantitative theories of metacontrast masking. Psychol. Rev. 107, 768–785 (2000).

  29. 29.

    & Event-related brain potential correlates of visual awareness. Neurosci. Biobehav. Rev. 34, 922–934 (2010).

  30. 30.

    Closing in on the constitution of consciousness. Front. Psychol. 5, 1293 (2014).

  31. 31.

    , , & Distilling the neural correlates of consciousness. Neurosci. Biobehav. Rev. 36, 737–746 (2012).

  32. 32.

    , & The 'correlates' in neural correlates of consciousness. Neurosci. Biobehav. Rev. 36, 191–197 (2012).

  33. 33.

    et al. Local category-specific gamma band responses in the visual cortex do not reflect conscious perception. J. Neurosci. 32, 14909–14914 (2012).

  34. 34.

    , & Isolating neural correlates of conscious perception from neural correlates of reporting one's perception. Front. Psychol. 5, 1078 (2014).

  35. 35.

    , , & No-report paradigms: extracting the true neural correlates of consciousness. Trends Cogn. Sci. 19, 757–770 (2015).

  36. 36.

    , , , & Binocular rivalry: frontal activity relates to introspection and action but not to perception. J. Neurosci. 34, 1738–1747 (2014). Pioneering application of a no-report paradigm to study binocular rivalry.

  37. 37.

    et al. Functional neuroanatomy of human slow wave sleep. J. Neurosci. 17, 2807–2812 (1997).

  38. 38.

    et al. Breakdown of cortical effective connectivity during sleep. Science 309, 2228–2232 (2005). The first study to use TMS and EEG to measure the breakdown of causal integration and differentiation during slow wave sleep.

  39. 39.

    , & Consciousness and anesthesia. Science 322, 876–880 (2008).

  40. 40.

    , & General anesthesia, sleep, and coma. N. Engl. J. Med. 363, 2638–2650 (2010).

  41. 41.

    , & Brain function in coma, vegetative state, and related disorders. Lancet Neurol. 3, 537–546 (2004).

  42. 42.

    , , & Measuring consciousness in severely damaged brains. Annu. Rev. Neurosci. 37, 457–478 (2014). A comprehensive review of clinical and neuroimaging aspects of disorders of consciousness.

  43. 43.

    The neural correlates of consciousness: new experimental approaches needed? Conscious. Cogn. 18, 428–438 (2009).

  44. 44.

    , , , & The neural correlates of consciousness in sleep: a no-task, within-state paradigm. Preprint at (2014).

  45. 45.

    The remarkable, yet not extraordinary, human brain as a scaled-up primate brain and its associated cost. Proc. Natl Acad. Sci. USA 109 (Suppl. 1), 10661–10668 (2012).

  46. 46.

    et al. Consensus paper: the role of the cerebellum in perceptual processes. Cerebellum 14, 197–220 (2015).

  47. 47.

    & Life without a cerebellum. Brain 133, 652–654 (2010).

  48. 48.

    , , & A new case of complete primary cerebellar agenesis: clinical and imaging findings in a living patient. Brain 138, e353 (2015). A case study of a patient born without a cerebellum who lives a normal life.

  49. 49.

    & Brain stem reticular formation and activation of the EEG. Electroencephalogr. Clin. Neurophysiol. 1, 455–473 (1949).

  50. 50.

    & Neuroanatomical correlates of brainstem coma. Brain 126, 1524–1536 (2003).

  51. 51.

    & Consciousness and the brainstem. Cognition 79, 135–160 (2001). An up-to-date account of the current understanding of the role of the brainstem in enabling consciousness.

  52. 52.

    et al. Regional slow waves and spindles in human sleep. Neuron 70, 153–169 (2011).

  53. 53.

    , , , & Control of sleep and wakefulness. Physiol. Rev. 92, 1087–1187 (2012).

  54. 54.

    , , & Assessing sleep consciousness within subjects using a serial awakening paradigm. Front. Psychol. 4, 542 (2013).

  55. 55.

    & The behavioural and motor consequences of focal lesions of the basal ganglia in man. Brain 117, 859–876 (1994).

  56. 56.

    & Clinical diagnosis of prolonged states of impaired consciousness in adults. Mayo Clin. Proc. 80, 1037–1046 (2005).

  57. 57.

    et al. Thalamic and extrathalamic mechanisms of consciousness after severe brain injury. Ann. Neurol. 78, 68–76 (2015).

  58. 58.

    et al. Bilateral large traumatic basal ganglia haemorrhage in a conscious adult: a rare case report. Brain Inj. 27, 500–503 (2013).

  59. 59.

    et al. Familial infantile bilateral striatal necrosis: clinical features and response to biotin treatment. Neurology 59, 983–989 (2002).

  60. 60.

    , & Late onset familial dystonia: could mitochondrial deficits induce a diffuse lesioning process of the whole basal ganglia system? J. Neurol. Neurosurg. Psychiatry 63, 196–203 (1997).

  61. 61.

    , & Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu. Rev. Neurosci. 9, 357–381 (1986).

  62. 62.

    , , , & Subcortical loops through the basal ganglia. Trends Neurosci. 28, 401–407 (2005).

  63. 63.

    , , & The DTI connectivity of the human claustrum. Hum. Brain Mapp. 36, 827–838 (2015).

  64. 64.

    & What is the function of the claustrum? Phil. Trans. R. Soc. B 360, 1271–1279 (2005).

  65. 65.

    , , & Electrical stimulation of a small brain area reversibly disrupts consciousness. Epilepsy Behav. 37, 32–35 (2014).

  66. 66.

    , & Persistence of feelings and sentience after bilateral damage of the insula. Cereb. Cortex 23, 833–846 (2013).

  67. 67.

    On the neurophysiology of consciousness: I. An overview. Conscious. Cogn. 4, 52–62 (1995).

  68. 68.

    , & The intralaminar and midline nuclei of the thalamus. Anatomical and functional evidence for participation in processes of arousal and awareness. Brain Res. Brain Res. Rev. 39, 107–140 (2002).

  69. 69.

    et al. Behavioural improvements with thalamic stimulation after severe traumatic brain injury. Nature 448, 600–603 (2007).

  70. 70.

    A new view of specific and nonspecific thalamocortical connections. Adv. Neurol. 77, 49–71; discussion 72–73 (1998).

  71. 71.

    , & The corticothalamocortical circuit drives higher-order cortex in the mouse. Nat. Neurosci. 13, 84–88 (2010).

  72. 72.

    , , , & Reassessment of the structural basis of the ascending arousal system. J. Comp. Neurol. 519, 933–956 (2011).

  73. 73.

    et al. Cortical processing of noxious somatosensory stimuli in the persistent vegetative state. Neuroimage 17, 732–741 (2002).

  74. 74.

    & No binocular rivalry in the LGN of alert macaque monkeys. Vision Res. 36, 1225–1234 (1996).

  75. 75.

    , & Neural activity in the visual thalamus reflects perceptual suppression. Proc. Natl Acad. Sci. USA 106, 9465–9470 (2009).

  76. 76.

    , & Subjective visual perception: from local processing to emergent phenomena of brain activity. Phil. Trans. R. Soc. B 369, 20130534 (2014).

  77. 77.

    et al. Connectivity changes underlying spectral EEG changes during propofol-induced loss of consciousness. J. Neurosci. 32, 7082–7090 (2012).

  78. 78.

    et al. Differential dynamic of action on cortical and subcortical structures of anesthetic agents during induction of anesthesia. Anesthesiology 107, 202–212 (2007).

  79. 79.

    et al. Thalamic deactivation at sleep onset precedes that of the cerebral cortex in humans. Proc. Natl Acad. Sci. USA 107, 3829–3833 (2010).

  80. 80.

    & Are we aware of neural activity in primary visual cortex? Nature 375, 121–123 (1995). Proposes that neurons in V1 are not the neural correlates of visual consciousness.

  81. 81.

    Is primary visual cortex necessary for visual awareness? Trends Neurosci. 37, 618–619 (2014).

  82. 82.

    , & Human visual cortex responds to invisible chromatic flicker. Nat. Neurosci. 10, 657–662 (2007).

  83. 83.

    & Orientation-selective adaptation and tilt after-effect from invisible patterns. Nature 411, 473–476 (2001).

  84. 84.

    & Predicting the orientation of invisible stimuli from activity in human primary visual cortex. Nat. Neurosci. 8, 686–691 (2005). A study showing that the haemodynamic response in human V1 contains information not accessible to subjects during a visual masking task.

  85. 85.

    Single units and conscious vision. Phil. Trans. R. Soc. Lond. B 353, 1801–1818 (1998). A review of Logothetis' classic single-neuron studies in the visual cortex of monkeys undergoing binocular competition.

  86. 86.

    & Multistable phenomena: changing views in perception. Trends Cogn. Sci. 3, 254–264 (1999).

  87. 87.

    , , & Neuronal activity in human primary visual cortex correlates with perception during binocular rivalry. Nat. Neurosci. 3, 1153–1159 (2000).

  88. 88.

    , & Traveling waves of activity in primary visual cortex during binocular rivalry. Nat. Neurosci. 8, 22–23 (2005).

  89. 89.

    & Decoding reveals the contents of visual working memory in early visual areas. Nature 458, 632–635 (2009).

  90. 90.

    , , & Opposite neural signatures of motion-induced blindness in human dorsal and ventral visual cortex. J. Neurosci. 28, 10298–10310 (2008).

  91. 91.

    Blindsight revisited. Curr. Opin. Neurobiol. 6, 215–220 (1996).

  92. 92.

    & Quadrantic visual field defects. A hallmark of lesions in extrastriate (V2/V3) cortex. Brain 114, 1703–1718 (1991).

  93. 93.

    , & Can IPS reach visual awareness without V1? Evidence from TMS in healthy subjects and hemianopic patients. Neuropsychologia 64C, 134–144 (2014).

  94. 94.

    A Vision of the Brain (Blackwell Scientific, 1993).

  95. 95.

    Fundamental requirements for primary visual perception. Cereb. Cortex 18, 1991–1998 (2008).

  96. 96.

    , & From the phenomenology to the mechanisms of consciousness: integrated information theory 3.0. PLoS Comput. Biol. 10, e1003588 (2014).

  97. 97.

    Primary sensory cortices, top-down projections and conscious experience. Prog. Neurobiol. 94, 408–417 (2011).

  98. 98.

    & Correlates of perceptual awareness in human primary auditory cortex revealed by an informational masking experiment. Neuroimage 61, 62–69 (2012).

  99. 99.

    & The neural basis of the behaviorally relevant N1 component of the somatosensory-evoked potential in SI cortex of awake monkeys: evidence that backward cortical projections signal conscious touch sensation. Exp. Brain Res. 84, 607–619 (1991).

  100. 100.

    & Sight Unseen: an Exploration of Conscious and Unconscious Vision (Oxford Univ. Press, 2004).

  101. 101.

    & The functional architecture of the ventral temporal cortex and its role in categorization. Nat. Rev. Neurosci. 15, 536–548 (2014).

  102. 102.

    , , & The anatomy of object recognition — visual form agnosia caused by medial occipitotemporal stroke. J. Neurosci. 29, 5854–5862 (2009).

  103. 103.

    Is visual processing in the dorsal stream accessible to consciousness? Proc. Biol. Sci. 279, 2289–2298 (2012).

  104. 104.

    & Two hierarchically organized neural systems for object information in human visual cortex. Nat. Neurosci. 11, 224–231 (2008).

  105. 105.

    , , & A new neural framework for visuospatial processing. Nat. Rev. Neurosci. 12, 217–230 (2011).

  106. 106.

    , & Waves of awareness for occipital and parietal phosphenes perception. Neuropsychologia 70C, 114–125 (2015).

  107. 107.

    , , , & Cerebral metabolism during vegetative state and after recovery to consciousness. J. Neurol. Neurosurg. Psychiatry 67, 121 (1999).

  108. 108.

    et al. Effects of surgical levels of propofol and sevoflurane anesthesia on cerebral blood flow in healthy subjects studied with positron emission tomography. Anesthesiology 96, 1358–1370 (2002).

  109. 109.

    Functional neuroimaging of normal human sleep by positron emission tomography. J. Sleep Res. 9, 207–231 (2000).

  110. 110.

    et al. Activity of midbrain reticular formation and neocortex during the progression of human non-rapid eye movement sleep. J. Neurosci. 19, 10065–10073 (1999).

  111. 111.

    & Posterior cingulate, precuneal and retrosplenial cortices: cytology and components of the neural network correlates of consciousness. Prog. Brain Res. 150, 205–217 (2005).

  112. 112.

    et al. Dynamic time course of typical childhood absence seizures: EEG, behavior, and functional magnetic resonance imaging. J. Neurosci. 30, 5884–5893 (2010).

  113. 113.

    , , & Is the frontal lobe involved in conscious perception? Front. Psychol. 5, 1063 (2014).

  114. 114.

    , , , & Expectations change the signatures and timing of electrophysiological correlates of perceptual awareness. J. Neurosci. 31, 1386–1396 (2011).

  115. 115.

    et al. Distinct MEG correlates of conscious experience, perceptual reversals and stabilization during binocular rivalry. Neuroimage 100, 161–175 (2014).

  116. 116.

    , , & Occipital MEG activity in the early time range (<300 ms) predicts graded changes in perceptual consciousness. Cereb. Cortex (2015).

  117. 117.

    et al. Ignition's glow: ultra-fast spread of global cortical activity accompanying local “ignitions” in visual cortex during conscious visual perception. Conscious. Cogn. 35, 206–224 (2015).

  118. 118.

    & Dreaming and the brain: from phenomenology to neurophysiology. Trends Cogn. Sci. 14, 88–100 (2010).

  119. 119.

    The cognitive neuroscience of visual short-term memory. Curr. Opin. Behav. Sci. 1, 40–46 (2015).

  120. 120.

    & Electrical stimulation of the human brain: perceptual and behavioral phenomena reported in the old and new literature. Front. Hum. Neurosci. 4, 46 (2010).

  121. 121.

    et al. Electrical stimulation of the left and right human fusiform gyrus causes different effects in conscious face perception. J. Neurosci. 34, 12828–12836 (2014). Demonstrates that electrical stimulation of the right but not the left fusiform face regions in humans with implanted electrodes causes changes in visual face perception.

  122. 122.

    et al. Movement intention after parietal cortex stimulation in humans. Science 324, 811–813 (2009). A neurosurgical account reporting that direct electrical stimulation of the posterior parietal cortex causes a conscious intention to move without an actual motor response.

  123. 123.

    Brain of patient A. after bilateral frontal lobectomy; status of frontal-lobe problem. AMA Arch. Neurol. Psychiatry 68, 293–313 (1952). A classic account of a patient with an almost complete bilateral frontal lobectomy who was clearly conscious.

  124. 124.

    & Human behavior after extensive bilateral removal from the frontal lobes. Arch. Neurol. Psychiatry 42, 421–438 (1940).

  125. 125.

    Functional Localization in Relation to Frontal Lobotomy (Oxford Univ. Press, 1949).

  126. 126.

    Selective Partial Ablation of the Frontal Cortex, a Correlative Study of its Effects on Human Psychotic Subjects (Hoebar, 1949).

  127. 127.

    & Massive impairment in executive functions with partial preservation of other cognitive functions: the case of a young patient with severe degeneration of the prefrontal cortex. Exp. Brain Res. 133, 94–102 (2000).

  128. 128.

    et al. Long-term effects of bilateral frontal brain lesion: 60 years after injury with an iron bar. Arch. Neurol. 58, 1139–1142 (2001).

  129. 129.

    & Visual selective behavior can be triggered by a feed-forward process. J. Cogn. Neurosci. 15, 209–217 (2003).

  130. 130.

    & Processing of natural images is feedforward: a simple behavioral test. Atten. Percept. Psychophys. 71, 594–606 (2009).

  131. 131.

    , & Recurrent processing enhances visual awareness but is not necessary for fast categorization of natural scenes. J. Cogn. Neurosci. 26, 223–231 (2014).

  132. 132.

    & The distinct modes of vision offered by feedforward and recurrent processing. Trends Neurosci. 23, 571–579 (2000). Argues that a rapid, sensory-driven feedforward wave of neural activity mediates unconscious behaviour, whereas top-down feedback gives rise to conscious experience.

  133. 133.

    et al. Spatiotemporal dynamics underlying object completion in human ventral visual cortex. Neuron 83, 736–748 (2014).

  134. 134.

    , & Two distinct modes of sensory processing observed in monkey primary visual cortex (V1). Nat. Neurosci. 4, 304–310 (2001).

  135. 135.

    , & Recurrent neural processing and somatosensory awareness. J. Neurosci. 32, 799–805 (2012).

  136. 136.

    , , , & Membrane potential correlates of sensory perception in mouse barrel cortex. Nat. Neurosci. 16, 1671–1677 (2013). A study showing how transgenic mice and molecular tools can be applied to study the neuronal circuitry underlying tactile perception.

  137. 137.

    et al. Preserved feedforward but impaired top-down processes in the vegetative state. Science 332, 858–862 (2011).

  138. 138.

    , , , & Preferential inhibition of frontal-to-parietal feedback connectivity is a neurophysiologic correlate of general anesthesia in surgical patients. PLoS ONE 6, e25155 (2011).

  139. 139.

    & Consciousness and complexity. Science 282, 1846–1851 (1998).

  140. 140.

    Towards a true neural stance on consciousness. Trends Cogn. Sci. 10, 494–501 (2006).

  141. 141.

    & Towards a cognitive neuroscience of consciousness: basic evidence and a workspace framework. Cognition 79, 1–37 (2001).

  142. 142.

    & Experimental and theoretical approaches to conscious processing. Neuron 70, 200–227 (2011). A recent account of the neuronal global workspace theory of consciousness.

  143. 143.

    , , & Von Economo neurons: clinical and evolutionary perspectives. Cortex 49, 312–326 (2013).

  144. 144.

    & Effects of sleep and arousal on the processing of visual information in the cat. Nature 291, 554–561 (1981).

  145. 145.

    A cellular mechanism for cortical associations: an organizing principle for the cerebral cortex. Trends Neurosci. 36, 141–151 (2013).

  146. 146.

    & The neocortical circuit: themes and variations. Nat. Neurosci. 18, 170–181 (2015).

  147. 147.

    & Neuronal circuits of the neocortex. Annu. Rev. Neurosci. 27, 419–451 (2004).

  148. 148.

    , & Topology and dynamics of the canonical circuit of cat V1. Neural Netw. 22, 1071–1078 (2009).

  149. 149.

    et al. Anatomy of hierarchy: feedforward and feedback pathways in macaque visual cortex. J. Comp. Neurol. 522, 225–259 (2014).

  150. 150.

    et al. Long-range and local circuits for top-down modulation of visual cortex processing. Science 345, 660–665 (2014). A study analysing the circuits mediating top-down visual attention in transgenic mice using optogenetics.

  151. 151.

    , , & Distinct superficial and deep laminar domains of activity in the visual cortex during rest and stimulation. Front. Syst. Neurosci. 4, 31 (2010).

  152. 152.

    , , , & Laminar differences in gamma and alpha coherence in the ventral stream. Proc. Natl Acad. Sci. USA 108, 11262–11267 (2011).

  153. 153.

    , , , & Local slow waves in superficial layers of primary cortical areas during REM sleep. Curr. Biol. 26, 396–403 (2016).

  154. 154.

    & Laminar structure of spontaneous and sensory-evoked population activity in auditory cortex. Neuron 64, 404–418 (2009).

  155. 155.

    & The functional benefits of criticality in the cortex. Neuroscientist 19, 88–100 (2013).

  156. 156.

    & The fMRI signal, slow cortical potential and consciousness. Trends Cogn. Sci. 13, 302–309 (2009).

  157. 157.

    , , & Responses of human somatosensory cortex to stimuli below threshold for conscious sensation. Science 158, 1597–1600 (1967).

  158. 158.

    & The neural correlates of conscious vision. Cereb. Cortex 13, 461–474 (2003).

  159. 159.

    et al. Direct current auditory evoked potentials during wakefulness, anesthesia, and emergence from anesthesia. Anesth. Analg. 92, 154–160 (2001).

  160. 160.

    , & Topography and intracranial sources of somatosensory evoked potentials in the monkey. II. Cortical components. Electroencephalogr. Clin. Neurophysiol. 51, 1–18 (1981).

  161. 161.

    & A comparison of awake and sleeping cortical states by analysis of the somatosensory-evoked response of postcentral area 1 in rhesus monkey. Exp. Brain Res. 72, 584–592 (1988).

  162. 162.

    , , & Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338, 334–337 (1989). A study that triggered new research into the functional relevance of synchronized spiking in the gamma range for perceptual processes.

  163. 163.

    Time as coding space? Curr. Opin. Neurobiol. 9, 189–194 (1999).

  164. 164.

    , , & Visuomotor integration is associated with zero time-lag synchronization among cortical areas. Nature 385, 157–161 (1997).

  165. 165.

    , , , & Role of reticular activation in the modulation of intracortical synchronization. Science 272, 271–274 (1996).

  166. 166.

    , , & Precisely synchronized oscillatory firing patterns require electroencephalographic activation. J. Neurosci. 19, 3992–4010 (1999).

  167. 167.

    , , , & Synchronization of oscillatory responses in visual cortex correlates with perception in interocular rivalry. Proc. Natl Acad. Sci. USA 94, 12699–12704 (1997).

  168. 168.

    et al. Perception's shadow: long-distance synchronization of human brain activity. Nature 397, 430–433 (1999).

  169. 169.

    et al. Synchronization of neural activity across cortical areas correlates with conscious perception. J. Neurosci. 27, 2858–2865 (2007).

  170. 170.

    & Neural dissociation between visual awareness and spatial attention. J. Neurosci. 28, 2667–2679 (2008). One of several recent papers arguing that visual attention can operate independently of visual consciousness.

  171. 171.

    , , , & Volatile anesthetics disrupt frontal-posterior recurrent information transfer at gamma frequencies in rat. Neurosci. Lett. 387, 145–150 (2005).

  172. 172.

    et al. Propofol anesthesia and sleep: a high-density EEG study. Sleep 34, 283-91A (2011).

  173. 173.

    & Intracranial EEG power spectra and phase synchrony during consciousness and unconsciousness. Conscious. Cogn. 18, 1049–1055 (2009).

  174. 174.

    et al. Visual awareness, emotion, and gamma band synchronization. Cereb. Cortex 19, 1896–1904 (2009).

  175. 175.

    , , & Stimulus dependence of gamma oscillations in human visual cortex. Cereb. Cortex 25, 2951–2959 (2015). A study showing that many perceived images do not evoke gamma band activity as assessed by subdural electrodes placed above the visual cortex in patients with epilepsy.

  176. 176.

    & Network rhythms influence the relationship between spike-triggered local field potential and functional connectivity. J. Neurosci. 31, 12674–12682 (2011).

  177. 177.

    , , & Evoked-potential correlates of stimulus uncertainty. Science 150, 1187–1188 (1965).

  178. 178.

    , & Timing of the brain events underlying access to consciousness during the attentional blink. Nat. Neurosci. 8, 1391–1400 (2005).

  179. 179.

    , & Visual processing of contour patterns under conditions of inattentional blindness. J. Cogn. Neurosci. 24, 287–303 (2012).

  180. 180.

    , , & P3b, consciousness, and complex unconscious processing. Cortex 73, 216–227 (2015). Demonstrates that unconscious stimuli can trigger a P3b.

  181. 181.

    et al. Large scale screening of neural signatures of consciousness in patients in a vegetative or minimally conscious state. Brain 137, 2258–2270 (2014).

  182. 182.

    Event-related potential measures of consciousness: two equations with three unknowns. Prog. Brain Res. 150, 427–444 (2005).

  183. 183.

    , & Event-related potentials (MMN and novelty P3) in permanent vegetative or minimally conscious states. Clin. Neurophysiol. 121, 1032–1042 (2010).

  184. 184.

    et al. Preserved oscillatory response but lack of mismatch negativity in patients with disorders of consciousness. Clin. Neurophysiol. 122, 1744–1754 (2011).

  185. 185.

    et al. Probing consciousness with event-related potentials in the vegetative state. Neurology 77, 264–268 (2011).

  186. 186.

    et al. Single-trial decoding of auditory novelty responses facilitates the detection of residual consciousness. Neuroimage 83, 726–738 (2013).

  187. 187.

    , , , & Neural detection of complex sound sequences in the absence of consciousness. Brain 138, 1160–1166 (2015).

  188. 188.

    , & Tracking the processes behind conscious perception: a review of event-related potential correlates of visual consciousness. Conscious. Cogn. 20, 972–983 (2011). A pioneering description of the visual awareness negativity, one of the most specific evoked-potential correlates of visual experience.

  189. 189.

    Corticothalamic resonance, states of vigilance and mentation. Neuroscience 101, 243–276 (2000).

  190. 190.

    , & Natural waking and sleep states: a view from inside neocortical neurons. J. Neurophysiol. 85, 1969–1985 (2001).

  191. 191.

    , & Neurotransmitter control of neocortical neuronal activity and excitability. Cereb. Cortex 3, 387–398 (1993).

  192. 192.

    Central thalamic deep-brain stimulation in the severely injured brain: rationale and proposed mechanisms of action. Ann. NY Acad. Sci. 1157, 101–116 (2009).

  193. 193.

    , , , & Origin of slow cortical oscillations in deafferented cortical slabs. Cereb. Cortex 10, 1185–1199 (2000).

  194. 194.

    et al. Diffusion weighted imaging distinguishes the vegetative state from the minimally conscious state. Neuroimage 54, 103–112 (2011).

  195. 195.

    , & Brain monitoring with electroencephalography and the electroencephalogram-derived bispectral index during cardiac surgery. Anesth. Analg. 114, 533–546 (2012).

  196. 196.

    et al. Electroencephalogram signatures of loss and recovery of consciousness from propofol. Proc. Natl Acad. Sci. USA 110, E1142–E1151 (2013).

  197. 197.

    , & Large-scale brain dynamics in disorders of consciousness. Curr. Opin. Neurobiol. 25, 7–14 (2014).

  198. 198.

    , , & Alpha-coma. Electroencephalographic, clinical, pathologic, and etiologic correlations. Arch. Neurol. 32, 713–718 (1975).

  199. 199.

    & Diffuse spike-wave status of 9-year duration without behavioral change or intellectual decline. Epilepsia 36, 210–213 (1995).

  200. 200.

    , , & Distinct behavioral and EEG topographic correlates of loss of consciousness in absences. Epilepsia 41, 687–693 (2000).

  201. 201.

    et al. Local aspects of sleep: observations from intracerebral recordings in humans. Prog. Brain Res. 199, 219–232 (2012).

  202. 202.

    et al. Preservation of electroencephalographic organization in patients with impaired consciousness and imaging-based evidence of command-following. Ann. Neurol. 76, 869–879 (2014).

  203. 203.

    Prognostically important EEG coma patterns in diffuse anoxic and traumatic encephalopathies in adults. J. Clin. Neurophysiol. 5, 161–174 (1988).

  204. 204.

    , & Dynamic repertoire of intrinsic brain states is reduced in propofol-induced unconsciousness. Brain Connect. 5, 10–22 (2015).

  205. 205.

    et al. Signature of consciousness in the dynamics of resting-state brain activity. Proc. Natl Acad. Sci. USA 112, 887–892 (2015).

  206. 206.

    et al. Loss of consciousness is associated with stabilization of cortical activity. J. Neurosci. 35, 10866–10877 (2015).

  207. 207.

    & An introduction to bispectral analysis for the electroencephalogram. J. Clin. Monit. 10, 392–404 (1994).

  208. 208.

    et al. Functional isolation within the cerebral cortex in the vegetative state: a nonlinear method to predict clinical outcomes. Neurorehabil. Neural Repair 25, 35–42 (2011).

  209. 209.

    et al. Automated EEG entropy measurements in coma, vegetative state/unresponsive wakefulness syndrome and minimally conscious state. Funct. Neurol. 26, 25–30 (2011).

  210. 210.

    & Decoding wakefulness levels from typical fMRI resting-state data reveals reliable drifts between wakefulness and sleep. Neuron 82, 695–708 (2014).

  211. 211.

    et al. Hubs of brain functional networks are radically reorganized in comatose patients. Proc. Natl Acad. Sci. USA 109, 20608–20613 (2012).

  212. 212.

    et al. Dynamic change of global and local information processing in propofol-induced loss and recovery of consciousness. PLoS Comput. Biol. 9, e1003271 (2013).

  213. 213.

    et al. Information sharing in the brain indexes consciousness in noncommunicative patients. Curr. Biol. 23, 1914–1919 (2013).

  214. 214.

    et al. Directed information transfer in scalp electroencephalographic recordings: insights on disorders of consciousness. Clin. EEG Neurosci. 45, 33–39 (2014).

  215. 215.

    et al. Spectral signatures of reorganised brain networks in disorders of consciousness. PLoS Comput. Biol. 10, e1003887 (2014).

  216. 216.

    , , & Cortical hypersynchrony predicts breakdown of sensory processing during loss of consciousness. Curr. Biol. 21, 1988–1993 (2011).

  217. 217.

    et al. Impaired consciousness during temporal lobe seizures is related to increased long-distance cortical-subcortical synchronization. Brain 132, 2091–2101 (2009).

  218. 218.

    et al. Wide inter-individual variability of bispectral index and spectral entropy at loss of consciousness during increasing concentrations of dexmedetomidine, propofol, and sevoflurane. Br. J. Anaesth. 107, 573–580 (2011).

  219. 219.

    et al. A theoretically based index of consciousness independent of sensory processing and behavior. Sci. Transl. Med. 5, 198ra105 (2013). The first study to use a combined TMS and EEG paradigm to quantify the level of consciousness under a variety of conditions and at the level of individual patients.

  220. 220.

    et al. Consciousness and complexity during unresponsiveness induced by propofol, xenon, and ketamine. Curr. Biol. 25, 3099–3105 (2015).

  221. 221.

    (ed.) The Constitution of Phenomenal Consciousness: Toward a Science and Theory (John Benjamins Publishing, 2015). A recent book discussing conceptual and empirical issues related to the NCC.

  222. 222.

    in Neural Correlates of Consciousness. (ed. Metzinger, T.) 57–76 (MIT Press, 2000).

  223. 223.

    Fleeting Memories: Cognition of Brief Visual Stimuli. (MIT Press, 1999).

  224. 224.

    , , & Integrated information theory: from consciousness to its physical substrate. Nat. Rev Neurosci. (in the press)

  225. 225.

    et al. Willful modulation of brain activity in disorders of consciousness. N. Engl. J. Med. 362, 579–589 (2010).

  226. 226.

    et al. Residual cerebral activity and behavioural fragments can remain in the persistently vegetative brain. Brain 125, 1210–1234 (2002).

  227. 227.

    , , & Somnambulism: clinical aspects and pathophysiological hypotheses. Lancet Neurol. 12, 285–294 (2013).

  228. 228.

    , , , & SPECT during sleepwalking. Lancet 356, 484–485 (2000).

  229. 229.

    et al. Dissociated local arousal states underlying essential clinical features of non-rapid eye movement arousal parasomnia: an intracerebral stereo-electroencephalographic study. J. Sleep Res. 21, 502–506 (2012).

  230. 230.

    Impaired consciousness in epilepsy. Lancet Neurol. 11, 814–826 (2012).

  231. 231.

    & The Case of the Frozen Addicts (Pantheon, 1995).

  232. 232.

    et al. Right lower prefronto-parietal cortical dysfunction in akinetic catatonia: a combined study of neuropsychology and regional cerebral blood flow. Psychol. Med. 30, 583–596 (2000).

  233. 233.

    & The emergence of human consciousness: from fetal to neonatal life. Pediatr. Res. 65, 255–260 (2009). Addresses the question of when a newborn infant first experiences anything, and the neuronal events that occur in the developing brain around that time.

  234. 234.

    et al. A neural marker of perceptual consciousness in infants. Science 340, 376–380 (2013).

  235. 235.

    Through Our Eyes Only? (Oxford Univ. Press on Demand, 1998).

  236. 236.

    Animal Minds (University of Chicago Press, 2001).

  237. 237.

    & Animal consciousness: a synthetic approach. Trends Neurosci. 32, 476–484 (2009).

  238. 238.

    & Complexity and the nervous system. Science 284, 96–98 (1999).

  239. 239.

    The neural basis of the dynamic unconscious. Neuropsychoanalysis 13, 1–68 (2011).

  240. 240.

    Yes it can: on the functional abilities of the human unconscious. Persp. Psychol. Sci. 8, 195–207 (2013). An edited volume describing a series of experiments that demonstrate non-conscious processing under a variety of laboratory and real-life conditions.

  241. 241.

    , & The New Unconscious (Oxford Univ. Press, 2005).

  242. 242.

    et al. Reading and doing arithmetic nonconsciously. Proc. Natl Acad. Sci. USA 109, 19614–19619 (2012).

  243. 243.

    & Levels of processing during non-conscious perception: a critical review of visual masking. Phil. Trans. R. Soc. B 362, 857–875 (2007).

  244. 244.

    , , & Integration without awareness: expanding the limits of unconscious processing. Psychol. Sci. 22, 764–770 (2011).

  245. 245.

    , , , & The concepts of 'sameness' and 'difference' in an insect. Nature 410, 930–933 (2001).

  246. 246.

    & Consciousness: here, there, and everywhere? Phil. Trans. R. Soc. B (2015).

  247. 247.

    , & Synchronization of fast (30–40 Hz) spontaneous cortical rhythms during brain activation. J. Neurosci. 16, 392–417 (1996).

  248. 248.

    Arousal: revisiting the reticular activating system. Science 272, 225–226 (1996).

Download references

Acknowledgements

The authors thank laboratory members and colleagues for their various contributions to the work presented here. This work was supported by the Templeton World Charity Foundation, the McDonnell Foundation and the Distinguished Chair in Consciousness Science (University of Wisconsin) to G.T. and by the EU project 686764 'Luminous' to M.M. C.K. thanks the Allen Institute for Brain Science founders, P. G. Allen and J. Allen, for their vision, encouragement and support.

Author information

Affiliations

  1. Allen Institute for Brain Science, Seattle, Washington 98109 USA.

    • Christof Koch
  2. Department of Biomedical and Clinical Sciences 'Luigi Sacco', University of Milan, Milan, Italy.

    • Marcello Massimini
  3. Instituto Di Ricovero e Cura a Carattere Scientifico, Fondazione Don Carlo Gnocchi, Milan, Italy.

    • Marcello Massimini
  4. Department of Neurology, University of Wisconsin, Madison, Wisconsin 53719, USA.

    • Melanie Boly
  5. Department of Psychiatry, University of Wisconsin, Madison, Wisconsin 53719, USA.

    • Melanie Boly
    •  & Giulio Tononi

Authors

  1. Search for Christof Koch in:

  2. Search for Marcello Massimini in:

  3. Search for Melanie Boly in:

  4. Search for Giulio Tononi in:

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Christof Koch or Giulio Tononi.

Supplementary information

PDF files

  1. 1.

    Supplementary information S1 (box)

    Consciousness and other cognitive functions

Glossary

Neural correlates of consciousness

(NCC). The minimum neural mechanisms jointly sufficient for any one specific conscious experience.

No-report paradigm

A paradigm in which trials with explicit report are included along with trials without explicit report, during which indirect physiological measures are used to infer what the participant is perceiving. This paradigm allows the neural correlates of consciousness to be distinguished from events or processes that are associated with, precede or follow conscious experience.

Hot zone

A temporo-parietal-occipital zone of the posterior cerebral cortex where the best current anatomical candidates for full and content-specific neural correlates of consciousness in the human brain are located. The content-specific neural correlates of consciousness may be any particular subset of neurons within this hot zone that supports specific phenomenological distinctions, such as faces.

Vegetative state

A disorder of consciousness that occurs in some patients with brain injury. The patients remain unresponsive and show no purposeful behaviour, but retain the ability to spontaneously open their eyes and maintain autonomic reflexes.

Content-specific NCC

(Content-specific neural correlates of consciousness). The neural substrate supporting a particular content of experience (for example, faces) whether seen, dreamt or imagined.

Transcranial magnetic stimulation

(TMS). A method of non-invasive brain stimulation, in which a magnetic field is induced by an electrical current in a coil placed onto the skull to induce neuronal activity in the underlying cortex.

Full NCC

(Full neural correlates of consciousness). The neural substrate supporting experience in general, irrespective of its specific content.

Background conditions

Factors that enable consciousness, but do not contribute directly to the content of experience.

Binocular rivalry

An experimental paradigm used to evoke bi-stable percepts in which one image is presented to the left eye of the participant and a different image is presented to the right eye; rather than seeing a juxtaposition or fusion of both images, participants see one or the other object alternately.

Coma

A disorder of consciousness occurring in some patients with brain injury, in which the patient remains in an enduring, sleep-like state of immobility and unresponsiveness, with their eyes closed, from which they cannot be aroused.

Abulic

A state associated with impairment in decision making and loss of self-initiated actions.

Phosphene

A visual experience, in particular featuring flashes of light, that occurs in response to direct mechanical, electrical or magnetic stimulation of the visual cortex.

Auditory oddball paradigm

A sequence of auditory stimuli in which the last stimulus differs from the preceding stimuli; for example, a sequence of low-frequency tones followed by a single high-frequency tone

About this article

Publication history

Published

DOI

https://doi.org/10.1038/nrn.2016.22

Further reading