Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Spatial genome organization and cognition

Key Points

  • The spatial organization of the chromosomal material inside the nuclei of neurons, glia and their progenitor cells is highly regulated in the developing and mature brain.

  • Chromosomal loopings that mediate promoter–enhancer interactions provide a crucial layer of transcriptional regulation in the context of neuronal plasticity. Four specific models of promoter–enhancer interactions have been described: protein cargo model, enhancer RNA decoy model, loop competition model and strand-break mobilization model.

  • Mutations and structural variants in genes encoding chromosomal scaffolding proteins, including several subunits of the cohesin complex and CCCTC-binding factor (CTCF), are associated with monogenic neurodevelopmental disease.

  • A subset of common polymorphisms contributing to the genetic risk architecture of neurodevelopmental or neurodegenerative disease locate to enhancer and other cis-regulatory sequences. For some candidate genes, such as calcium voltage-gated channel subunit alpha 1C (CACNA1C) and GRIN2B (which encodes GluN2B), risk-associated non-coding DNA has been shown to interact with gene transcription start sites via loop-bound chromosomal conformations.

  • Recent advances in epigenomic editing techniques make it possible to load loop-bound regulatory sequences with transcriptional activators or repressors by harnessing RNA-guided CRISPR–Cas systems. Therefore, experimental or therapeutic interference with gene expression is possible by targeting regulatory sequences that are separated from the promoter even by hundreds of kilobases.

Abstract

Nonrandom chromosomal conformations, including promoter–enhancer loopings that bypass kilobases or megabases of linear genome, provide a crucial layer of transcriptional regulation and move vast amounts of non-coding sequence into the physical proximity of genes that are important for neurodevelopment, cognition and behaviour. Activity-regulated changes in the neuronal '3D genome' could govern transcriptional mechanisms associated with learning and plasticity, and loop-bound intergenic and intronic non-coding sequences have been implicated in psychiatric and adult-onset neurodegenerative disease. Recent studies have begun to clarify the roles of spatial genome organization in normal and abnormal cognition.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The 3D genome, from nucleosome to nucleus.
Figure 2: Enhancer-mediated regulation of neuronal gene expression.
Figure 3: Dynamic model of chromosomal conformation at GRIN2B gene locus.

Similar content being viewed by others

References

  1. Stamatoyannopoulos, J. A. What does our genome encode? Genome Res. 22, 1602–1611 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Loviglio, M. N. et al. Chromosomal contacts connect loci associated with autism, BMI and head circumference phenotypes. Mol. Psychiatry http://dx.doi.org/10.1038/mp.2016.84 (2016).

  3. Roussos, P. et al. A role for noncoding variation in schizophrenia. Cell Rep. 9, 1417–1429 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Rao, S. S. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014). This paper provides chromosomal contact maps at ultrahigh resolution (1 kb).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Padeken, J. & Heun, P. Nucleolus and nuclear periphery: velcro for heterochromatin. Curr. Opin. Cell Biol. 28, 54–60 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Nasmyth, K. & Haering, C. H. Cohesin: its roles and mechanisms. Annu. Rev. Genet. 43, 525–558 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Wendt, K. S. et al. Cohesin mediates transcriptional insulation by CCCTC-binding factor. Nature 451, 796–801 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Dowen, J. M. et al. Control of cell identity genes occurs in insulated neighborhoods in mammalian chromosomes. Cell 159, 374–387 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Vietri Rudan, M. et al. Comparative Hi-C reveals that CTCF underlies evolution of chromosomal domain architecture. Cell Rep. 10, 1297–1309 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Guo, Y. et al. CRISPR inversion of CTCF sites alters genome topology and enhancer/promoter function. Cell 162, 900–910 (2015). This paper illustrates how the 3D genome orchestrates transcription at the protocadherin cell adhesion molecule gene cluster.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Vernimmen, D. & Bickmore, W. A. The hierarchy of transcriptional activation: from enhancer to promoter. Trends Genet. 31, 696–708 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Zhou, V. W., Goren, A. & Bernstein, B. E. Charting histone modifications and the functional organization of mammalian genomes. Nat. Rev. Genet. 12, 7–18 (2011).

    Article  PubMed  CAS  Google Scholar 

  14. Ruthenburg, A. J., Allis, C. D. & Wysocka, J. Methylation of lysine 4 on histone H3: intricacy of writing and reading a single epigenetic mark. Mol. Cell 25, 15–30 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Hatzis, P. & Talianidis, I. Dynamics of enhancer-promoter communication during differentiation-induced gene activation. Mol. Cell 10, 1467–1477 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Mueller-Storm, H. P., Sogo, J. M. & Schaffner, W. An enhancer stimulates transcription in trans when attached to the promoter via a protein bridge. Cell 58, 767–777 (1989).

    Article  CAS  PubMed  Google Scholar 

  17. Gorkin, D. U., Leung, D. & Ren, B. The 3D genome in transcriptional regulation and pluripotency. Cell Stem Cell 14, 762–775 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Kagey, M. H. et al. Mediator and cohesin connect gene expression and chromatin architecture. Nature 467, 430–435 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Frank, C. L. et al. Regulation of chromatin accessibility and Zic binding at enhancers in the developing cerebellum. Nat. Neurosci. 18, 647–656 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Sanyal, A., Lajoie, B. R., Jain, G. & Dekker, J. The long-range interaction landscape of gene promoters. Nature 489, 109–113 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Jin, F. et al. A high-resolution map of the three-dimensional chromatin interactome in human cells. Nature 503, 290–294 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Andersson, R. et al. An atlas of active enhancers across human cell types and tissues. Nature 507, 455–461 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Bharadwaj, R. et al. Conserved higher-order chromatin regulates NMDA receptor gene expression and cognition. Neuron 84, 997–1008 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Bharadwaj, R. et al. Conserved chromosome 2q31 conformations are associated with transcriptional regulation of GAD1 GABA synthesis enzyme and altered in prefrontal cortex of subjects with schizophrenia. J. Neurosci. 33, 11839–11851 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Joo, J. Y., Schaukowitch, K., Farbiak, L., Kilaru, G. & Kim, T. K. Stimulus-specific combinatorial functionality of neuronal c-fos enhancers. Nat. Neurosci. 19, 75–83 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Shepherd, J. D. & Bear, M. F. New views of Arc, a master regulator of synaptic plasticity. Nat. Neurosci. 14, 279–284 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schaukowitch, K. et al. Enhancer RNA facilitates NELF release from immediate early genes. Mol. Cell 56, 29–42 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Madabhushi, R. et al. Activity-induced DNA breaks govern the expression of neuronal early-response genes. Cell 161, 1592–1605 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Kim, T. K. et al. Widespread transcription at neuronal activity-regulated enhancers. Nature 465, 182–187 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Camps, J., Erdos, M. R. & Ried, T. The role of lamin B1 for the maintenance of nuclear structure and function. Nucleus 6, 8–14 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Peric-Hupkes, D. et al. Molecular maps of the reorganization of genome-nuclear lamina interactions during differentiation. Mol. Cell 38, 603–613 (2010). This elegant paper highlights the dynamics of chromosomal contacts with the nuclear lamina during the process of astrocyte differentiation.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Yoon, K. H. et al. Olfactory receptor genes expressed in distinct lineages are sequestered in different nuclear compartments. Proc. Natl Acad. Sci. USA 112, E2403–E2409 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Monahan, K. & Lomvardas, S. Monoallelic expression of olfactory receptors. Annu. Rev. Cell Dev. Biol. 31, 721–740 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Boyle, M. I., Jespersgaard, C., Brondum-Nielsen, K., Bisgaard, A. M. & Tumer, Z. Cornelia de Lange syndrome. Clin. Genet. 88, 1–12 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Yan, J. et al. Genomic duplication resulting in increased copy number of genes encoding the sister chromatid cohesion complex conveys clinical consequences distinct from Cornelia de Lange. J. Med. Genet. 46, 626–634 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Finnsson, J., Sundblom, J., Dahl, N., Melberg, A. & Raininko, R. LMNB1-related autosomal-dominant leukodystrophy: clinical and radiological course. Ann. Neurol. 78, 412–425 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Nolen, L. D., Boyle, S., Ansari, M., Pritchard, E. & Bickmore, W. A. Regional chromatin decompaction in Cornelia de Lange syndrome associated with NIPBL disruption can be uncoupled from cohesin and CTCF. Hum. Mol. Genet. 22, 4180–4193 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Watson, L. A. et al. Dual effect of CTCF loss on neuroprogenitor differentiation and survival. J. Neurosci. 34, 2860–2870 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Gregor, A. et al. De novo mutations in the genome organizer CTCF cause intellectual disability. Am. J. Hum. Genet. 93, 124–131 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Hirayama, T., Tarusawa, E., Yoshimura, Y., Galjart, N. & Yagi, T. CTCF is required for neural development and stochastic expression of clustered Pcdh genes in neurons. Cell Rep. 2, 345–357 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Cai, S., Lee, C. C. & Kohwi-Shigematsu, T. SATB1 packages densely looped, transcriptionally active chromatin for coordinated expression of cytokine genes. Nat. Genet. 38, 1278–1288 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Britanova, O., Akopov, S., Lukyanov, S., Gruss, P. & Tarabykin, V. Novel transcription factor Satb2 interacts with matrix attachment region DNA elements in a tissue-specific manner and demonstrates cell-type-dependent expression in the developing mouse CNS. Eur. J. Neurosci. 21, 658–668 (2005).

    Article  PubMed  Google Scholar 

  43. Docker, D. et al. Further delineation of the SATB2 phenotype. Eur. J. Hum. Genet. 22, 1034–1039 (2014).

    Article  PubMed  CAS  Google Scholar 

  44. Alcamo, E. A. et al. Satb2 regulates callosal projection neuron identity in the developing cerebral cortex. Neuron 57, 364–377 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Leoyklang, P. et al. Heterozygous nonsense mutation SATB2 associated with cleft palate, osteoporosis, and cognitive defects. Hum. Mutat. 28, 732–738 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Close, J. et al. Satb1 is an activity-modulated transcription factor required for the terminal differentiation and connectivity of medial ganglionic eminence-derived cortical interneurons. J. Neurosci. 32, 17690–17705 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Denaxa, M. et al. Maturation-promoting activity of SATB1 in MGE-derived cortical interneurons. Cell Rep. 2, 1351–1362 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Kernohan, K. D., Vernimmen, D., Gloor, G. B. & Berube, N. G. Analysis of neonatal brain lacking ATRX or MeCP2 reveals changes in nucleosome density, CTCF binding and chromatin looping. Nucleic Acids Res. 42, 8356–8368 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Horike, S., Cai, S., Miyano, M., Cheng, J. F. & Kohwi-Shigematsu, T. Loss of silent-chromatin looping and impaired imprinting of DLX5 in Rett syndrome. Nat. Genet. 37, 31–40 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Schule, B., Li, H. H., Fisch-Kohl, C., Purmann, C. & Francke, U. DLX5 and DLX6 expression is biallelic and not modulated by MeCP2 deficiency. Am. J. Hum. Genet. 81, 492–506 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Nan, X. et al. Interaction between chromatin proteins MECP2 and ATRX is disrupted by mutations that cause inherited mental retardation. Proc. Natl Acad. Sci. USA 104, 2709–2714 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Jakovcevski, M. & Akbarian, S. Epigenetic mechanisms in neurological disease. Nat. Med. 18, 1194–1204 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Turner, T. N. et al. Genome sequencing of autism-affected families reveals disruption of putative noncoding regulatory DNA. Am. J. Hum. Genet. 98, 58–74 (2016).

    Article  CAS  PubMed  Google Scholar 

  54. Dekker, J., Marti-Renom, M. A. & Mirny, L. A. Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data. Nat. Rev. Genet. 14, 390–403 (2013). This paper provides an authoritative overview of genome-scale chromosome interactions and an interpretation of Hi-C data.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Bergeron, K. F. et al. Male-biased aganglionic megacolon in the TashT mouse line due to perturbation of silencer elements in a large gene desert of chromosome 10. PLoS Genet. 11, e1005093 (2015).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  56. de la Torre-Ubieta, L., Won, H., Stein, J. L. & Geschwind, D. H. Advancing the understanding of autism disease mechanisms through genetics. Nat. Med. 22, 345–361 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Yao, P. et al. Coexpression networks identify brain region-specific enhancer RNAs in the human brain. Nat. Neurosci. 18, 1168–1174 (2015).

    Article  CAS  PubMed  Google Scholar 

  58. Gusev, A. et al. Partitioning heritability of regulatory and cell-type-specific variants across 11 common diseases. Am. J. Hum. Genet. 95, 535–552 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Cross-Disorder Group of the Psychiatric Genomics Consortium. Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet 381, 1371–1379, (2013).

  60. Nagy, C. et al. Astrocytic abnormalities and global DNA methylation patterns in depression and suicide. Mol. Psychiatry 20, 320–328 (2015).

    Article  CAS  PubMed  Google Scholar 

  61. Jaffe, A. E. et al. Mapping DNA methylation across development, genotype and schizophrenia in the human frontal cortex. Nat. Neurosci. 19, 40–47 (2016).

    Article  CAS  PubMed  Google Scholar 

  62. Roussos, P. et al. The relationship of common risk variants and polygenic risk for schizophrenia to sensorimotor gating. Biol. Psychiatry 79, 988–996 (2015).

    Article  PubMed  Google Scholar 

  63. Gjoneska, E. et al. Conserved epigenomic signals in mice and humans reveal immune basis of Alzheimer's disease. Nature 518, 365–369 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Frost, B., Bardai, F. H. & Feany, M. B. Lamin dysfunction mediates neurodegeneration in tauopathies. Curr. Biol. 26, 129–136 (2016).

    Article  CAS  PubMed  Google Scholar 

  65. Frost, B., Hemberg, M., Lewis, J. & Feany, M. B. Tau promotes neurodegeneration through global chromatin relaxation. Nat. Neurosci. 17, 357–366 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Psych, E. C. et al. The PsychENCODE project. Nat. Neurosci. 18, 1707–1712 (2015).

    Article  CAS  Google Scholar 

  67. Mitchell, A. C. et al. The genome in three dimensions: a new frontier in human brain research. Biol. Psychiatry 75, 961–969 (2014).

    Article  CAS  PubMed  Google Scholar 

  68. Huang, H. S. et al. Prefrontal dysfunction in schizophrenia involves mixed-lineage leukemia 1-regulated histone methylation at GABAergic gene promoters. J. Neurosci. 27, 11254–11262 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Rocco, B. R., Lewis, D. A. & Fish, K. N. Markedly lower glutamic acid decarboxylase 67 protein levels in a subset of boutons in schizophrenia. Biol. Psychiatry 79, 1006–1015 (2015).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  70. Lewis, D. A. Inhibitory neurons in human cortical circuits: substrate for cognitive dysfunction in schizophrenia. Curr. Opin. Neurobiol. 26, 22–26 (2014).

    Article  CAS  PubMed  Google Scholar 

  71. Shulha, H. P. et al. Human-specific histone methylation signatures at transcription start sites in prefrontal neurons. PLoS Biol. 10, e1001427 (2012). This early paper combines chromosome conformation capture assays with cell type-specific epigenomic profiling in human and non-human primate brains.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Talkowski, M. E. et al. Sequencing chromosomal abnormalities reveals neurodevelopmental loci that confer risk across diagnostic boundaries. Cell 149, 525–537 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Epi, K. C. et al. De novo mutations in epileptic encephalopathies. Nature 501, 217–221 (2013).

    Article  CAS  Google Scholar 

  74. Hamdan, F. F. et al. De novo mutations in moderate or severe intellectual disability. PLoS Genet. 10, e1004772 (2014).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  75. O'Roak, B. J. et al. Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nat. Genet. 43, 585–589 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Jiang, Y. et al. Setdb1 histone methyltransferase regulates mood-related behaviors and expression of the NMDA receptor subunit NR2B. J. Neurosci. 30, 7152–7167 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Taubenfeld, S. M., Milekic, M. H., Monti, B. & Alberini, C. M. The consolidation of new but not reactivated memory requires hippocampal C/EBPβ. Nat. Neurosci. 4, 813–818 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Taubenfeld, S. M. et al. Fornix-dependent induction of hippocampal CCAAT enhancer-binding protein β and δ co-localizes with phosphorylated cAMP response element-binding protein and accompanies long-term memory consolidation. J. Neurosci. 21, 84–91 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Merhav, M. et al. Behavioral interference and C/EBPβ expression in the insular-cortex reveal a prolonged time period for taste memory consolidation. Learn. Mem. 13, 571–574 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Dickel, D. E., Visel, A. & Pennacchio, L. A. Functional anatomy of distant-acting mammalian enhancers. Phil. Trans. R. Soc. B 368, 20120359 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Stampfel, G. et al. Transcriptional regulators form diverse groups with context-dependent regulatory functions. Nature 528, 147–151 (2015).

    Article  CAS  PubMed  Google Scholar 

  82. Valor, L. M., Viosca, J., Lopez-Atalaya, J. P. & Barco, A. Lysine acetyltransferases CBP and p300 as therapeutic targets in cognitive and neurodegenerative disorders. Curr. Pharm. Des. 19, 5051–5064 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Tsai, L. H. & Graff, J. On the resilience of remote traumatic memories against exposure therapy-mediated attenuation. EMBO Rep. 15, 853–861 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Schroeder, F. A., Lin, C. L., Crusio, W. E. & Akbarian, S. Antidepressant-like effects of the histone deacetylase inhibitor, sodium butyrate, in the mouse. Biol. Psychiatry 62, 55–64 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Covington, H. E. III, Maze, I., Vialou, V. & Nestler, E. J. Antidepressant action of HDAC inhibition in the prefrontal cortex. Neuroscience 298, 329–335 (2015).

    Article  CAS  PubMed  Google Scholar 

  86. Maze, I. et al. Essential role of the histone methyltransferase G9a in cocaine-induced plasticity. Science 327, 213–216 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Huang, H. S. et al. Topoisomerase inhibitors unsilence the dormant allele of Ube3a in neurons. Nature 481, 185–189 (2012).

    Article  CAS  Google Scholar 

  88. Day, J. J., Kennedy, A. J. & Sweatt, J. D. DNA methylation and its implications and accessibility for neuropsychiatric therapeutics. Annu. Rev. Pharmacol. Toxicol. 55, 591–611 (2015).

    Article  CAS  PubMed  Google Scholar 

  89. Halder, R. et al. DNA methylation changes in plasticity genes accompany the formation and maintenance of memory. Nat. Neurosci. 19, 102–110 (2016).

    Article  CAS  PubMed  Google Scholar 

  90. Zink, D. et al. Transcription-dependent spatial arrangements of CFTR and adjacent genes in human cell nuclei. J. Cell Biol. 166, 815–825 (2004).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. Pickersgill, H. et al. Characterization of the Drosophila melanogaster genome at the nuclear lamina. Nat. Genet. 38, 1005–1014 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Krivega, I. et al. Inhibition of G9a methyltransferase stimulates fetal hemoglobin production by facilitating LCR/γ-globin looping. Blood 126, 665–672 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Hasan, A., Mitchell, A., Schneider, A., Halene, T. & Akbarian, S. Epigenetic dysregulation in schizophrenia: molecular and clinical aspects of histone deacetylase inhibitors. Eur. Arch. Psychiatry Clin. Neurosci. 263, 273–284 (2013).

    Article  PubMed  Google Scholar 

  94. Laganiere, J. et al. An engineered zinc finger protein activator of the endogenous glial cell line-derived neurotrophic factor gene provides functional neuroprotection in a rat model of Parkinson's disease. J. Neurosci. 30, 16469–16474 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  95. Heller, E. A. et al. Locus-specific epigenetic remodeling controls addiction- and depression-related behaviors. Nat. Neurosci. 17, 1720–1727 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  96. Hilton, I. B. et al. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat. Biotechnol. 33, 510–517 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  97. Cho, S. W., Kim, S., Kim, J. M. & Kim, J. S. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat. Biotechnol. 31, 230–232 (2013).

    Article  CAS  PubMed  Google Scholar 

  98. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  99. Tai, D. J. et al. Engineering microdeletions and microduplications by targeting segmental duplications with CRISPR. Nat. Neurosci. 19, 517–522 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  100. Jiang, W., Bikard, D., Cox, D., Zhang, F. & Marraffini, L. A. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat. Biotechnol. 31, 233–239 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  101. Maeder, M. L. et al. CRISPR RNA-guided activation of endogenous human genes. Nat. Methods 10, 977–979 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  102. Perez-Pinera, P. et al. RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat. Methods 10, 973–976 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  103. Cheng, A. W. et al. Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system. Cell Res. 23, 1 163–1171 (2013).

    Article  CAS  Google Scholar 

  104. Larson, M. H. et al. CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nat. Protoc. 8, 2180–2196 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  105. Hsu, P. D., Lander, E. S. & Zhang, F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157, 1262–1278 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  106. Li, M., Suzuki, K., Kim, N. Y., Liu, G. H. & Izpisua Belmonte, J. C. A cut above the rest: targeted genome editing technologies in human pluripotent stem cells. J. Biol. Chem. 289, 4594–4599 (2014).

    Article  CAS  PubMed  Google Scholar 

  107. Hotta, A. & Yamanaka, S. From genomics to gene therapy: induced pluripotent stem cells meet genome editing. Annu. Rev. Genet. 49, 47–70 (2015).

    Article  CAS  PubMed  Google Scholar 

  108. Ding, Q. et al. A TALEN genome-editing system for generating human stem cell-based disease models. Cell Stem Cell 12, 238–251 (2013).

    Article  CAS  PubMed  Google Scholar 

  109. Martinez, R. A. et al. Genome engineering of isogenic human ES cells to model autism disorders. Nucleic Acids Res. 43, e65 (2015).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  110. Wen, Z. et al. Synaptic dysregulation in a human iPS cell model of mental disorders. Nature 515, 414–418 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  111. Chen, H. et al. Modeling ALS with iPSCs reveals that mutant SOD1 misregulates neurofilament balance in motor neurons. Cell Stem Cell 14, 796–809 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  112. Liu, G. H. et al. Progressive degeneration of human neural stem cells caused by pathogenic LRRK2. Nature 491, 603–607 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  113. Soldner, F. et al. Parkinson-associated risk variant in distal enhancer of α-synuclein modulates target gene expression. Nature 533, 95–99 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  114. Ochiai, H., Sugawara, T. & Yamamoto, T. Simultaneous live imaging of the transcription and nuclear position of specific genes. Nucleic Acids Res. 43, e127 (2015).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  115. Fudenberg, G. & Mirny, L. A. Higher-order chromatin structure: bridging physics and biology. Curr. Opin. Genet. Dev. 22, 115–124 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  116. Rippe, K. Making contacts on a nucleic acid polymer. Trends Biochem. Sci. 26, 733–740 (2001).

    Article  CAS  PubMed  Google Scholar 

  117. Williamson, I. et al. Spatial genome organization: contrasting views from chromosome conformation capture and fluorescence in situ hybridization. Genes Dev. 28, 2778–2791 (2014). This paper provides a scholarly and competent discussion on the advantages and limitations of commonly used techniques to map chromosomal contacts.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  118. Yang, J. & Corces, V. G. Chromatin insulators: a role in nuclear organization and gene expression. Adv. Cancer Res. 110, 43–76 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  119. Phillips-Cremins, J. E. et al. Architectural protein subclasses shape 3D organization of genomes during lineage commitment. Cell 153, 1281–1295 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the US National Institute of Mental Health (NIMH), grants P50MH096890 and R01MH106056.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Schahram Akbarian.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Glossary

Chromosomal scaffolding

A 3D chromatin structure, the integrity of which is maintained by non-histone scaffolding proteins (for example, cohesin and CTCF).

Transcriptional units

Stretches of DNA that are transcribed into RNA molecules.

Eukaryotic

A life form with a well-delineated nucleus that is separated from the cytoplasm by a nuclear membrane.

Nucleosomal arrays

Chromatin packaging in the form of repeating units of DNA-bound core histone octamers connected by linker DNA and linker histone proteins.

Nucleolar membranes

Membranes of the nucleolus, a specialized nuclear organelle that is necessary for the production of ribosome subunits.

Cis-regulatory sequences

Non-coding portions of the genome that regulate transcription of nearby or distal genes (for example, promoters and enhancers).

Preinitiation complex

A large collection of proteins that are essential to begin DNA transcription, acting by recruiting RNA polymerase II, denaturing DNA and properly positioning the DNA in the active site of polymerase.

Immediate early gene (IEG) transcription factors

Activator proteins, such as FOS, JUN and early growth response 1 (EGR1), expressed in response to stimulus-based triggering of cyclic AMP and other intracellular signalling cascades, rapidly accumulate within 15 min of a stimulus in sensitive neurons.

Microdeletions

Loss of fragments of a chromosome.

Copy number variations

Genomic sequences, typically in a kilobase or megabase range, that are either duplicated or deleted.

Intergenic

The genome sequence between two annotated genes.

Common sequence variants

DNA polymorphisms with minor allele frequencies exceeding 0.05 in the general population.

Methylome

The genome-wide distribution of DNA cytosine methylation in specific cells or tissues.

CRISPR–Cas

Clustered regularly interspaced short palindromic repeats (CRISPR)–CRISPR-associated protein, an RNA-guided DNA endonuclease enzyme in bacteria that is increasingly used as a tool for targeted genomic and epigenomic editing in multicellular organisms.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajarajan, P., Gil, S., Brennand, K. et al. Spatial genome organization and cognition. Nat Rev Neurosci 17, 681–691 (2016). https://doi.org/10.1038/nrn.2016.124

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn.2016.124

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing