Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Closed-loop brain training: the science of neurofeedback

An Author Correction to this article was published on 25 March 2019

Key Points

  • Neurofeedback is a type of biofeedback in which neural activity is measured and presented through one or more sensory channels to the participant in real time to facilitate self-regulation of the putative neural substrates that underlie a particular behaviour or pathology

  • Animal and human brain self-regulation has been demonstrated using various invasive and non-invasive recording methods and with different features of the brain signals, such as frequency spectra, functional connectivity or spatiotemporal patterns of brain activity

  • Neurofeedback provides the possibility of endogenously manipulating brain activity as an independent variable, making it a powerful neuroscientific tool

  • Neurofeedback training results in specific neural changes relevant to the trained brain circuit and the associated behavioural changes. These changes have been shown to last anywhere from hours to months after training and to correlate with changes in grey and white matter structure

  • The underlying neural circuitry relating to the process of brain self-regulation is becoming clearer. Accumulating evidence suggests the involvement of the thalamus and the dorsolateral prefrontal, posterior parietal and occipital cortices in neurofeedback control, and the dorsal and ventral striatum, anterior cingulate cortex and anterior insula in neurofeedback reward processing

  • Psychological factors, such as the differential influence of feedback, reward and experimental instructions, and other factors, such as sense of agency and locus of control, are now being investigated for their effects on neurofeedback

  • The demonstration of robust clinical effects remains a major hurdle in neurofeedback research. The results of randomized controlled trials in attention deficit and hyperactivity disorder and stroke rehabilitation have been mixed, and have been affected by differences in study design, difficulty of identifying responders and the scarcity of homogenous patient populations

  • Future neurofeedback research will probably clarify the psychological and neural mechanisms that may help to address issues in clinical translation

Abstract

Neurofeedback is a psychophysiological procedure in which online feedback of neural activation is provided to the participant for the purpose of self-regulation. Learning control over specific neural substrates has been shown to change specific behaviours. As a progenitor of brain–machine interfaces, neurofeedback has provided a novel way to investigate brain function and neuroplasticity. In this Review, we examine the mechanisms underlying neurofeedback, which have started to be uncovered. We also discuss how neurofeedback is being used in novel experimental and clinical paradigms from a multidisciplinary perspective, encompassing neuroscientific, neuroengineering and learning-science viewpoints.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of the procedure of neurofeedback.
Figure 2: Neurofeedback reward processing, control and learning networks.

Similar content being viewed by others

References

  1. Kamiya, J. The first communications about operant conditioning of the EEG. J. Neurother. 15, 65–73 (2011).

    Article  Google Scholar 

  2. Wolpaw, J. et al. Brain–computer interfaces: principles and practice (Oxford Univ. Press, 2012).

    Book  Google Scholar 

  3. Shibata, K. et al. Perceptual learning incepted by decoded fMRI neurofeedback without stimulus presentation. Science 334, 1413–1415 (2011). This was the first study with real-time fMRI-based neurofeedback demonstrating that the adult primate early visual cortex is plastic enough for visual perceptual learning.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sitaram, R. et al. Real-time support vector classification and feedback of multiple emotional brain states. Neuroimage 56, 753–765 (2011).

    Article  PubMed  Google Scholar 

  5. Niazi, A. M. et al. Online decoding of object-based attention using real-time fMRI. Eur. J. Neurosci. 39, 319–329 (2014).

    Article  PubMed  Google Scholar 

  6. deBettencourt, M. T. et al. Closed-loop training of attention with real-time brain imaging. Nat. Neurosci. 18, 470–475 (2015). This was the first study to use real-time fMRI neurofeedback to increase the cognitive potential of participants, which was indicated by fewer attention lapses.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mayer, K. et al. Neurofeedback as a nonpharmacological treatment for adults with attention-deficit/hyperactivity disorder (ADHD): study protocol for a randomized controlled trial. Trials 16, 174 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kim, D. Y. et al. The inclusion of functional connectivity information into fMRI-based neurofeedback improves its efficacy in the reduction of cigarette cravings. J. Cogn. Neurosci. 27, 1552–1572 (2015). This study showed the importance of how inclusion of functional connectivity information in the feedback signal improves self-regulation learning and behavioural outcome.

    Article  PubMed  Google Scholar 

  9. Lansbergen, M. M. et al. The increase in theta/beta ratio on resting-state EEG in boys with attention-deficit/hyperactivity disorder is mediated by slow alpha peak frequency. Prog. Neuropsychopharmacol. Biol. Psychiatry 35, 47–52 (2011).

    Article  PubMed  Google Scholar 

  10. Sulzer, J. et al. Real-time fMRI neurofeedback: progress and challenges. Neuroimage 76, 386–399 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Schafer, R. J. et al. Selective attention from voluntary control of neurons in prefrontal cortex. Science 332, 1568–1571 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Clancy, K. B. et al. Volitional modulation of optically recorded calcium signals during neuroprosthetic learning. Nat. Neurosci. 17, 807–809 (2014). This study provided a new insight into how neural ensemble dynamics change during learning.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Collinger, J. L. et al. High-performance neuroprosthetic control by an individual with tetraplegia. Lancet 381, 557–564 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hochberg, L. R. et al. Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442, 164–171 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Bouton, C. E. et al. Restoring cortical control of functional movement in a human with quadriplegia. Nature 533, 247–250 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Musall, S. et al. Effects of neural synchrony on surface EEG. Cereb. Cortex 24, 1045–1053 (2014).

    Article  PubMed  Google Scholar 

  17. Beatty, J. et al. Operant control of occipital theta thythm affects performance in a radar monitoring task. Science 183, 871–873 (1973).

    Article  Google Scholar 

  18. Ros, T. et al. Mind over chatter: plastic up-regulation of the fMRI salience network directly after EEG neurofeedback. Neuroimage 65, 324–335 (2013).

    Article  PubMed  Google Scholar 

  19. Hanslmayr, S. et al. Increasing individual upper alpha power by neurofeedback improves cognitive performance in human subjects. Appl. Psychophysiol. Biofeedback 30, 1–10 (2005).

    Article  PubMed  Google Scholar 

  20. Egner, T. et al. Ecological validity of neurofeedback: modulation of slow wave EEG enhances musical performance. Neuroreport 14, 1221–1224 (2003).

    Article  PubMed  Google Scholar 

  21. Bray, S. et al. Direct instrumental conditioning of neural activity using functional magnetic resonance imaging-derived reward feedback. J. Neurosci. 27, 7498–7507 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Blefari, M. L. et al. Improvement in precision grip force control with self-modulation of primary motor cortex during motor imagery. Front. Behav. Neurosci. 9, 18 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sherwood, M. S. et al. Enhanced control of dorsolateral prefrontal cortex neurophysiology with real-time functional magnetic resonance imaging (rt-fMRI) neurofeedback training and working memory practice. Neuroimage 124, 214–223 (2016).

    Article  PubMed  Google Scholar 

  24. Caria, A. et al. Regulation of anterior insular cortex activity using real-time fMRI. Neuroimage 35, 1238–1246 (2007).

    Article  PubMed  Google Scholar 

  25. Li, X. et al. Volitional reduction of anterior cingulate cortex activity produces decreased cue craving in smoking cessation: a preliminary real-time fMRI study. Addict. Biol. 18, 739–748 (2013).

    Article  PubMed  Google Scholar 

  26. Keynan, J. N. et al. Limbic activity modulation guided by fMRI-inspired EEG improves implicit emotion regulation. Biol. Psychiatry 80, 490–496 (2016).

    Article  PubMed  Google Scholar 

  27. Zotev, V. et al. Self-regulation of human brain activity using simultaneous real-time fMRI and EEG neurofeedback. Neuroimage 85 (Pt.3), 985–995 (2014). This was the first study to implement a real-time neurofeedback system that allows participants to simultaneously self-regulate haemodynamic (fMRI) and electrophysiological (EEG) brain activity.

    Article  PubMed  Google Scholar 

  28. Fazli, S. et al. Enhanced performance by a hybrid NIRS–EEG brain computer interface. Neuroimage 59, 519–529 (2012).

    Article  PubMed  Google Scholar 

  29. Haynes, J. D. A. Primer on pattern-based approaches to fMRI: principles, pitfalls, and perspectives. Neuron 87, 257–270 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Haynes, J. D. et al. Decoding mental states from brain activity in humans. Nat. Rev. Neurosci. 7, 523–534 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Norman, K. A. et al. Beyond mind-reading: multi-voxel pattern analysis of fMRI data. Trends Cogn. Sci. 10, 424–430 (2006).

    Article  PubMed  Google Scholar 

  32. LaConte, S. M. et al. Real-time fMRI using brain-state classification. Hum. Brain Mapp. 28, 1033–1044 (2007).

    Article  PubMed  Google Scholar 

  33. Megumi, F. et al. Functional MRI neurofeedback training on connectivity between two regions induces long-lasting changes in intrinsic functional network. Front. Hum. Neurosci. 9, 160 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Ruiz, S. et al. Acquired self-control of insula cortex modulates emotion recognition and brain network connectivity in schizophrenia. Hum. Brain Mapp. 34, 200–212 (2013).

    Article  PubMed  Google Scholar 

  35. Rota, G. et al. Reorganization of functional and effective connectivity during real-time fMRI–BCI modulation of prosody processing. Brain Lang. 117, 123–132 (2011).

    Article  PubMed  Google Scholar 

  36. Kajal, D. S. et al. P113. Learning volitional control of functional connectivity: effects on behaviour. Clin. Neurophysiol. 126, e104 (2015).

    Article  Google Scholar 

  37. Sacchet, M. D. et al. Volitional control of neuromagnetic coherence. Front. Neurosci. 6, 189 (2012). This was the first study to demonstrate the feasibility of performing neurofeedback training based on coherence between two circumscribed brain areas using magnetoencephalography.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Koush, Y. et al. Learning control over emotion networks through connectivity-based neurofeedback. Cereb. Cortex http://dx.doi.org/10.1093/cercor/bhv311 (2015). This study introduced a novel approach for top-down modulation of emotion using effective connectivity feedback with real-time fMRI.

  39. Lewis-Peacock, J. A. et al. Competition between items in working memory leads to forgetting. Nat. Commun. 5, 5768 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. Kamitani, Y. et al. Decoding the visual and subjective contents of the human brain. Nat. Neurosci. 8, 679–685 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wiestler, T. et al. Skill learning strengthens cortical representations of motor sequences. eLife 2, e00801 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ray, A. M. et al. A subject-independent pattern-based brain–computer interface. Front. Behav. Neurosci. 9, 269 (2015). This paper introduced a new method to perform real-time pattern classification of EEG signals from a group support vector model for neurofeedback training of individuals, eliminating the need for calibrating the classifier on subject-specific data as it wasd one in traditional approaches of pattern classification.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lee, S. et al. Detection of cerebral reorganization induced by real-time fMRI feedback training of insula activation a multivariate investigation. Neurorehabil. Neural Repair 25, 259–267 (2011). This study showed the change in connectivity pattern of the brain due to learned volitional control of a circumscribed brain area.

    Article  PubMed  Google Scholar 

  44. Fetz, E. E. Operant conditioning of cortical unit activity. Science 163, 955–958 (1969). This was the first study to demonstrate the feasibility of realizing volitional control of a single neuron by operant training.

    Article  CAS  PubMed  Google Scholar 

  45. Koralek, A. C. et al. Corticostriatal plasticity is necessary for learning intentional neuroprosthetic skills. Nature 483, 331–335 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Koralek, A. C. et al. Temporally precise cell-specific coherence develops in corticostriatal networks during learning. Neuron 79, 865–872 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Jackson, A. et al. The Neurochip BCI: towards a neural prosthesis for upper limb function. IEEE Trans. Neural Syst. Rehabil. Eng. 14, 187–190 (2006).

    Article  PubMed  Google Scholar 

  48. Jackson, A. et al. Long-term motor cortex plasticity induced by an electronic neural implant. Nature 444, 56–60 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Gruzelier, J. H. EEG-neurofeedback for optimising performance. III: a review of methodological and theoretical considerations. Neurosci. Biobehav. Rev. 44, 159–182 (2014).

    Article  PubMed  Google Scholar 

  50. Chein, J. M. et al. Neuroimaging studies of practice-related change: fMRI and meta-analytic evidence of a domain-general control network for learning. Brain Res. Cognitive Brain Res. 25, 607–623 (2005).

    Article  Google Scholar 

  51. Scharnowski, F. et al. Manipulating motor performance and memory through real-time fMRI neurofeedback. Biol. Psychol. 108, 85–97 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Sulzer, J. et al. Neurofeedback-mediated self-regulation of the dopaminergic midbrain. Neuroimage 75C, 176–184 (2013).

    Article  PubMed  Google Scholar 

  53. Caria, A. et al. Volitional control of anterior insula activity modulates the response to aversive stimuli. A real-time functional magnetic resonance imaging study. Biol. Psychiatry 68, 425–432 (2010).

    Article  PubMed  Google Scholar 

  54. Lawrence, E. J. et al. Self-regulation of the anterior insula: reinforcement learning using real-time fMRI neurofeedback. Neuroimage 88, 113–124 (2013).

    Article  PubMed  Google Scholar 

  55. Ros, T. et al. Endogenous control of waking brain rhythms induces neuroplasticity in humans. Eur. J. Neurosci. 31, 770–778 (2010).

    Article  PubMed  Google Scholar 

  56. Sitaram, R. et al. Acquired control of ventral premotor cortex activity by feedback training: an exploratory real-time FMRI and TMS study. Neurorehabil. Neural Repair 26, 256–265 (2012).

    Article  PubMed  Google Scholar 

  57. Scholz, J. et al. Training induces changes in white-matter architecture. Nat. Neurosci. 12, 1370–1371 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ghaziri, J. et al. Neurofeedback training induces changes in white and gray matter. Clin. EEG Neurosci. 44, 265–272 (2013).

    Article  PubMed  Google Scholar 

  59. Marder, E. et al. Variability, compensation and homeostasis in neuron and network function. Nat. Rev. Neurosci. 7, 563–574 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Maffei, A. et al. Network homeostasis: a matter of coordination. Curr. Opin. Neurobiol. 19, 168–173 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ros, T. et al. Tuning pathological brain oscillations with neurofeedback: a systems neuroscience framework. Front. Hum. Neurosci. 8, 1008 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Ros, T. et al. Neurofeedback tunes scale-free dynamics in spontaneous brain activity. Cereb. Cortex. http://dx.doi.org/10.1093/cercor/bhw285 (2016).

  63. Harmelech, T. et al. The day-after effect: long term, Hebbian-like restructuring of resting-state fMRI patterns induced by a single epoch of cortical activation. J. Neurosci. 33, 9488–9497 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gevensleben, H. et al. Neurofeedback training in children with ADHD: 6-month follow-up of a randomised controlled trial. Eur. Child Adolesc. Psychiatry 19, 715–724 (2010). This study explored the long-term effect of neurofeedback training in children with ADHD, showing that the behavioural effect of neurofeedback training persists even after 6 months.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Engelbregt, H. J. et al. Short and long-term effects of sham-controlled prefrontal EEG-neurofeedback training in healthy subjects. Clin. Neurophysiol. 127, 1931–1937 (2016).

    Article  CAS  PubMed  Google Scholar 

  66. Chapin, J. K. et al. Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex. Nat. Neurosci. 2, 664–670 (1999).

    Article  CAS  PubMed  Google Scholar 

  67. Fetz, E. E. Volitional control of neural activity: implications for brain–computer interfaces. J. Physiol. 579, 571–579 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Allison, B. Z. et al. in Human–Computer Interaction Series (eds Tan, D. & Vanderdonckt, J.) 35–54 (Springer, 2010).

    Google Scholar 

  69. Hammer, E. M. et al. Psychological predictors of SMR–BCI performance. Biol. Psychol. 89, 80–86 (2012).

    Article  PubMed  Google Scholar 

  70. Sepúlveda, P. et al. How feedback, motor imagery, and reward influence brain self-regulation using real-time fMRI. Hum. Brain Mapp. 37, 3153–3171 (2016). This study investigated several factors (for example, reward, instruction and feedback) that influence the learning process during neurofeedback training, showing that participants who are trained with visual feedback without explicit instruction for using mental imagery show an increase in BOLD self-regulation compared with other participants who do not receive explicit instructions.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Kober, S. E. et al. Learning to modulate one's own brain activity: the effect of spontaneous mental strategies. Front. Hum. Neurosci. 7, 695 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Ramot, M. et al. Covert neurofeedback without awareness shapes cortical network spontaneous connectivity. Proc. Natl Acad. Sci. USA 113, E2413–E2420 (2016). This study demonstrated that volitional control of brain activations could be learned when participants were unaware that they were undergoing neurofeedback training and did not have any explicit awareness of the feedback signal.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Rockstroh, B. et al. Slow Cortical Potentials and Behavior 2nd edn (Urban & Schwarzenberg, 1989).

    Google Scholar 

  74. Lacroix, J. M. et al. A comparison of the mechanisms and some properties of instructed sudomotor and cardiac control. Biofeedback Self Regul. 3, 105–132 (1978).

    Article  CAS  PubMed  Google Scholar 

  75. Utz, S. W. The effect of instructions on cognitive strategies and performance in biofeedback. J. Behav. Med. 17, 291–308 (1994).

    Article  CAS  PubMed  Google Scholar 

  76. Dunn, T. G. et al. The learning process in biofeedback: Is it feed-forward or feedback? Biofeedback Self Regul. 11, 143–156 (1986).

    Article  CAS  PubMed  Google Scholar 

  77. Siniatchkin, M. et al. Neurofeedback — the significance of reinforcement and the search for an appropriate strategy for the success of self-regulation. Appl. Psychophysiol. Biofeedback 25, 167–175 (2000).

    Article  CAS  PubMed  Google Scholar 

  78. Greer, S. M. et al. Control of nucleus accumbens activity with neurofeedback. Neuroimage 96, 237–244 (2014).

    Article  PubMed  Google Scholar 

  79. MacInnes, J. J. et al. Cognitive neurostimulation: learning to volitionally sustain ventral tegmental area activation. Neuron 89, 1331–1342 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Auer, T. et al. Training efficiency and transfer success in an extended real-time functional MRI neurofeedback training of the somatomotor cortex of healthy subjects. Front. Hum. Neurosci. 9, 547 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Johnson, K. A. et al. Intermittent “real-time” fMRI feedback is superior to continuous presentation for a motor imagery task: a pilot study. J. Neuroimaging 22, 58–66 (2012).

    Article  PubMed  Google Scholar 

  82. Beier, G. Kontrollüberzeugungen im Umgang mit Technik: ein Persönlichkeitsmerkmal mit Relevanz für die Gestaltung technischer Systeme (in German) (Humboldt Univ. Berlin, 2004).

    Google Scholar 

  83. Witte, M. et al. Control beliefs can predict the ability to up-regulate sensorimotor rhythm during neurofeedback training. Front. Hum. Neurosci. 7, 478 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Evans, N. et al. Visual feedback dominates the sense of agency for brain–machine actions. PLoS ONE 10, e0130019 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Hinterberger, T. et al. Neuronal mechanisms underlying control of a brain–computer interface. Eur. J. Neurosci. 21, 3169–3181 (2005).

    Article  PubMed  Google Scholar 

  86. Ninaus, M. et al. Neural substrates of cognitive control under the belief of getting neurofeedback training. Front. Hum. Neurosci. 7, 914 (2013). This study investigated the cognitive mechanism underpinning the perception of control during neurofeedback training and showed that a broad frontoparietal and cingulo-opercular network was engaged by participants who were attempting to control the feedback signal, although only sham feedback was provided to the participants.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Emmert, K. et al. Meta-analysis of real-time fMRI neurofeedback studies using individual participant data: How is brain regulation mediated? Neuroimage 124, 806–812 (2015). This meta-analysis of several past neurofeedback studies investigated neural correlates of self-regulation, showing that the anterior insula and basal ganglia are key components of the regulation network.

    Article  PubMed  Google Scholar 

  88. Craig, A. D. How do you feel — now? The anterior insula and human awareness. Nat. Rev. Neurosci. 10, 59–70 (2009).

    Article  CAS  PubMed  Google Scholar 

  89. Harmelech, T. et al. Differential magnetic resonance neurofeedback modulations across extrinsic (visual) and intrinsic (default-mode) nodes of the human cortex. J. Neurosci. 35, 2588–2595 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Hetu, S. et al. The neural network of motor imagery: an ALE meta-analysis. Neurosci. Biobehav. Rev. 37, 930–949 (2013).

    Article  PubMed  Google Scholar 

  91. Amiez, C. et al. Modulation of feedback related activity in the rostral anterior cingulate cortex during trial and error exploration. Neuroimage 63, 1078–1090 (2012).

    Article  PubMed  Google Scholar 

  92. Gevensleben, H. et al. Neurofeedback of slow cortical potentials: neural mechanisms and feasibility of a placebo-controlled design in healthy adults. Front. Hum. Neurosci. 8, 990 (2014).

    PubMed  PubMed Central  Google Scholar 

  93. Lubar, J. O. et al. Electroencephalographic biofeedback of SMR and beta for treatment of attention deficit disorders in a clinical setting. Biofeedback Self Regul. 9, 1–23 (1984).

    Article  CAS  PubMed  Google Scholar 

  94. Chabot, R. J. et al. The clinical role of computerized EEG in the evaluation and treatment of learning and attention disorders in children and adolescents. J. Neuropsychiatry Clin. Neurosci. 13, 171–186 (2001).

    Article  CAS  PubMed  Google Scholar 

  95. Dustman, R. E. et al. Life-span changes in EEG spectral amplitude, amplitude variability and mean frequency. Clin. Neurophysiol. 110, 1399–1409 (1999).

    Article  CAS  PubMed  Google Scholar 

  96. Poil, S. S. et al. Age dependent electroencephalographic changes in attention-deficit/hyperactivity disorder (ADHD). Clin. Neurophysiol. 125, 1626–1638 (2014).

    Article  PubMed  Google Scholar 

  97. Ogrim, G. et al. Predicting the clinical outcome of stimulant medication in pediatric attention-deficit/hyperactivity disorder: data from quantitative electroencephalography, event-related potentials, and a go/no-go test. Neuropsychiatr. Dis. Treat. 10, 231–242 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Janssen, T. W. et al. A randomized controlled trial into the effects of neurofeedback, methylphenidate, and physical activity on EEG power spectra in children with ADHD. J. Child Psychol. Psychiatry 57, 633–644 (2016).

    Article  PubMed  Google Scholar 

  99. Lubar, J. F. et al. Evaluation of the effectiveness of EEG neurofeedback training for ADHD in a clinical setting as measured by changes in T.O.V.A. scores, behavioral ratings, and WISC-R performance. Biofeedback Self Regul. 20, 83–99 (1995).

    Article  CAS  PubMed  Google Scholar 

  100. Gevensleben, H. et al. Distinct EEG effects related to neurofeedback training in children with ADHD: a randomized controlled trial. Int. J. Psychophysiol. 74, 149–157 (2009).

    Article  PubMed  Google Scholar 

  101. Steiner, N. J. et al. Neurofeedback and cognitive attention training for children with attention-deficit hyperactivity disorder in schools. J. Dev. Behav. Pediatr. 35, 18–27 (2014).

    Article  PubMed  Google Scholar 

  102. Gevensleben, H. et al. Is neurofeedback an efficacious treatment for ADHD? A randomised controlled clinical trial. J. Child Psychol. Psychiatry 50, 780–789 (2009).

    Article  PubMed  Google Scholar 

  103. Duric, N. S. et al. Neurofeedback for the treatment of children and adolescents with ADHD: a randomized and controlled clinical trial using parental reports. BMC Psychiatry 12, 107 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Meisel, V. et al. Neurofeedback and standard pharmacological intervention in ADHD: a randomized controlled trial with six-month follow-up. Biol. Psychol. 94, 12–21 (2013).

    Article  PubMed  Google Scholar 

  105. Arns, M. et al. Efficacy of neurofeedback treatment in ADHD: the effects on inattention, impulsivity and hyperactivity: a meta-analysis. Clin. EEG Neurosci. 40, 180–189 (2009).

    Article  PubMed  Google Scholar 

  106. Sonuga-Barke, E. et al. Computer-based cognitive training for ADHD: a review of current evidence. Child Adolesc. Psychiatr. Clin. N. Am. 23, 807–824 (2014).

    Article  PubMed  Google Scholar 

  107. Micoulaud-Franchi, J. A. et al. EEG neurofeedback treatments in children with ADHD: an updated meta-analysis of randomized controlled trials. Front. Hum. Neurosci. 8, 906 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. van Dongen-Boomsma, M. et al. A randomized placebo-controlled trial of electroencephalographic (EEG) neurofeedback in children with attention-deficit/hyperactivity disorder. J. Clin. Psychiatry 74, 821–827 (2013).

    Article  PubMed  Google Scholar 

  109. Arnold, L. E. et al. EEG neurofeedback for ADHD: double-blind sham-controlled randomized pilot feasibility trial. J. Atten. Disord. 17, 410–419 (2013).

    Article  PubMed  Google Scholar 

  110. Arns, M. et al. Evaluation of neurofeedback in ADHD: the long and winding road. Biol. Psychol. 95, 108–115 (2014).

    Article  PubMed  Google Scholar 

  111. Zuberer, A. et al. Are treatment effects of neurofeedback training in children with ADHD related to the successful regulation of brain activity? A review on the learning of regulation of brain activity and a contribution to the discussion on specificity. Front. Hum. Neurosci. 9, 135 (2015). This comprehensive review described the efficacy and specificity of neurofeedback training in children with ADHD.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Liechti, M. D. et al. First clinical trial of tomographic neurofeedback in attention-deficit/hyperactivity disorder: evaluation of voluntary cortical control. Clin. Neurophysiol. 123, 1989–2005 (2012).

    Article  PubMed  Google Scholar 

  113. Lansbergen, M. M. et al. ADHD and EEG-neurofeedback: a double-blind randomized placebo-controlled feasibility study. J. Neural Transm. (Vienna) 118, 275–284 (2011).

    Article  CAS  Google Scholar 

  114. Gelade, K. et al. An RCT into the effects of neurofeedback on neurocognitive functioning compared to stimulant medication and physical activity in children with ADHD. Eur. Child Adolesc. Psychiatry http://dx.doi.org/10.1007/s00787-016-0902-x (2016). This report of an RCT compared the effect of neurofeedback training, pharmacological treatment and physical therapy in children with ADHD.

    Article  Google Scholar 

  115. Mazaheri, A. et al. Differential oscillatory electroencephalogram between attention-deficit/hyperactivity disorder subtypes and typically developing adolescents. Biol. Psychiatry 76, 422–429 (2014).

    Article  PubMed  Google Scholar 

  116. Arns, M. et al. EEG phenotypes predict treatment outcome to stimulants in children with ADHD. J. Integr. Neurosci. 7, 421–438 (2008).

    Article  PubMed  Google Scholar 

  117. Kanazawa, O. Reappraisal of abnormal EEG findings in children with ADHD: on the relationship between ADHD and epileptiform discharges. Epilepsy Behav. 41, 251–256 (2014).

    Article  PubMed  Google Scholar 

  118. Buyck, I. et al. Task-related electroencephalographic deviances in adults with attention deficit hyperactivity disorder. Neuropsychology 29, 433–444 (2015).

    Article  PubMed  Google Scholar 

  119. Missonnier, P. et al. EEG anomalies in adult ADHD subjects performing a working memory task. Neuroscience 241, 135–146 (2013).

    Article  CAS  PubMed  Google Scholar 

  120. Heinrich, H. et al. Training of slow cortical potentials in attention-deficit/hyperactivity disorder: evidence for positive behavioral and neurophysiological effects. Biol. Psychiatry 55, 772–775 (2004).

    Article  PubMed  Google Scholar 

  121. Mayer, K. et al. One size fits all? Slow cortical potentials neurofeedback: a review. J. Atten. Disord. 17, 393–409 (2013).

    Article  PubMed  Google Scholar 

  122. Doehnert, M. et al. Slow cortical potential neurofeedback in attention deficit hyperactivity disorder: is there neurophysiological evidence for specific effects? J. Neural Transm. (Vienna) 115, 1445–1456 (2008).

    Article  Google Scholar 

  123. Gani, C. et al. Long term effects after feedback of slow cortical potentials and of theta-beta amplitudes in children with attention-deficit/hyperactivity disorder (ADHD). Int. J. Bioelectromagn. 10, 209–232 (2008).

    Google Scholar 

  124. Thibault, R. T. et al. The self-regulating brain and neurofeedback: experimental science and clinical promise. Cortex 74, 247–261 (2016).

    Article  PubMed  Google Scholar 

  125. Borkovec, T. D. et al. Problems with the use of placebo conditions in psychotherapy research, suggested alternatives, and some strategies for the pursuit of the placebo phenomenon. J. Clin. Psychol. 61, 805–818 (2005).

    Article  CAS  PubMed  Google Scholar 

  126. Kessler, R. C. et al. The effects of temporally secondary co-morbid mental disorders on the associations of DSM-IV ADHD with adverse outcomes in the US National Comorbidity Survey Replication Adolescent Supplement (NCS-A). Psychol. Med. 44, 1779–1792 (2014).

    Article  CAS  PubMed  Google Scholar 

  127. Querne, L. et al. Effects of methylphenidate on default-mode network/task-positive network synchronization in children with ADHD. J. Atten. Disord. http://dx.doi.org/10.1177/1087054713517542 (2014).

  128. Chabernaud, C. et al. Dimensional brain-behavior relationships in children with attention-deficit/hyperactivity disorder. Biol. Psychiatry 71, 434–442 (2012).

    Article  PubMed  Google Scholar 

  129. Wen, X. et al. Top-down regulation of default mode activity in spatial visual attention. J. Neurosci. 33, 6444–6453 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Kelly, A. M. et al. Competition between functional brain networks mediates behavioral variability. Neuroimage 39, 527–537 (2008).

    Article  PubMed  Google Scholar 

  131. Hlinka, J. et al. Slow EEG pattern predicts reduced intrinsic functional connectivity in the default mode network: an inter-subject analysis. Neuroimage 53, 239–246 (2010).

    Article  PubMed  Google Scholar 

  132. Jann, K. et al. BOLD correlates of EEG alpha phase-locking and the fMRI default mode network. Neuroimage 45, 903–916 (2009).

    Article  CAS  PubMed  Google Scholar 

  133. Mantini, D. et al. Electrophysiological signatures of resting state networks in the human brain. Proc. Natl Acad. Sci. USA 104, 13170–13175 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Heinrich, H. et al. EEG spectral analysis of attention in ADHD: implications for neurofeedback training? Front. Hum. Neurosci. 8, 611 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Calautti, C. et al. Functional neuroimaging studies of motor recovery after stroke in adults: a review. Stroke 34, 1553–1566 (2003).

    Article  PubMed  Google Scholar 

  136. Sung, W. H. et al. Efficacy of coupling inhibitory and facilitatory repetitive transcranial magnetic stimulation to enhance motor recovery in hemiplegic stroke patients. Stroke 44, 1375–1382 (2013).

    Article  PubMed  Google Scholar 

  137. Taub, E. The behavior-analytic origins of constraint-induced movement therapy: an example of behavioral neurorehabilitation. Behav. Anal. 35, 155–178 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Wolbrecht, E. T. et al. Optimizing compliant, model-based robotic assistance to promote neurorehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 16, 286–297 (2008).

    Article  PubMed  Google Scholar 

  139. Buch, E. et al. Think to move: a neuromagnetic brain–computer interface (BCI) system for chronic stroke. Stroke 39, 910–917 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Ang, K. K. et al. Facilitating effects of transcranial direct current stimulation on motor imagery brain–computer interface with robotic feedback for stroke rehabilitation. Arch. Phys. Med. Rehabil. 96, S79–S87 (2015).

    Article  PubMed  Google Scholar 

  141. Ramos-Murguialday, A. et al. Brain–machine interface in chronic stroke rehabilitation: a controlled study. Ann. Neurol. 74, 100–108 (2013). This study provided haptic feedback in a BCI training paradigm, demonstrating improvement in motor function in patients with chronic stroke.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Small, S. L. et al. Brain repair after stroke — a novel neurological model. Nat. Rev. Neurol. 9, 698–707 (2013). This study introduced a new model of neural repair after stroke that is based on the notion that specific brain networks are reorganized in response to physical and behavioural intervention.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Pichiorri, F. et al. Brain–computer interface boosts motor imagery practice during stroke recovery. Ann. Neurol. 77, 851–865 (2015).

    Article  PubMed  Google Scholar 

  144. Varkuti, B. et al. Resting state changes in functional connectivity correlate with movement recovery for BCI and robot-assisted upper-extremity training after stroke. Neurorehabil. Neural Repair 27, 53–62 (2013).

    Article  PubMed  Google Scholar 

  145. Liew, S. L. et al. Improving motor corticothalamic communication after stroke using real-time fMRI connectivity-based neurofeedback. Neurorehabil. Neural Repair. 30, 671–675 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Chiew, M. et al. Investigation of fMRI neurofeedback of differential primary motor cortex activity using kinesthetic motor imagery. Neuroimage 61, 21–31 (2012).

    Article  PubMed  Google Scholar 

  147. Stoeckel, L. E. et al. Optimizing real time fMRI neurofeedback for therapeutic discovery and development. Neuromage Clin. 5, 245–255 (2014). This comprehensive review investigated the current status of neurofeedback techniques as a therapeutic tool and described the future steps that are needed to optimize their development and application.

    Article  CAS  Google Scholar 

  148. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders 5th edn (American Psychiatric Publishing, 2013).

  149. Blankertz, B. et al. Neurophysiological predictor of SMR-based BCI performance. Neuroimage 51, 1303–1309 (2010).

    Article  PubMed  Google Scholar 

  150. Halder, S. et al. Prediction of brain–computer interface aptitude from individual brain structure. Front. Hum. Neurosci. 7, 105 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Ninaus, M. et al. Brain volumetry and self-regulation of brain activity relevant for neurofeedback. Biol. Psychol. 110, 126–133 (2015).

    Article  CAS  PubMed  Google Scholar 

  152. Emmert, K. et al. Active pain coping is associated with the response in real-time fMRI neurofeedback during pain. Brain Imaging Behav. http://dx.doi.org/10.1007/s11682-016-9547-0 (2016).

  153. Rao, R. P. et al. A direct brain-to-brain interface in humans. PLoS ONE 9, e111332 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Zhdanov, A. et al. An internet-based real-time audiovisual link for dual MEG recordings. PLoS ONE 10, e0128485 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Feinberg, D. A. et al. Multiplexed echo planar imaging for sub-second whole brain FMRI and fast diffusion imaging. PLoS ONE 5, e15710 (2010). This study introduced an innovative methodological development that enables acquisition of fMRI images at very high temporal resolution, potentially suitable for more-effective real-time fMRI feedback.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Chen, S. et al. Optogenetics based rat–robot control: optical stimulation encodes “stop” and “escape” commands. Ann. Biomed. Eng. 43, 1851–1864 (2015). This pioneering study introduced a unique idea to control biorobots using optics rather than traditional electric brain stimulation.

    Article  PubMed  Google Scholar 

  157. Kasashima-Shindo, Y. et al. Brain–computer interface training combined with transcranial direct current stimulation in patients with chronic severe hemiparesis: proof of concept study. J. Rehabil. Med. 47, 318–324 (2015).

    Article  PubMed  Google Scholar 

  158. Logothetis, N. K. et al. Neurophysiological investigation of the basis of the fMRI signal. Nature 412, 150–157 (2001). This study pioneered the understanding of the physiological basis of BOLD signal and suggested that the BOLD reflects the input of intracortical processing neurons rather than their spiking output.

    Article  CAS  PubMed  Google Scholar 

  159. Buzsaki, G. et al. The origin of extracellular fields and currents — EEG, ECoG, LFP and spikes. Nat. Rev. Neurosci. 13, 407–420 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Hari, R. et al. Spatial resolution of neuromagnetic records: theoretical calculations in a spherical model. Electroencephalogr. Clin. Neurophysiol. 71, 64–72 (1988).

    Article  CAS  PubMed  Google Scholar 

  161. Nunez, P. L. et al. A theoretical and experimental study of high resolution EEG based on surface Laplacians and cortical imaging. Electroencephalogr. Clin. Neurophysiol. 90, 40–57 (1994).

    Article  CAS  PubMed  Google Scholar 

  162. Cunningham, J. P. et al. Methods for estimating neural firing rates, and their application to brain–machine interfaces. Neural Netw. 22, 1235–1246 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Hwang, E. J. et al. The utility of multichannel local field potentials for brain–machine interfaces. J. Neural Eng. 10, 046005 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Oswal, A. et al. Optimising beamformer regions of interest analysis. Neuroimage 102 (Pt. 2), 945–954 (2014). This paper introduced a new two-step approach to perform source reconstruction using the beam-forming method, by first taking into account prior specification of channels pertaining to a brain region of interest.

    Article  PubMed  Google Scholar 

  165. Congedo, M. et al. Low-resolution electromagnetic tomography neurofeedback. IEEE Trans. Neural Syst. Rehabil. Eng. 12, 387–397 (2004). This study developed a pioneering method to solve the inverse problem in EEG for neurofeedback.

    Article  PubMed  Google Scholar 

  166. Viswanathan, A. et al. Neurometabolic coupling in cerebral cortex reflects synaptic more than spiking activity. Nat. Neurosci. 10, 1308–1312 (2007).

    Article  CAS  PubMed  Google Scholar 

  167. Shmuel, A. et al. Spatio-temporal point-spread function of fMRI signal in human gray matter at 7 Tesla. Neuroimage 35, 539–552 (2007).

    Article  PubMed  Google Scholar 

  168. Villringer, A. et al. in Brain Mapping: The Methods (eds Toga, A. W. & Mazziotta, J. C.) (Academic Press, 2002).

    Google Scholar 

  169. de Pasquale, F. et al. Temporal dynamics of spontaneous MEG activity in brain networks. Proc. Natl Acad. Sci. USA 107, 6040–6045 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Brookes, M. J. et al. Measuring functional connectivity using MEG: methodology and comparison with fcMRI. Neuroimage 56, 1082–1104 (2011).

    Article  PubMed  Google Scholar 

  171. Scheeringa, R. et al. Neuronal dynamics underlying high- and low-frequency EEG oscillations contribute independently to the human BOLD signal. Neuron 69, 572–583 (2011).

    Article  CAS  PubMed  Google Scholar 

  172. Conner, C. R. et al. Variability of the relationship between electrophysiology and BOLD–fMRI across cortical regions in humans. J. Neurosci. 31, 12855–12865 (2011). This paper investigated the variation in BOLD response in different brain areas, which has implications for how we model the BOLD response function.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Bridwell, D. A. et al. The spatiospectral characterization of brain networks: fusing concurrent EEG spectra and fMRI maps. Neuroimage 69, 101–111 (2013).

    Article  PubMed  Google Scholar 

  174. Whittingstall, K. et al. Frequency-band coupling in surface EEG reflects spiking activity in monkey visual cortex. Neuron 64, 281–289 (2009).

    Article  CAS  PubMed  Google Scholar 

  175. Monto, S. et al. Very slow EEG fluctuations predict the dynamics of stimulus detection and oscillation amplitudes in humans. J. Neurosci. 28, 8268–8272 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. He, B. J. et al. Electrophysiological correlates of the brain's intrinsic large-scale functional architecture. Proc. Natl Acad. Sci. USA 105, 16039–16044 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Casey, B. J. et al. A neurodevelopmental perspective on the research domain criteria (RDoC) framework. Biol. Psychiatry 76, 350–353 (2014).

    Article  CAS  PubMed  Google Scholar 

  178. Menon, V. Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn. Sci. 15, 483–506 (2011).

    Article  PubMed  Google Scholar 

  179. Calhoun, V. D. et al. The chronnectome: time-varying connectivity networks as the next frontier in fMRI data discovery. Neuron 84, 262–274 (2014). This paper introduced a new method for computing time-varying properties of functional connectivity to better understand the neural mechanism of different brain functions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Dance, A. Neuroscience: connectomes make the map. Nature 526, 147–149 (2015).

    Article  CAS  PubMed  Google Scholar 

  181. Boes, A. D. et al. Network localization of neurological symptoms from focal brain lesions. Brain 138, 3061–3075 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Sheline, Y. I. et al. Resting state functional connectivity in preclinical Alzheimer's disease. Biol. Psychiatry 74, 340–347 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Fedota, J. R. et al. Resting-state functional connectivity and nicotine addiction: prospects for biomarker development. Ann. NY Acad. Sci. 1349, 64–82 (2015).

    Article  CAS  PubMed  Google Scholar 

  184. Lerman, C. et al. Large-scale brain network coupling predicts acute nicotine abstinence effects on craving and cognitive function. JAMA Psychiatry 71, 523–530 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Hebb, D. O. The Organization of Behavior (Wiley & Sons, 1949). This pioneer work proposed the Hebb's rule for explaining neural changes during learning.

    Google Scholar 

  186. Cooke, S. F. et al. Stimulus-selective response plasticity in the visual cortex: an assay for the assessment of pathophysiology and treatment of cognitive impairment associated with psychiatric disorders. Biol. Psychiatry 71, 487–495 (2012).

    Article  PubMed  Google Scholar 

  187. Caporale, N. et al. Spike timing-dependent plasticity: a Hebbian learning rule. Annu. Rev. Neurosci. 31, 25–46 (2008).

    Article  CAS  PubMed  Google Scholar 

  188. Gallistel, C. R. et al. The neuroscience of learning: beyond the Hebbian synapse. Annu. Rev. Psychol. 64, 169–200 (2013).

    Article  CAS  PubMed  Google Scholar 

  189. Gruart, A. et al. Functional basis of associative learning and their relationships with long-term potentiation evoked in the involved neural circuits: lessons from studies in behaving mammals. Neurobiol. Learn. Mem. 124, 3–18 (2015).

    Article  PubMed  Google Scholar 

  190. Daniel, R. et al. Striatal activations signal prediction errors on confidence in the absence of external feedback. Neuroimage 59, 3457–3467 (2012).

    Article  PubMed  Google Scholar 

  191. Schultz, W. et al. Explicit neural signals reflecting reward uncertainty. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363, 3801–3811 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Schultz, W. et al. A neural substrate of prediction and reward. Science 275, 1593–1599 (1997).

    Article  CAS  PubMed  Google Scholar 

  193. Montague, P. R. et al. A framework for mesencephalic dopamine systems based on predictive Hebbian learning. J. Neurosci. 16, 1936–1947 (1996). This paper discussed a theoretical framework to predict future reward and errors based on brain activity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Ashby, F. G. et al. The role of the basal ganglia in category learning. Psychol. Learn. Motiv. 47, 1–36 (2006).

    Article  Google Scholar 

  195. Schultz, W. Getting formal with dopamine and reward. Neuron 36, 241–263 (2002).

    Article  CAS  PubMed  Google Scholar 

  196. Skinner, B. F. The operational analysis of psychological terms. Psychol. Rev. 52, 270–277 (1945). This pioneering work proposed the theory of operant conditioning, which is considered to be a form of learning during neurofeedback training.

    Article  Google Scholar 

  197. Mulholland, T. B. in Biofeedback and Behavior (eds Beatty, J. & Legewie, H.) 95–106 (Plenum Press, 1977).

    Book  Google Scholar 

  198. Christoffersen, G. R. et al. Electrophysiological CNS-processes related to associative learning in humans. Behav. Brain Res. 296, 211–232 (2016).

    Article  PubMed  Google Scholar 

  199. Lang, P. J. et al. Learning to control heart rate: effects of varying incentive and criterion of success on task performance. Psychophysiology 13, 378–385 (1976).

    Article  CAS  PubMed  Google Scholar 

  200. Cano-de-la-Cuerda, R. et al. Theories and control models and motor learning: clinical applications in neuro-rehabilitation. Neurologia 30, 32–41 (2015).

    Article  CAS  PubMed  Google Scholar 

  201. Lacroix, J. M. in Consciousness and Self-Regulation (eds Davidson, R. J., Schwartz, G. E., & Shapiro, D.) 137–162 (Plenum Press, 1986).

    Book  Google Scholar 

  202. Lacroix, J. M. et al. The acquisition of autonomic control through biofeedback: some tests of discrimination theory. Psychophysiology 18, 559–572 (1981).

    Article  CAS  PubMed  Google Scholar 

  203. Black, A. et al. in Biofeedback: Theory and Research (eds Schwartz, G. E. & Beatty, J.) 89–127 (Academic Press, 1977).

    Google Scholar 

  204. Pessiglione, M. et al. Subliminal instrumental conditioning demonstrated in the human brain. Neuron 59, 561–567 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Bijleveld, E. et al. Unconscious reward cues increase invested effort, but do not change speed-accuracy tradeoffs. Cognition 115, 330–335 (2010).

    Article  PubMed  Google Scholar 

  206. Shea, N. et al. Dual-process theories and consciousness: the case for 'Type Zero' cognition. Neurosci. Conscious. http://dx.doi.org/10.1093/nc/niw005 (2016). This paper discussed different approaches of conscious and unconscious information processing.

  207. Birbaumer, N. et al. Learned regulation of brain metabolism. Trends Cogn. Sci. 17, 295–302 (2013).

    Article  PubMed  Google Scholar 

  208. VanLehn, K. Cognitive skill acquisition. Annu. Rev. Psychol. 47, 513–539 (1996).

    Article  CAS  PubMed  Google Scholar 

  209. Yin, H. H. et al. Dynamic reorganization of striatal circuits during the acquisition and consolidation of a skill. Nat. Neurosci. 12, 333–341 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Young, B. M. et al. Dose-response relationships using brain–computer interface technology impact stroke rehabilitation. Front. Hum. Neurosci. 9, 361 (2015). This paper investigated dose–response in BCI therapy, showing the effect of dose and intensity on behavioural change.

    PubMed  PubMed Central  Google Scholar 

  211. Murray, S. O. et al. Attention increases neural selectivity in the human lateral occipital complex. Nat. Neurosci. 7, 70–74 (2004).

    Article  CAS  PubMed  Google Scholar 

  212. Alvarez, J. A. et al. Executive function and the frontal lobes: a meta-analytic review. Neuropsychol. Rev. 16, 17–42 (2006).

    Article  PubMed  Google Scholar 

  213. Ball, G. et al. Executive functions and prefrontal cortex: a matter of persistence? Front. Syst. Neurosci. 5, 3 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Seeley, W. W. et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J. Neurosci. 27, 2349–2356 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Llinas, R. R. et al. Bursting of thalamic neurons and states of vigilance. J. Neurophysiol. 95, 3297–3308 (2006).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank S. Ruiz and D. Schnyer for their valuable help in reviewing the manuscript before submission. R.S. is supported by the Comisión Nacional de Investigación Científica neurofeedback Tecnológica de Chile (Conicyt) through Fondo Nacional de Desarrollo Científico neurofeedback Tecnológico, Fondecyt (project number 11121153); Vicerrectoría de Investigación de la Pontificia Universidad Católica de Chile (Proyecto de Investigación Interdisciplina number15/2013); Institute for Medical and Biological Engineering and Department of Psychiatry, Pontificia Universidad Católica de Chile; the Medical Faculty of the University of Tübingen through the Fortüne funding (project number 2114-1-0); the Singapore–Bäden–Württemberg Life Sciences grant; the ERA-Net (European Research Area)–New INDIGO project funded by the Bundesministerium für Bildung und Forschung (BMBF) (project number 01DQ13004). N.W. is supported by the BRAINTRAIN European research network (Collaborative Project, grant agreement number 602186); the European Research Council (ERC) (grant agreement number 616905); and a Centre Grant by the Wellcome Trust (0915/Z/10/Z). F.S. is supported by the Swiss National Science Foundation (BSSG10_155915). L.S. is supported by the US National Institutes of Health (NIH) (K23DA032612); the Norman E. Zinberg Fellowship in Addiction Psychiatry at Harvard Medical School; the Charles A. King Trust; the McGovern Institute Neurotechnology Program; and private funds to the Massachusetts General Hospital Department of Psychiatry. N.B. is supported by Deutsche Forschungsgemeinschaft (DFG); EU Project LUMINOUS; BMBF, MOTOR-BIC und EMOIO; Eva und Horst Köhler Stiftung; Baden–Württemberg-Stiftung; and EU Project BRAINTRAIN. J.S. is supported by NIH 5K12HD073945-02.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ranganatha Sitaram or James Sulzer.

Ethics declarations

Competing interests

N.W. is supported by the Wellcome Trust Centre for Neuroimaging and has an institutional research agreement with and receives support from Siemens Healthcare. The remaining authors have no competing interests.

Related links

FURTHER INFORMATION

BRAINTRAIN

PowerPoint slides

Glossary

Biofeedback

It provides an explicit indicator of some physiological process, such as heartbeat or brain activation, so that an individual can attempt to regulate that activation or guide behaviour.

Brain–machine interfaces

(BMIs). Brain–machine interfaces, sometimes called direct neural or brain–computer interfaces, are direct communication pathways between the brain and external devices.

Synchronization

Simultaneous oscillations of membrane potentials in a network of neurons that are connected with electrical synapses.

Biomarkers

Biological features (physical, physiological or behavioural) that act as robust predictors of one or more experimental or clinical outcomes.

Coherence

A measure of how stable the frequency and/or phase relationship is between two neural sites; it reflects the amount of information that is shared between two sensors or channels.

Multivariate pattern analyses

(MVPAs). These are statistical and mathematical approaches for finding regularities and patterns in the data.

Adaptive neurofeedback

Previously, and perhaps imprecisely, referred to as 'closed-loop', adaptive neurofeedback changes an experimental task in real time on the basis of neural activity.

Fractional anisotropy

A property of white matter pathways of the brain that relates to the diffusion of water molecules along axonal pathways and is measured by diffusion tensor imaging; it is represented by a value ranging from 0, indicating no specific directionality, to 1, indicating one prominent directionality.

Homeostatic plasticity

The capacity of neurons to regulate their own excitability relative to network activity; it is observed in neurofeedback as an opposite and paradoxical change in brain activity after the training.

Operant conditioning

A process by which an organism learns a new association between two paired stimuli: a neutral stimulus and one that already evoked a reflexive response.

Locus of control

A psychological construct that determines the subjective feeling of being in control.

Sense of agency

The feeling that the individual causes the change.

Slow cortical potentials

(SCPs). These are slow event-related direct-current shifts that can be detected on the electroencephalogram. Slow cortical potential shifts in the electrical negative direction reflect the depolarization of large cortical cell assemblies, reducing their excitation threshold.

Fugl-Meyer scores

Performance-based impairment index for assessing motor functioning, balance, sensation and joint functioning in patients with post-stroke hemiplegia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sitaram, R., Ros, T., Stoeckel, L. et al. Closed-loop brain training: the science of neurofeedback. Nat Rev Neurosci 18, 86–100 (2017). https://doi.org/10.1038/nrn.2016.164

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn.2016.164

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing