Mind-wandering as spontaneous thought: a dynamic framework

Key Points

  • In the past 15 years, mind-wandering has become a prominent topic in cognitive neuroscience and psychology. Whereas mind-wandering has come to be predominantly defined as task-unrelated and/or stimulus-unrelated thought, we argue that this content-based definition fails to capture the defining quality of mind-wandering: the relatively free and spontaneous arising of mental states as the mind wanders.

  • We define spontaneous thought as a mental state, or a sequence of mental states, that arises relatively freely due to an absence of strong constraints on the contents of each state and on the transitions from one mental state to another. We propose that there are two general ways in which the content of mental states, and the transitions between them, can be constrained.

  • Deliberate and automatic constraints serve to limit the contents of thought and how these contents change over time. Deliberate constraints are implemented through cognitive control, whereas automatic constraints can be considered as a family of mechanisms that operate outside of cognitive control, including sensory or affective salience.

  • Within our framework, mind-wandering can be defined as a special case of spontaneous thought that tends to be more deliberately constrained than dreaming, but less deliberately constrained than creative thinking and goal-directed thought. In addition, mind-wandering can be clearly distinguished from rumination and other types of thought that are marked by a high degree of automatic constraints, such as obsessive thought.

  • In general, deliberate constraints are minimal during dreaming, tend to increase somewhat during mind-wandering, increase further during creative thinking and are strongest during goal-directed thought. There is a range of low-to-medium level of automatic constraints that can occur during dreaming, mind-wandering and creative thinking, but thought ceases to be spontaneous at the strongest levels of automatic constraint, such as during rumination or obsessive thought.

  • We propose a neural model of the interactions among sources of variability, automatic constraints and deliberate constraints on thought: the default network (DN) subsystem centred around the medial temporal lobe (MTL) (DNMTL) and sensorimotor areas can act as sources of variability; the salience networks, the dorsal attention network (DAN) and the core DN subsystem (DNCORE) can exert automatic constraints on the output of the DNMTL and sensorimotor areas, thus limiting the variability of thought; and the frontoparietal control network can exert deliberate constraints on thought by flexibly coupling with the DNCORE, the DAN or the salience networks, thus reinforcing or reducing the automatic constraints being exerted by the DNCORE, the DAN or the salience networks.

Abstract

Most research on mind-wandering has characterized it as a mental state with contents that are task unrelated or stimulus independent. However, the dynamics of mind-wandering — how mental states change over time — have remained largely neglected. Here, we introduce a dynamic framework for understanding mind-wandering and its relationship to the recruitment of large-scale brain networks. We propose that mind-wandering is best understood as a member of a family of spontaneous-thought phenomena that also includes creative thought and dreaming. This dynamic framework can shed new light on mental disorders that are marked by alterations in spontaneous thought, including depression, anxiety and attention deficit hyperactivity disorder.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Conceptual space relating different types of thought.
Figure 2: Main large-scale brain networks with relevance to spontaneous thought.
Figure 3: Different patterns of recruitment in the DNCORE and DNMTL during mind-wandering.
Figure 4: Neural model of the interactions among sources of variability, automatic constraints and deliberate constraints.
Figure 5: Fluctuations in the level and type of constraints may correspond to dynamically changing interactions between large-scale brain networks.

References

  1. 1

    James, W. The Principles of Psychology (Henry Holt and Company, 1890).

    Google Scholar 

  2. 2

    Callard, F., Smallwood, J., Golchert, J. & Margulies, D. S. The era of the wandering mind? Twenty-first century research on self-generated mental activity. Front. Psychol. 4, 891 (2013).

    PubMed  PubMed Central  Google Scholar 

  3. 3

    Andreasen, N. C. et al. Remembering the past: two facets of episodic memory explored with positron emission tomography. Am. J. Psychiatry 152, 1576–1585 (1995).

    CAS  Google Scholar 

  4. 4

    Binder, J. R., Frost, J. A. & Hammeke, T. A. Conceptual processing during the conscious resting state: a functional MRI study. J. Cogn. Neurosci. 11, 80–93 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5

    Stark, C. E. & Squire, L. R. When zero is not zero: the problem of ambiguous baseline conditions in fMRI. Proc. Natl Acad. Sci. USA 98, 12760–12766 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6

    Christoff, K. & Gabrieli, J. D. E. The frontopolar cortex and human cognition: evidence for a rostrocaudal hierarchical organization within the human prefrontal cortex. Psychobiology 28, 168–186 (2000).

    Google Scholar 

  7. 7

    Shulman, G. L. et al. Common blood flow changes across visual tasks: II. Decreases cerebral cortex. J. Cogn. Neurosci. 9, 648–663 (1997). This meta-analysis provides convincing evidence that a set of specific brain regions, which later became known as the default mode network, becomes consistently activated during rest.

    CAS  Google Scholar 

  8. 8

    Raichle, M. E. et al. A default mode of brain function. Proc. Natl Acad. Sci. USA 98, 676–682 (2001). This highly influential theoretical paper coined the term 'default mode' to refer to cognitive and neural processes that occur in the absence of external task demands.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9

    Singer, J. L. Daydreaming: An Introduction to the Experimental Study of Inner Experience (Random House, 1966).

    Google Scholar 

  10. 10

    Antrobus, J. S. Information theory and stimulus-independent thought. Br. J. Psychol. 59, 423–430 (1968).

    Google Scholar 

  11. 11

    Antrobus, J. S., Singer, J. L., Goldstein, S. & Fortgang, M. Mind wandering and cognitive structure. Trans. NY Acad. Sci. 32, 242–252 (1970).

    CAS  Google Scholar 

  12. 12

    Filler, M. S. & Giambra, L. M. Daydreaming as a function of cueing and task difficulty. Percept. Mot. Skills 37, 503–509 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13

    Giambra, L. M. Adult male daydreaming across the life span: a replication, further analyses, and tentative norms based upon retrospective reports. Int. J. Aging Hum. Dev. 8, 197–228 (1977).

    PubMed  PubMed Central  Google Scholar 

  14. 14

    Giambra, L. M. Sex differences in daydreaming and related mental activity from the late teens to the early nineties. Int. J. Aging Hum. Dev. 10, 1–34 (1979).

    PubMed  PubMed Central  Google Scholar 

  15. 15

    Klinger, E. & Cox, W. M. Dimensions of thought flow in everyday life. Imagin. Cogn. Pers. 7, 105–128 (1987). This is probably the earliest experience sampling study of mind-wandering in daily life, revealing that adults spend approximately one-third of their waking life engaged in undirected thinking.

    Google Scholar 

  16. 16

    Giambra, L. M. Task-unrelated-thought frequency as a function of age: a laboratory study. Psychol. Aging 4, 136–143 (1989).

    PubMed  PubMed Central  Google Scholar 

  17. 17

    Teasdale, J. D., Proctor, L., Lloyd, C. A. & Baddeley, A. D. Working memory and stimulus-independent thought: effects of memory load and presentation rate. Eur. J. Cogn. Psychol. 5, 417–433 (1993).

    Google Scholar 

  18. 18

    Giambra, L. M. A laboratory method for investigating influences on switching attention to task-unrelated imagery and thought. Conscious. Cogn. 4, 1–21 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19

    Klinger, E. Structure and Functions of Fantasy (John Wiley & Sons, 1971). This pioneering book summarizes the early empirical research on daydreaming and introduces important theoretical hypotheses, including the idea that task-unrelated thoughts are often about 'current concerns'.

    Google Scholar 

  20. 20

    Smallwood, J. & Schooler, J. W. The restless mind. Psychol. Bull. 132, 946–958 (2006). This paper put mind-wandering in the forefront of psychological research, advancing the influential hypothesis that executive resources support mind-wandering.

    PubMed  PubMed Central  Google Scholar 

  21. 21

    Killingsworth, M. A. & Gilbert, D. T. A wandering mind is an unhappy mind. Science 330, 932 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22

    Mason, M. F. et al. Wandering minds: the default network and stimulus-independent thought. Science 315, 393–395 (2007). This influential paper brought mind-wandering to the forefront of neuroscientific research, arguing for a link between DN recruitment and stimulus-independent thought.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Christoff, K., Gordon, A. M., Smallwood, J., Smith, R. & Schooler, J. W. Experience sampling during fMRI reveals default network and executive system contributions to mind wandering. Proc. Natl Acad. Sci. USA 106, 8719–8724 (2009). This paper is the first to use online experience sampling to examine the neural correlates of mind-wandering and the first to find joint activation of the DN and executive network during this phenomenon.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Callard, F., Smallwood, J. & Margulies, D. S. Default positions: how neuroscience's historical legacy has hampered investigation of the resting mind. Front. Psychol. 3, 321 (2012).

    PubMed  PubMed Central  Google Scholar 

  25. 25

    Smallwood, J. & Schooler, J. W. The science of mind wandering: empirically navigating the stream of consciousness. Annu. Rev. Psychol. 66, 487–518 (2015). This comprehensive review synthesizes the recent research characterizing mind-wandering as task-unrelated and/or stimulus-independent thought.

    PubMed  PubMed Central  Google Scholar 

  26. 26

    Christoff, K. Undirected thought: neural determinants and correlates. Brain Res. 1428, 51–59 (2012). This review disambiguates between different definitions of spontaneous thought and mind-wandering, and it argues that current definitions do not capture the dynamics of thought.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Irving, Z. C. Mind-wandering is unguided attention: accounting for the 'purposeful' wanderer. Philos. Stud. 173, 547–571 (2016). This is one of the first philosophical theories of mind-wandering; this paper defines mind-wandering as unguided attention to explain why its dynamics contrast with automatically and deliberately guided forms of attention such as rumination and goal-directed thinking.

    Google Scholar 

  28. 28

    Carruthers, P. The Centered Mind: What the Science of Working Memory Shows Us About the Nature of Human Thought (Oxford Univ. Press, 2015).

    Google Scholar 

  29. 29

    Simpson, J. A. The Oxford English Dictionary (Clarendon Press, 1989).

    Google Scholar 

  30. 30

    Kane, M. J. et al. For whom the mind wanders, and when: an experience-sampling study of working memory and executive control in daily life. Psychol. Sci. 18, 614–621 (2007). This study of mind-wandering in everyday life is one of the most important investigations into the complex relationship between mind-wandering and executive control.

    PubMed  Google Scholar 

  31. 31

    Baird, B., Smallwood, J. & Schooler, J. W. Back to the future: autobiographical planning and the functionality of mind-wandering. Conscious. Cogn. 20, 1604–1611 (2011).

    PubMed  PubMed Central  Google Scholar 

  32. 32

    Morsella, E., Ben-Zeev, A., Lanska, M. & Bargh, J. A. The spontaneous thoughts of the night: how future tasks breed intrusive cognitions. Social Cogn. 28, 641–650 (2010).

    Google Scholar 

  33. 33

    Miller, E. K. & Cohen, J. D. An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 24, 167–202 (2001).

    CAS  PubMed  Google Scholar 

  34. 34

    Miller, E. K. The prefrontal cortex and cognitive control. Nat. Rev. Neurosci. 1, 59–65 (2000).

    CAS  Google Scholar 

  35. 35

    Markovic, J., Anderson, A. K. & Todd, R. M. Tuning to the significant: neural and genetic processes underlying affective enhancement of visual perception and memory. Behav. Brain Res. 259, 229–241 (2014).

    PubMed  PubMed Central  Google Scholar 

  36. 36

    Todd, R. M., Cunningham, W. A., Anderson, A. K. & Thompson, E. Affect-biased attention as emotion regulation. Trends Cogn. Sci. 16, 365–372 (2012).

    PubMed  PubMed Central  Google Scholar 

  37. 37

    Pessoa, L. The Cognitive-Emotional Brain: From Interactions to Integration (MIT Press, 2013).

    Google Scholar 

  38. 38

    Jonides, J. & Yantis, S. Uniqueness of abrupt visual onset in capturing attention. Percept. Psychophys. 43, 346–354 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Christoff, K., Gordon, A. M. & Smith, R. in Neuroscience of Decision Making (eds Vartanian, O. & Mandel, D. R.) 259–284 (Psychology Press, 2011).

    Google Scholar 

  40. 40

    Stawarczyk, D., Majerus, S., Maj, M., Van der Linden, M. & D'Argembeau, A. Mind-wandering: phenomenology and function as assessed with a novel experience sampling method. Acta Psychol. (Amst.) 136, 370–381 (2011).

    Google Scholar 

  41. 41

    Spreng, R. N., Mar, R. A. & Kim, A. S. N. The common neural basis of autobiographical memory, prospection, navigation, theory of mind, and the default mode: a quantitative meta-analysis. J. Cogn. Neurosci. 21, 489–510 (2009). This paper provides some of the first quantitative evidence that the DN is associated with multiple cognitive functions.

    PubMed  PubMed Central  Google Scholar 

  42. 42

    Andrews-Hanna, J. R. The brain's default network and its adaptive role in internal mentation. Neuroscientist 18, 251–270 (2012). This recent review describes a large-scale functional meta-analysis on the cognitive functions, functional subdivisions and clinical dysfunction of the DN.

    PubMed  PubMed Central  Google Scholar 

  43. 43

    Buckner, R. L. & Carroll, D. C. Self-projection and the brain. Trends Cogn. Sci. 11, 49–57 (2007).

    PubMed  PubMed Central  Google Scholar 

  44. 44

    Buckner, R. L., Andrews-Hanna, J. R. & Schacter, D. L. The brain's default network: anatomy, function, and relevance to disease. Ann. NY Acad. Sci. 1124, 1–38 (2008). This comprehensive review bridges across neuroscience, psychology and clinical research, and introduces a prominent hypothesis — the 'internal mentation hypothesis' — that the DN has an important role in spontaneous and directed forms of internal mentation.

    Google Scholar 

  45. 45

    Andrews-Hanna, J. R., Reidler, J. S., Sepulcre, J., Poulin, R. & Buckner, R. L. Functional-anatomic fractionation of the brain's default network. Neuron 65, 550–562 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46

    Schacter, D. L., Addis, D. R. & Buckner, R. L. Remembering the past to imagine the future: the prospective brain. Nat. Rev. Neurosci. 8, 657–661 (2007).

    CAS  Google Scholar 

  47. 47

    Andrews-Hanna, J. R., Smallwood, J. & Spreng, R. N. The default network and self-generated thought: component processes, dynamic control, and clinical relevance. Ann. NY Acad. Sci. 1316, 29–52 (2014).

    PubMed  PubMed Central  Google Scholar 

  48. 48

    Corbetta, M., Patel, G. & Shulman, G. L. The reorienting system of the human brain: from environment to theory of mind. Neuron 58, 306–324 (2008). This paper outlines an influential theoretical framework that extends an earlier model by Corbetta and Shulman that drew a crucial distinction between the DAN and VAN.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49

    Vanhaudenhuyse, A. et al. Two distinct neuronal networks mediate the awareness of environment and of self. J. Cogn. Neurosci. 23, 570–578 (2011).

    PubMed  PubMed Central  Google Scholar 

  50. 50

    Smallwood, J. Distinguishing how from why the mind wanders: a process–occurrence framework for self-generated mental activity. Psychol. Bull. 139, 519–535 (2013). This theoretical paper presents an important distinction between the events that determine when an experience initially occurs from the processes that sustain an experience over time.

    PubMed  PubMed Central  Google Scholar 

  51. 51

    Toro, R., Fox, P. T. & Paus, T. Functional coactivation map of the human brain. Cereb. Cortex 18, 2553–2559 (2008).

    PubMed  PubMed Central  Google Scholar 

  52. 52

    Fox, M. D. et al. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl Acad. Sci. USA 102, 9673–9678 (2005). This paper provides a unique insight into the functional antagonism between the default and dorsal attention systems.

    CAS  PubMed Central  Google Scholar 

  53. 53

    Keller, C. J. et al. Neurophysiological investigation of spontaneous correlated and anticorrelated fluctuations of the BOLD signal. J. Neurosci. 33, 6333–6342 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54

    Seeley, W. W. et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J. Neurosci. 27, 2349–2356 (2007). This paper is the first to name the salience network and characterize its functional neuroanatomy.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55

    Kucyi, A., Hodaie, M. & Davis, K. D. Lateralization in intrinsic functional connectivity of the temporoparietal junction with salience- and attention-related brain networks. J. Neurophysiol. 108, 3382–3392 (2012).

    PubMed  PubMed Central  Google Scholar 

  56. 56

    Power, J. D. et al. Functional network organization of the human brain. Neuron 72, 665–678 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57

    Cole, M. W. et al. Multi-task connectivity reveals flexible hubs for adaptive task control. Nat. Neurosci. 16, 1348–1355 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58

    Vincent, J. L., Kahn, I., Snyder, A. Z., Raichle, M. E. & Buckner, R. L. Evidence for a frontoparietal control system revealed by intrinsic functional connectivity. J. Neurophysiol. 100, 3328–3342 (2008).

    PubMed  PubMed Central  Google Scholar 

  59. 59

    Niendam, T. A. et al. Meta-analytic evidence for a superordinate cognitive control network subserving diverse executive functions. Cogn. Affect. Behav. Neurosci. 12, 241–268 (2012).

    PubMed  PubMed Central  Google Scholar 

  60. 60

    Spreng, R. N., Stevens, W. D., Chamberlain, J. P., Gilmore, A. W. & Schacter, D. L. Default network activity, coupled with the frontoparietal control network, supports goal-directed cognition. Neuroimage 53, 303–317 (2010). This paper demonstrates how the DN couples with the FPCN for personally salient, goal-directed information processing.

    PubMed  PubMed Central  Google Scholar 

  61. 61

    Dixon, M. L., Fox, K. C. R. & Christoff, K. A framework for understanding the relationship between externally and internally directed cognition. Neuropsychologia 62, 321–330 (2014).

    Google Scholar 

  62. 62

    Dosenbach, N. U. F. et al. A core system for the implementation of task sets. Neuron 50, 799–812 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63

    Dosenbach, N. U. F. et al. Distinct brain networks for adaptive and stable task control in humans. Proc. Natl Acad. Sci. USA 104, 11073–11078 (2007).

    CAS  PubMed  Google Scholar 

  64. 64

    Dosenbach, N. U. F., Fair, D. A., Cohen, A. L., Schlaggar, B. L. & Petersen, S. E. A dual-networks architecture of top-down control. Trends Cogn. Sci. 12, 99–105 (2008).

    PubMed  PubMed Central  Google Scholar 

  65. 65

    Yeo, B. T. T. et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165 (2011). This seminal paper uses resting-state functional connectivity and clustering approaches in 1,000 individuals to parcellate the brain into seven canonical large-scale networks.

    Google Scholar 

  66. 66

    Najafi, M., McMenamin, B. W., Simon, J. Z. & Pessoa, L. Overlapping communities reveal rich structure in large-scale brain networks during rest and task conditions. Neuroimage 135, 92–106 (2016).

    PubMed  PubMed Central  Google Scholar 

  67. 67

    McGuire, P. K., Paulesu, E., Frackowiak, R. S. & Frith, C. D. Brain activity during stimulus independent thought. Neuroreport 7, 2095–2099 (1996).

    CAS  PubMed  Google Scholar 

  68. 68

    McKiernan, K. A., D'Angelo, B. R., Kaufman, J. N. & Binder, J. R. Interrupting the 'stream of consciousness': an fMRI investigation. Neuroimage 29, 1185–1191 (2006).

    PubMed  Google Scholar 

  69. 69

    Gilbert, S. J., Dumontheil, I., Simons, J. S., Frith, C. D. & Burgess, P. W. Comment on 'wandering minds: the default network and stimulus-independent thought'. Science 317, 43b (2007).

    Google Scholar 

  70. 70

    Stawarczyk, D., Majerus, S., Maquet, P. & D'Argembeau, A. Neural correlates of ongoing conscious experience: both task-unrelatedness and stimulus-independence are related to default network activity. PLoS ONE 6, e16997 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71

    Fox, K. C. R., Spreng, R. N., Ellamil, M., Andrews-Hanna, J. R. & Christoff, K. The wandering brain: meta-analysis of functional neuroimaging studies of mind-wandering and related spontaneous thought processes. Neuroimage 111, 611–621 (2015). This paper presents the first quantitative meta-analysis of neuroimaging studies on task-unrelated and/or stimulus-independent thought, revealing the involvement of the DN and other large-scale networks that were not traditionally thought to play a part in mind-wandering.

    PubMed  PubMed Central  Google Scholar 

  72. 72

    Ingvar, D. H. 'Hyperfrontal' distribution of the cerebral grey matter flow in resting wakefulness; on the functional anatomy of the conscious state. Acta Neurol. Scand. 60, 12–25 (1979). This paper by David Ingvar, a pioneer of human neuroimaging, provides the original observations that a resting brain is an active one and highlights the finding that prefrontal executive regions are active even at rest.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73

    Christoff, K., Ream, J. M. & Gabrieli, J. D. E. Neural basis of spontaneous thought processes. Cortex 40, 623–630 (2004).

    PubMed  PubMed Central  Google Scholar 

  74. 74

    D'Argembeau, A. et al. Self-referential reflective activity and its relationship with rest: a PET study. Neuroimage 25, 616–624 (2005).

    PubMed  PubMed Central  Google Scholar 

  75. 75

    Spiers, H. J. & Maguire, E. A. Spontaneous mentalizing during an interactive real world task: an fMRI study. Neuropsychologia 44, 1674–1682 (2006).

    PubMed  PubMed Central  Google Scholar 

  76. 76

    Wang, K. et al. Offline memory reprocessing: involvement of the brain's default network in spontaneous thought processes. PLoS ONE 4, e4867 (2009).

    PubMed  PubMed Central  Google Scholar 

  77. 77

    Dumontheil, I., Gilbert, S. J., Frith, C. D. & Burgess, P. W. Recruitment of lateral rostral prefrontal cortex in spontaneous and task-related thoughts. Q. J. Exp. Psychol. 63, 1740–1756 (2010).

    Google Scholar 

  78. 78

    Posner, M. I. & Rothbart, M. K. Attention, self-regulation and consciousness. Phil. Trans. R. Soc. Lond. B 353, 1915–1927 (1998).

    CAS  Google Scholar 

  79. 79

    Duncan, J. & Owen, A. M. Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends Neurosci. 23, 475–483 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80

    Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S. & Cohen, J. D. Conflict monitoring and cognitive control. Psychol. Rev. 108, 624–652 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81

    Banich, M. T. Executive function: the search for an integrated account. Curr. Direct. Psychol. Sci. 18, 89–94 (2009).

    Google Scholar 

  82. 82

    Prado, J., Chadha, A. & Booth, J. R. The brain network for deductive reasoning: a quantitative meta-analysis of 28 neuroimaging studies. J. Cogn. Neurosci. 23, 3483–3497 (2011).

    PubMed  PubMed Central  Google Scholar 

  83. 83

    McVay, J. C. & Kane, M. J. Does mind wandering reflect executive function or executive failure? Comment on Smallwood and Schooler (2006) and Watkins (2008). Psychol. Bull. 136, 188–197 (2010). This paper presents the theoretically influential control failure hypothesis, which is opposed to the thesis that executive function supports mind-wandering.

    PubMed  PubMed Central  Google Scholar 

  84. 84

    Kane, M. J. & McVay, J. C. What mind wandering reveals about executive-control abilities and failures. Curr. Direct. Psychol. Sci. 21, 348–354 (2012).

    Google Scholar 

  85. 85

    Levinson, D. B., Smallwood, J. & Davidson, R. J. The persistence of thought: evidence for a role of working memory in the maintenance of task-unrelated thinking. Psychol. Sci. 23, 375–380 (2012).

    PubMed  PubMed Central  Google Scholar 

  86. 86

    Salthouse, T. A., Fristoe, N., McGuthry, K. E. & Hambrick, D. Z. Relation of task switching to speed, age, and fluid intelligence. Psychol. Aging 13, 445–461 (1998).

    PubMed  PubMed Central  Google Scholar 

  87. 87

    Maillet, D. & Schacter, D. L. From mind wandering to involuntary retrieval: age-related differences in spontaneous cognitive processes. Neuropsychologia 80, 142–156 (2016).

    PubMed  PubMed Central  Google Scholar 

  88. 88

    Axelrod, V., Rees, G., Lavidor, M. & Bar, M. Increasing propensity to mind-wander with transcranial direct current stimulation. Proc. Natl Acad. Sci. USA 112, 3314–3319 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. 89

    Schooler, J. W. et al. Meta-awareness, perceptual decoupling and the wandering mind. Trends Cogn. Sci. 15, 319–326 (2011).

    PubMed  PubMed Central  Google Scholar 

  90. 90

    Smallwood, J., Beach, E. & Schooler, J. W. Going AWOL in the brain: mind wandering reduces cortical analysis of external events. J. Cogn. Neurosci. 20, 458–469 (2008).

    PubMed  PubMed Central  Google Scholar 

  91. 91

    Kam, J. W. Y. et al. Slow fluctuations in attentional control of sensory cortex. J. Cogn. Neurosci. 23, 460–470 (2011).

    PubMed  PubMed Central  Google Scholar 

  92. 92

    Gelbard-Sagiv, H., Mukamel, R., Harel, M., Malach, R. & Fried, I. Internally generated reactivation of single neurons in human hippocampus during free recall. Science 322, 96–101 (2008). This pioneering study aimed to identify the neural origins of spontaneously recalled memories, finding strong evidence for the initial generation in the MTL.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. 93

    Ellamil, M. et al. Dynamics of neural recruitment surrounding the spontaneous arising of thoughts in experienced mindfulness practitioners. Neuroimage 136, 186–196 (2016). This study is the first to reveal a sequential recruitment of the DN MTL , DN CORE , and FPCN immediately before, during and subsequent to the onset of spontaneous thoughts.

    PubMed  PubMed Central  Google Scholar 

  94. 94

    Andrews-Hanna, J. R., Reidler, J. S., Huang, C. & Buckner, R. L. Evidence for the default network's role in spontaneous cognition. J. Neurophysiol. 104, 322–335 (2010).

    PubMed  PubMed Central  Google Scholar 

  95. 95

    Kucyi, A. & Davis, K. D. Dynamic functional connectivity of the default mode network tracks daydreaming. Neuroimage 100, 471–480 (2014).

    Google Scholar 

  96. 96

    Foster, D. J. & Wilson, M. A. Reverse replay of behavioural sequences in hippocampal place cells during the awake state. Nature 440, 680–683 (2006).

    CAS  Google Scholar 

  97. 97

    Karlsson, M. P. & Frank, L. M. Awake replay of remote experiences in the hippocampus. Nat. Neurosci. 12, 913–918 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. 98

    Carr, M. F., Jadhav, S. P. & Frank, L. M. Hippocampal replay in the awake state: a potential substrate for memory consolidation and retrieval. Nat. Neurosci. 14, 147–153 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. 99

    Dragoi, G. & Tonegawa, S. Distinct preplay of multiple novel spatial experiences in the rat. Proc. Natl Acad. Sci. USA 110, 9100–9105 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. 100

    Dragoi, G. & Tonegawa, S. Preplay of future place cell sequences by hippocampal cellular assemblies. Nature 469, 397–401 (2011).

    CAS  Google Scholar 

  101. 101

    Ólafsdóttir, H. F., Barry, C., Saleem, A. B. & Hassabis, D. Hippocampal place cells construct reward related sequences through unexplored space. eLife 4, e06063 (2015).

    PubMed  PubMed Central  Google Scholar 

  102. 102

    Stark, C. E. L. & Clark, R. E. The medial temporal lobe. Annu. Rev. Neurosci. 27, 279–306 (2004).

    PubMed  PubMed Central  Google Scholar 

  103. 103

    Moscovitch, M., Cabeza, R., Winocur, G. & Nadel, L. Episodic memory and beyond: the hippocampus and neocortex in transformation. Annu. Rev. Psychol. 67, 105–134 (2016).

    PubMed  PubMed Central  Google Scholar 

  104. 104

    Romero, K. & Moscovitch, M. Episodic memory and event construction in aging and amnesia. J. Mem. Lang. 67, 270–284 (2012).

    Google Scholar 

  105. 105

    Hassabis, D., Kumaran, D. & Maguire, E. A. Using imagination to understand the neural basis of episodic memory. J. Neurosci. 27, 14365–14374 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. 106

    Buckner, R. L. The role of the hippocampus in prediction and imagination. Annu. Rev. Psychol. 61, 27–48 (2010).

    Google Scholar 

  107. 107

    Hassabis, D. & Maguire, E. A. The construction system of the brain. Phil. Trans. R. Soc. B 364, 1263–1271 (2009).

    PubMed  PubMed Central  Google Scholar 

  108. 108

    Schacter, D. L. et al. The future of memory: remembering, imagining, and the brain. Neuron 76, 677–694 (2012).

    CAS  PubMed  Google Scholar 

  109. 109

    Schacter, D. L., Addis, D. R. & Buckner, R. L. Episodic simulation of future events: concepts, data, and applications. Ann. NY Acad. Sci. 1124, 39–60 (2008).

    PubMed  PubMed Central  Google Scholar 

  110. 110

    Moscovitch, M. Memory and working-with-memory: a component process model based on modules and central systems. J. Cogn. Neurosci. 4, 257–267 (1992). This paper introduces the influential component process model of memory.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. 111

    Teyler, T. J. & DiScenna, P. The hippocampal memory indexing theory. Behav. Neurosci. 100, 147–154 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. 112

    Moscovitch, M. The hippocampus as a “stupid,” domain-specific module: implications for theories of recent and remote memory, and of imagination. Can. J. Exp. Psychol. 62, 62–79 (2008).

    PubMed  PubMed Central  Google Scholar 

  113. 113

    Bar, M., Aminoff, E., Mason, M. & Fenske, M. The units of thought. Hippocampus 17, 420–428 (2007). This paper introduces a novel hypothesis on the associative processes underlying a train of thoughts, originating in the MTL.

    PubMed  PubMed Central  Google Scholar 

  114. 114

    Aminoff, E. M., Kveraga, K. & Bar, M. The role of the parahippocampal cortex in cognition. Trends Cogn. Sci. 17, 379–390 (2013).

    PubMed  PubMed Central  Google Scholar 

  115. 115

    Christoff, K., Keramatian, K., Gordon, A. M., Smith, R. & Mädler, B. Prefrontal organization of cognitive control according to levels of abstraction. Brain Res. 1286, 94–105 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. 116

    Dixon, M. L., Fox, K. C. R. & Christoff, K. Evidence for rostro-caudal functional organization in multiple brain areas related to goal-directed behavior. Brain Res. 1572, 26–39 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. 117

    McCaig, R. G., Dixon, M., Keramatian, K., Liu, I. & Christoff, K. Improved modulation of rostrolateral prefrontal cortex using real-time fMRI training and meta-cognitive awareness. Neuroimage 55, 1298–1305 (2011).

    PubMed  PubMed Central  Google Scholar 

  118. 118

    Dixon, M. L. & Christoff, K. The decision to engage cognitive control is driven by expected reward-value: neural and behavioral evidence. PLoS ONE 7, e51637 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. 119

    Yin, H. H. & Knowlton, B. J. The role of the basal ganglia in habit formation. Nat. Rev. Neurosci. 7, 464–476 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. 120

    Burguière. E., Monteiro, P., Mallet, L., Feng, G. & Graybiel, A. M. Striatal circuits, habits, and implications for obsessive–compulsive disorder. Curr. Opin. Neurobiol. 30, 59–65 (2015).

    PubMed  PubMed Central  Google Scholar 

  121. 121

    Mathews, A. & MacLeod, C. Cognitive vulnerability to emotional disorders. Annu. Rev. Clin. Psychol. 1, 167–195 (2005).

    PubMed  PubMed Central  Google Scholar 

  122. 122

    Gotlib, I. H. & Joormann, J. Cognition and depression: current status and future directions. Annu. Rev. Clin. Psychol. 6, 285–312 (2010).

    PubMed  PubMed Central  Google Scholar 

  123. 123

    Nolen-Hoeksema, S., Wisco, B. E. & Lyubomirsky, S. Rethinking rumination. Perspect. Psychol. Sci. 3, 400–424 (2008).

    PubMed  PubMed Central  Google Scholar 

  124. 124

    Watkins, E. R. Constructive and unconstructive repetitive thought. Psychol. Bull. 134, 163–206 (2008). This comprehensive review and theory article links the psychological literature on task-unrelated or stimulus-independent thought to the clinical literature on rumination and other forms of repetitive thought, proposing multiple factors that govern whether repetitive thought is constructive or unconstructive.

    PubMed  PubMed Central  Google Scholar 

  125. 125

    Giambra, L. M. & Traynor, T. D. Depression and daydreaming; an analysis based on self-ratings. J. Clin. Psychol. 34, 14–25 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. 126

    Larsen, R. J. & Cowan, G. S. Internal focus of attention and depression: a study of daily experience. Motiv. Emot. 12, 237–249 (1988).

    Google Scholar 

  127. 127

    Whitfield-Gabrieli, S. & Ford, J. M. Default mode network activity and connectivity in psychopathology. Annu. Rev. Clin. Psychol. 8, 49–76 (2012).

    PubMed  PubMed Central  Google Scholar 

  128. 128

    Anticevic, A. et al. The role of default network deactivation in cognition and disease. Trends Cogn. Sci. 16, 584–592 (2012).

    PubMed  PubMed Central  Google Scholar 

  129. 129

    Hamilton, J. P. et al. Functional neuroimaging of major depressive disorder: a meta-analysis and new integration of baseline activation and neural response data. Am. J. Psychiatry 169, 693–703 (2012).

    PubMed  PubMed Central  Google Scholar 

  130. 130

    Kaiser, R. H. et al. Distracted and down: neural mechanisms of affective interference in subclinical depression. Soc. Cogn. Affect. Neurosci. 10, 654–663 (2015).

    PubMed  PubMed Central  Google Scholar 

  131. 131

    Kaiser, R. H., Andrews-Hanna, J. R., Wager, T. D. & Pizzagalli, D. A. Large-scale network dysfunction in major depressive disorder. JAMA Psychiatry 72, 603–637 (2015). This meta-analysis of resting-state functional connectivity studies in major depressive disorder provides quantitative support for functional-network imbalances, which reflect heightened internally focused thought in this disorder.

    PubMed  PubMed Central  Google Scholar 

  132. 132

    Kaiser, R. H. et al. Dynamic resting-state functional connectivity in major depression. Neuropsychopharmacology 41, 1822–1830 (2015).

    PubMed  PubMed Central  Google Scholar 

  133. 133

    Spinhoven, P., Drost, J., van Hemert, B. & Penninx, B. W. Common rather than unique aspects of repetitive negative thinking are related to depressive and anxiety disorders and symptoms. J. Anxiety Disord. 33, 45–52 (2015).

    PubMed  PubMed Central  Google Scholar 

  134. 134

    Borkovec, T. D., Ray, W. J. & Stober, J. Worry: a cognitive phenomenon intimately linked to affective, physiological, and interpersonal behavioral processes. Cognit. Ther. Res. 22, 561–576 (1998).

    Google Scholar 

  135. 135

    Oathes, D. J., Patenaude, B., Schatzberg, A. F. & Etkin, A. Neurobiological signatures of anxiety and depression in resting-state functional magnetic resonance imaging. Biol. Psychiatry 77, 385–393 (2015).

    PubMed  PubMed Central  Google Scholar 

  136. 136

    Bar-Haim, Y., Lamy, D., Pergamin, L., Bakermans-Kranenburg, M. J. & van IJzendoorn, M. H. Threat-related attentional bias in anxious and nonanxious individuals: a meta-analytic study. Psychol. Bull. 133, 1–24 (2007).

    PubMed  PubMed Central  Google Scholar 

  137. 137

    Williams, J., Watts, F. N., MacLeod, C. & Mathews, A. Cognitive Psychology and Emotional Disorders (John Wiley & Sons, 1997).

    Google Scholar 

  138. 138

    Etkin, A., Prater, K. E., Schatzberg, A. F., Menon, V. & Greicius, M. D. Disrupted amygdalar subregion functional connectivity and evidence of a compensatory network in generalized anxiety disorder. Arch. Gen. Psychiatry 66, 1361–1372 (2009).

    PubMed  PubMed Central  Google Scholar 

  139. 139

    Ipser, J. C., Singh, L. & Stein, D. J. Meta-analysis of functional brain imaging in specific phobia. Psychiatry Clin. Neurosci. 67, 311–322 (2013).

    PubMed  Google Scholar 

  140. 140

    American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (American Psychiatric Association, 2013).

  141. 141

    Boonstra, A. M., Oosterlaan, J., Sergeant, J. A. & Buitelaar, J. K. Executive functioning in adult ADHD: a meta-analytic review. Psychol. Med. 35, 1097–1108 (2005).

    PubMed  PubMed Central  Google Scholar 

  142. 142

    Willcutt, E. G., Doyle, A. E., Nigg, J. T., Faraone, S. V. & Pennington, B. F. Validity of the executive function theory of attention-deficit/hyperactivity disorder: a meta-analytic review. Biol. Psychiatry 57, 1336–1346 (2005).

    PubMed  Google Scholar 

  143. 143

    Kofler, M. J. et al. Reaction time variability in ADHD: a meta-analytic review of 319 studies. Clin. Psychol. Rev. 33, 795–811 (2013).

    PubMed  PubMed Central  Google Scholar 

  144. 144

    Shaw, G. A. & Giambra, L. Task unrelated thoughts of college students diagnosed as hyperactive in childhood. Dev. Neuropsychol. 9, 17–30 (1993).

    Google Scholar 

  145. 145

    Franklin, M. S. et al. Tracking distraction: the relationship between mind-wandering, meta-awareness, and ADHD symptomatology. J. Atten. Disord. http://dx.doi.org/10.1177/1087054714543494 (2014).

  146. 146

    De La Fuente, A., Xia, S., Branch, C. & Li, X. A review of attention-deficit/hyperactivity disorder from the perspective of brain networks. Front. Hum. Neurosci. 7, 192 (2013).

    PubMed  PubMed Central  Google Scholar 

  147. 147

    Castellanos, F. X. & Proal, E. Large-scale brain systems in ADHD: beyond the prefrontal–striatal model. Trends Cogn. Sci. 16, 17–26 (2012).

    PubMed  Google Scholar 

  148. 148

    Hart, H., Radua, J., Mataix-Cols, D. & Rubia, K. Meta-analysis of fMRI studies of timing in attention-deficit hyperactivity disorder (ADHD). Neurosci. Biobehav. Rev. 36, 2248–2256 (2012).

    PubMed  Google Scholar 

  149. 149

    Hart, H., Radua, J., Nakao, T., Mataix-Cols, D. & Rubia, K. Meta-analysis of functional magnetic resonance imaging studies of inhibition and attention in attention-deficit/hyperactivity disorder. JAMA Psychiatry 70, 185–198 (2013).

    PubMed  Google Scholar 

  150. 150

    Fassbender, C. et al. A lack of default network suppression is linked to increased distractibility in ADHD. Brain Res. 1273, 114–128 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. 151

    Cortese, S. et al. Toward systems neuroscience of ADHD: a meta-analysis of 55 fMRI studies. Am. J. Psychiatry 169, 1038–1055 (2012).

    PubMed  Google Scholar 

  152. 152

    Castellanos, F. X. et al. Cingulate-precuneus interactions: a new locus of dysfunction in adult attention-deficit/hyperactivity disorder. Biol. Psychiatry 63, 332–337 (2008).

    PubMed  Google Scholar 

  153. 153

    Uddin, L. Q. et al. Network homogeneity reveals decreased integrity of default-mode network in ADHD. J. Neurosci. Methods 169, 249–254 (2008).

    PubMed  Google Scholar 

  154. 154

    Tomasi, D. & Volkow, N. D. Abnormal functional connectivity in children with attention-deficit/hyperactivity disorder. Biol. Psychiatry 71, 443–450 (2012).

    PubMed  PubMed Central  Google Scholar 

  155. 155

    Mattfeld, A. T. et al. Brain differences between persistent and remitted attention deficit hyperactivity disorder. Brain 137, 2423–2428 (2014).

    PubMed  PubMed Central  Google Scholar 

  156. 156

    Sun, L. et al. Abnormal functional connectivity between the anterior cingulate and the default mode network in drug-naïve boys with attention deficit hyperactivity disorder. Psychiatry Res. 201, 120–127 (2012).

    PubMed  PubMed Central  Google Scholar 

  157. 157

    McCarthy, H. et al. Attention network hypoconnectivity with default and affective network hyperconnectivity in adults diagnosed with attention-deficit/hyperactivity disorder in childhood. JAMA Psychiatry 70, 1329–1337 (2013).

    PubMed  PubMed Central  Google Scholar 

  158. 158

    Fair, D. A. et al. The maturing architecture of the brain's default network. Proc. Natl Acad. Sci. USA 105, 4028–4032 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. 159

    Sripada, C. et al. Disrupted network architecture of the resting brain in attention-deficit/hyperactivity disorder. Hum. Brain Mapp. 35, 4693–4705 (2014). By analysing data from more than 750 participants, this paper links childhood ADHD to abnormal resting-state functional connectivity involving the DN.

    PubMed  PubMed Central  Google Scholar 

  160. 160

    Fair, D. A. et al. Atypical default network connectivity in youth with attention-deficit/hyperactivity disorder. Biol. Psychiatry 68, 1084–1091 (2010).

    PubMed  PubMed Central  Google Scholar 

  161. 161

    Anderson, A. et al. Non-negative matrix factorization of multimodal MRI, fMRI and phenotypic data reveals differential changes in default mode subnetworks in ADHD. Neuroimage 102, 207–219 (2014).

    PubMed  PubMed Central  Google Scholar 

  162. 162

    Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L. & Petersen, S. E. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 59, 2142–2154 (2012).

    PubMed Central  Google Scholar 

  163. 163

    Van Dijk, K. R. A., Sabuncu, M. R. & Buckner, R. L. The influence of head motion on intrinsic functional connectivity MRI. Neuroimage 59, 431–438 (2012).

    PubMed  PubMed Central  Google Scholar 

  164. 164

    Sonuga-Barke, E. J. S. & Castellanos, F. X. Spontaneous attentional fluctuations in impaired states and pathological conditions: a neurobiological hypothesis. Neurosci. Biobehav. Rev. 31, 977–986 (2007).

    PubMed  PubMed Central  Google Scholar 

  165. 165

    Kerns, J. G. & Berenbaum, H. Cognitive impairments associated with formal thought disorder in people with schizophrenia. J. Abnorm. Psychol. 111, 211–224 (2002).

    PubMed  PubMed Central  Google Scholar 

  166. 166

    Videbeck, S. L. Psychiatric Mental Health Nursing (Lippincott Williams & Wilkins, 2006).

    Google Scholar 

  167. 167

    Hales, R. E., Yudofsky, S. C. & Roberts, L. W. The American Psychiatric Publishing Textbook of Psychiatry 6th edn (American Psychiatric Publishing, 2014).

    Google Scholar 

  168. 168

    Haijma, S. V. et al. Brain volumes in schizophrenia: a meta-analysis in over 18 000 subjects. Schizophr. Bull. 39, 1129–1138 (2013).

    PubMed  PubMed Central  Google Scholar 

  169. 169

    Glahn, D. C. et al. Meta-analysis of gray matter anomalies in schizophrenia: application of anatomic likelihood estimation and network analysis. Biol. Psychiatry 64, 774–781 (2008).

    PubMed  PubMed Central  Google Scholar 

  170. 170

    Fornito, A., Yücel, M., Patti, J., Wood, S. J. & Pantelis, C. Mapping grey matter reductions in schizophrenia: an anatomical likelihood estimation analysis of voxel-based morphometry studies. Schizophr. Res. 108, 104–113 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. 171

    Ellison-Wright, I. & Bullmore, E. Anatomy of bipolar disorder and schizophrenia: a meta-analysis. Schizophr. Res. 117, 1–12 (2010).

    PubMed  PubMed Central  Google Scholar 

  172. 172

    Vita, A., De Peri, L., Deste, G., Barlati, S. & Sacchetti, E. The effect of antipsychotic treatment on cortical gray matter changes in schizophrenia: does the class matter? A meta-analysis and meta-regression of longitudinal magnetic resonance imaging studies. Biol. Psychiatry 78, 403–412 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. 173

    Cole, M. W., Anticevic, A., Repovs, G. & Barch, D. Variable global dysconnectivity and individual differences in schizophrenia. Biol. Psychiatry 70, 43–50 (2011).

    PubMed  PubMed Central  Google Scholar 

  174. 174

    Argyelan, M. et al. Resting-state fMRI connectivity impairment in schizophrenia and bipolar disorder. Schizophr. Bull. 40, 100–110 (2014).

    PubMed  PubMed Central  Google Scholar 

  175. 175

    Cole, M. W., Yarkoni, T., Repovs, G., Anticevic, A. & Braver, T. S. Global connectivity of prefrontal cortex predicts cognitive control and intelligence. J. Neurosci. 32, 8988–8999 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. 176

    Baker, J. T. et al. Disruption of cortical association networks in schizophrenia and psychotic bipolar disorder. JAMA Psychiatry 71, 109–110 (2014).

    PubMed  PubMed Central  Google Scholar 

  177. 177

    Karbasforoushan, H. & Woodward, N. D. Resting-state networks in schizophrenia. Curr. Top. Med. Chem. 12, 2404–2414 (2013).

    Google Scholar 

  178. 178

    Jafri, M. J., Pearlson, G. D., Stevens, M. & Calhoun, V. D. A method for functional network connectivity among spatially independent resting-state components in schizophrenia. Neuroimage 39, 1666–1681 (2008).

    PubMed  PubMed Central  Google Scholar 

  179. 179

    Whitfield-Gabrieli, S. et al. Hyperactivity and hyperconnectivity of the default network in schizophrenia and in first-degree relatives of persons with schizophrenia. Proc. Natl Acad. Sci. USA 106, 1279–1284 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. 180

    Palaniyappan, L., Simmonite, M., White, T. P., Liddle, E. B. & Liddle, P. F. Neural primacy of the salience processing system in schizophrenia. Neuron 79, 814–828 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. 181

    Mittner, M., Hawkins, G. E., Boekel, W. & Forstmann, B. U. A neural model of mind wandering. Trends Cogn. Sci. 20, 570–578 (2016). This paper convincingly argues for the introduction of two important novel elements to the scientific study of mind-wandering: employing cognitive modelling and a consideration of neuromodulatory influences on thought.

    Google Scholar 

  182. 182

    Fox, K. C. R. & Christoff, K. in The Cognitive Neuroscience of Metacognition (eds Fleming, S. M. & Frith, C. D.) 293–319 (Springer, 2014).

    Google Scholar 

  183. 183

    Foulkes, D. & Fleisher, S. Mental activity in relaxed wakefulness. J. Abnorm. Psychol. 84, 66–75 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. 184

    Fox, K. C. R., Nijeboer, S., Solomonova, E., Domhoff, G. W. & Christoff, K. Dreaming as mind wandering: evidence from functional neuroimaging and first-person content reports. Front. Hum. Neurosci. 7, 412 (2013).

    PubMed  PubMed Central  Google Scholar 

  185. 185

    De Bono, E. Six Thinking Hats (Little Brown and Company, 1985).

    Google Scholar 

  186. 186

    Ellamil, M., Dobson, C., Beeman, M. & Christoff, K. Evaluative and generative modes of thought during the creative process. Neuroimage 59, 1783–1794 (2012).

    PubMed  PubMed Central  Google Scholar 

  187. 187

    Beaty, R. E., Benedek, M., Kaufman, S. B. & Silvia, P. J. Default and executive network coupling supports creative idea production. Sci. Rep. 5, 10964 (2015).

    PubMed  PubMed Central  Google Scholar 

  188. 188

    Fox, K. C. R., Kang, Y., Lifshitz, M. & Christoff, K. in Hypnosis and Meditation (eds Raz, A. & Lifshitz, M.) 191–210 (Oxford Univ. Press, 2016).

    Google Scholar 

  189. 189

    Fazelpour, S. & Thompson, E. The Kantian brain: brain dynamics from a neurophenomenological perspective. Curr. Opin. Neurobiol. 31, 223–229 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to R. Buckner, P. Carruthers, M. Cuddy-Keane, M. Dixon, S. Fazelpour, D. Stan, E. Thompson, R. Todd and the anonymous reviewers for their thoughtful feedback on earlier versions of this paper, and to A. Herrera-Bennett for help with the figure preparation. K.C. was supported by grants from the Natural Sciences and Engineering Research Council (NSERC) (RGPIN 327317–11) and the Canadian Institutes of Health Research (CIHR) (MOP-115197). Z.C.I. was supported by a Social Sciences and Humanities Research Council of Canada (SSHRC) postdoctoral fellowship, the Balzan Styles of Reasoning Project and a Templeton Integrated Philosophy and Self Control grant. K.C.R.F. was supported by a Vanier Canada Graduate Scholarship. R.N.S. was supported by an Alzheimer's Association grant (NIRG-14-320049). J.R.A.-H. was supported by a Templeton Science of Prospection grant.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kalina Christoff.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Thought

A mental state, or a sequence of mental states, including the transitions that lead to each state.

Mental state

A transient cognitive or emotional state of the organism that can be described in terms of its contents (what the state is 'about') and the relation that the subject bears to the contents (for example, perceiving, believing, fearing, imagining or remembering).

Task-unrelated thoughts

Thoughts with contents that are unrelated to what the person having those thoughts is currently doing.

Daydreaming

Thinking that is characteristically fanciful (that is, divorced from physical or social reality); it can either be spontaneous, as in fanciful mind-wandering, or constrained, as during deliberately fantasizing about a topic.

Stimulus-independent thought

A thought with contents that are unrelated to the current external perceptual environment.

Cognitive control

A deliberate guidance of current thoughts, perceptions or actions, which is imposed in a goal-directed manner by currently active top-down executive processes.

Affective salience

The emotional significance of percepts, thoughts or other elements of mental experience, which can draw and sustain attention through mechanisms outside of cognitive control.

Sensory salience

Features of current perceptual experience, such as high perceptual contrast, which can draw and sustain attention through mechanisms outside of cognitive control.

Mentalizing

The process of spontaneously or deliberately inferring one's own or other agents' mental states.

Constructive mental simulations

Flexible combinations of distinct elements of prior experiences, constructed in the process of imagining a novel (often future-oriented) event.

Lucid dreaming

A type of dreaming during which the dreamer is aware that he or she is currently dreaming and, in some cases, can have deliberate control over dream content and progression.

Creativity

The ability to produce ideas that are both novel (that is, original and unique) and useful (that is, appropriate and meaningful).

Experience sampling

A method in which participants are probed at random intervals and asked to report on aspects of their subjective experience immediately before the probe.

Content-based dimensions of thought

Different ways of categorizing a thought based on its contents, including stimulus dependence (whether the thought is about stimuli that one is currently perceiving), task relatedness (whether the thought is about the current task), modality (visual, auditory, and so on), valence (whether the thought is negative, neutral or positive) or temporal orientation (whether the thought is about the past, present or future).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Christoff, K., Irving, Z., Fox, K. et al. Mind-wandering as spontaneous thought: a dynamic framework. Nat Rev Neurosci 17, 718–731 (2016). https://doi.org/10.1038/nrn.2016.113

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing