Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Anterior hippocampus: the anatomy of perception, imagination and episodic memory

Abstract

The brain creates a model of the world around us. We can use this representation to perceive and comprehend what we see at any given moment, but also to vividly re-experience scenes from our past and imagine future (or even fanciful) scenarios. Recent work has shown that these cognitive functions — perception, imagination and recall of scenes and events — all engage the anterior hippocampus. In this Opinion article, we capitalize on new findings from functional neuroimaging to propose a model that links high-level cognitive functions to specific structures within the anterior hippocampus.

This is a preview of subscription content, access via your institution

Access options

Figure 1: Anatomy of the anterior hippocampus.
Figure 2: Activation of the anterior medial hippocampus during fMRI.

Similar content being viewed by others

References

  1. Fanselow, M. S. & Dong, H.-W. Are the dorsal and ventral hippocampus functionally distinct structures? Neuron 65, 7–19 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Poppenk, J., Evensmoen, H. R., Moscovitch, M. & Nadel, L. Long-axis specialization of the human hippocampus. Trends Cogn. Sci. 17, 230–240 (2013).

    Article  PubMed  Google Scholar 

  3. Strange, B. A., Witter, M. P., Lein, E. S. & Moser, E. I. Functional organization of the hippocampal longitudinal axis. Nat. Rev. Neurosci. 15, 655–669 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Moser, M.-B. & Moser, E. I. Functional differentiation in the hippocampus. Hippocampus 8, 608–619 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Chase, H. W. et al. Evidence for an anterior–posterior differentiation in the human hippocampal formation revealed by meta-analytic parcellation of fMRI coordinate maps: focus on the subiculum. Neuroimage 113, 44–60 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Yushkevich, P. A. et al. Quantitative comparison of 21 protocols for labeling hippocampal subfields and parahippocampal subregions in in vivo MRI: towards a harmonized segmentation protocol. Neuroimage 111, 526–541 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Scoville, W. & Milner, B. Loss of recent memory after bilateral hippocampal lesions. J. Neurol. Neurosurg. Psychiatry 20, 11–21 (1957).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Andelman, F., Hoofien, D., Goldberg, I., Aizenstein, O. & Neufeld, M. Y. Bilateral hippocampal lesion and a selective impairment of the ability for mental time travel. Neurocase 16, 426–435 (2010).

    Article  PubMed  Google Scholar 

  9. Maguire, E. A., Nannery, R. & Spiers, H. J. Navigation around London by a taxi driver with bilateral hippocampal lesions. Brain 129, 2894–2907 (2006).

    Article  PubMed  Google Scholar 

  10. Ding, S.-L. & Van Hoesen, G. W. Organization and detailed parcellation of human hippocampal head and body regions based on a combined analysis of cyto- and chemo-architecture. J. Comp. Neurol. 523, 2233–2253 (2015).

    Article  PubMed  Google Scholar 

  11. Suzuki, W. A. & Baxter, M. G. Memory, perception, and the medial temporal lobe: a synthesis of opinions. Neuron 61, 678–679 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Ding, S.-L. Comparative anatomy of the prosubiculum, subiculum, presubiculum, postsubiculum, and parasubiculum in human, monkey, and rodent. J. Comp. Neurol. 521, 4145–4162 (2013).

    Article  PubMed  Google Scholar 

  13. Rosene, D. L. & Van Hoesen, G. W. The hippocampal formation of the primate brain. Cereb. Cortex 6, 345–456 (1987).

    Article  Google Scholar 

  14. McLardy, T. Some cell and fibre peculiarities of uncal hippocampus. Prog. Brain Res. 3, 71–88 (1963).

    Article  Google Scholar 

  15. Amaral, D. G. & Insausti, R. in The Human Nervous System 1st edn (ed. Paxinos, R.) 711–755 (Academic Press, 1990).

    Book  Google Scholar 

  16. Kondo, H., Lavenex, P. & Amaral, D. G. Intrinsic connections of the Macaque monkey hippocampal formation: I. dentate gyrus. J. Comp. Neurol. 511, 497–520 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kondo, H., Lavenex, P. & Amaral, D. G. Intrinsic connections of the macaque monkey hippocampal formation: II. CA3 connections. J. Comp. Neurol. 515, 349–377 (2009).

    PubMed  PubMed Central  Google Scholar 

  18. Amaral, D. G., Insausti, R. & Cowan, W. M. The commissural connections of the monkey hippocampal formation. J. Comp. Neurol. 224, 307–336 (1984).

    Article  CAS  PubMed  Google Scholar 

  19. Demeter, S., Rosene, D. L. & van Hoesen, G. W. Interhemispheric pathways of the hippocampal formation, presubiculum, and entorhinal and posterior parahippocampal cortices in the rhesus monkey: the structure and organization of the hippocampal commissures. J. Comp. Neurol. 233, 30–47 (1985).

    Article  CAS  PubMed  Google Scholar 

  20. Gloor, P., Salanova, V., Olivier, A. & Quesney, L. F. The human dorsal hippocampal commissure. Brain 116, 1249–1273 (1993).

    Article  PubMed  Google Scholar 

  21. O'Keefe, J. & Dostrovsky, J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 34, 171–175 (1971).

    Article  CAS  PubMed  Google Scholar 

  22. Fyhn, M., Molden, S., Witter, M. P., Moser, E. I. & Moser, M.-B. Spatial representation in the entorhinal cortex. Science 305, 1258–1264 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Boccara, C. N. et al. Grid cells in pre- and parasubiculum. Nat. Neurosci. 13, 987–994 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Wiener, S. & Taube, J. S. Head Direction Cells and the Neural Mechanisms of Spatial Orientation (MIT Press, 2005).

    Book  Google Scholar 

  25. Dumont, J. R. & Taube, J. S. The neural correlates of navigation beyond the hippocampus. Prog. Brain Res. 219, 83–102 (2015).

    Article  PubMed  Google Scholar 

  26. Lever, C., Burton, S., Jeewajee, A., O'Keefe, J. & Burgess, N. Boundary vector cells in the subiculum of the hippocampal formation. J. Neurosci. 29, 9771–9777 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Spiers, H. J. & Maguire, E. A. Thoughts, behaviour, and brain dynamics during navigation in the real world. Neuroimage 31, 1826–1840 (2006).

    Article  PubMed  Google Scholar 

  28. Ekstrom, A. et al. Cellular networks underlying human spatial navigation. Nature 425, 184–188 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Doeller, C. F., Barry, C. & Burgess, N. Evidence for grid cells in a human memory network. Nature 463, 657–661 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Auger, S. D., Mullally, S. L. & Maguire, E. A. Retrosplenial cortex codes for permanent landmarks. PLoS ONE 7, e43620 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kjelstrup, K. B. et al. Finite scale of spatial representation in the hippocampus. Science 321, 140–143 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Keinath, A., Wang, M. & Wann, E. Precise spatial coding is preserved along the longitudinal hippocampal axis. Hippocampus 24, 1533–1548 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Marr, D. Simple memory: a theory for archicortex. Phil. Trans. R. Soc. Lond. B 262, 23–81 (1971).

    Article  CAS  Google Scholar 

  34. Wikenheiser, A. M. & Redish, D. A. Decoding the cognitive map: ensemble hippocampal sequences and decision making. Curr. Opin. Neurobiol. 32, 8–15 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Johnson, A. & Redish, A. D. Neural ensembles in CA3 transiently encode paths forward of the animal at a decision point. J. Neurosci. 27, 12176–12189 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pfeiffer, B. E. & Foster, D. J. Hippocampal place-cell sequences depict future paths to remembered goals. Nature 497, 74–79 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Foster, D. J. & Wilson, M. A. Reverse replay of behavioural sequences in hippocampal place cells during the awake state. Nature 440, 680–683 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Clark, I. A. & Maguire, E. A. Remembering preservation in hippocampal amnesia. Annu. Rev. Psychol. 67, 51–82 (2016).

    Article  PubMed  Google Scholar 

  39. Hassabis, D., Kumaran, D., Vann, S. D. & Maguire, E. A. Patients with hippocampal amnesia cannot imagine new experiences. Proc. Natl Acad. Sci. USA 104, 1726–1731 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Mullally, S. L., Intraub, H. & Maguire, E. A. Attenuated boundary extension produces a paradoxical memory advantage in amnesic patients. Curr. Biol. 22, 261–268 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hassabis, D., Kumaran, D. & Maguire, E. A. Using imagination to understand the neural basis of episodic memory. J. Neurosci. 27, 14365–14374 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Addis, D. R., Wong, A. T. & Schacter, D. L. Remembering the past and imagining the future: common and distinct neural substrates during event construction and elaboration. Neuropsychologia 45, 1363–1377 (2007).

    Article  PubMed  Google Scholar 

  43. Addis, D. R., Pan, L., Vu, M.-A. A., Laiser, N. & Schacter, D. L. Constructive episodic simulation of the future and the past: distinct subsystems of a core brain network mediate imagining and remembering. Neuropsychologia 47, 2222–2238 (2009).

    Article  PubMed  Google Scholar 

  44. Addis, D. R., Cheng, T., Roberts, R. P. & Schacter, D. L. Hippocampal contributions to the episodic simulation of specific and general future events. Hippocampus 21, 1045–1052 (2011).

    Article  PubMed  Google Scholar 

  45. Addis, D. R., Knapp, K., Roberts, R. P. & Schacter, D. L. Routes to the past: neural substrates of direct and generative autobiographical memory retrieval. Neuroimage 59, 2908–2922 (2012).

    Article  PubMed  Google Scholar 

  46. McCormick, C., St-Laurent, M., Ty, A., Valiante, T. A. & McAndrews, M. P. Functional and effective hippocampal–neocortical connectivity during construction and elaboration of autobiographical memory retrieval. Cereb. Cortex 25, 1297–1305 (2015).

    Article  PubMed  Google Scholar 

  47. Zeidman, P., Mullally, S. & Maguire, E. A. Constructing, perceiving, and maintaining scenes: hippocampal activity and connectivity. Cereb. Cortex 25, 3836–3855 (2015).

    Article  PubMed  Google Scholar 

  48. Bonnici, H. M. et al. Detecting representations of recent and remote autobiographical memories in vmPFC and hippocampus. J. Neurosci. 32, 16982–16991 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gaesser, B., Spreng, R. N., McLelland, V. C., Addis, D. R. & Schacter, D. L. Imagining the future: evidence for a hippocampal contribution to constructive processing. Hippocampus 23, 1150–1161 (2013).

    Article  PubMed  Google Scholar 

  50. Zeidman, P., Lutti, A. & Maguire, E. A. Investigating the functions of subregions within anterior hippocampus. Cortex 73, 240–256 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Hassabis, D. & Maguire, E. A. Deconstructing episodic memory with construction. Trends Cogn. Sci. 11, 299–306 (2007).

    Article  PubMed  Google Scholar 

  52. Maguire, E. A. & Mullally, S. L. The hippocampus: a manifesto for change. J. Exp. Psychol. Gen. 142, 1180–1189 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Spreng, N. R., Mar, R. A. & Kim, A. S. N. The common neural basis of autobiographical memory, prospection, navigation, theory of mind, and the default mode: a quantitative meta-analysis. J. Cogn. Neurosci. 21, 489–510 (2009).

    Article  PubMed  Google Scholar 

  54. Svoboda, E., McKinnon, M. C. & Levine, B. The functional neuroanatomy of autobiographical memory: a meta-analysis. Neuropsychologia 44, 2189–2208 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Schacter, D. L. et al. The future of memory: remembering, imagining, and the brain. Neuron 76, 677–694 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. Buckner, R. L. & Carroll, D. C. Self-projection and the brain. Trends Cogn. Sci. 11, 49–57 (2007).

    Article  PubMed  Google Scholar 

  57. Mullally, S. L. & Maguire, E. A. Counterfactual thinking in patients with amnesia. Hippocampus 24, 1261–1266 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Squire, L. R. & Zola-Morgan, S. The medial temporal lobe memory system. Science 253, 1380–1386 (1991).

    Article  CAS  PubMed  Google Scholar 

  59. Lee, A. C., Barense, M. D. & Graham, K. S. The contribution of the human medial temporal lobe to perception: bridging the gap between animal and human studies. Q. J. Exp. Psychol. B 58, 300–325 (2005).

    Article  PubMed  Google Scholar 

  60. Murray, E. A., Bussey, T. J. & Saksida, L. M. Visual perception and memory: a new view of medial temporal lobe function in primates and rodents. Annu. Rev. Neurosci. 30, 99–122 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Lee, A. C. H. et al. Perceptual deficits in amnesia: challenging the medial temporal lobe “mnemonic” view. Neuropsychologia 43, 1–11 (2005).

    Article  PubMed  Google Scholar 

  62. Lee, A. C. H. et al. Specialization in the medial temporal lobe for processing of objects and scenes. Hippocampus 15, 782–797 (2005).

    Article  PubMed  Google Scholar 

  63. Shrager, Y., Gold, J. J., Hopkins, R. O. & Squire, L. R. Intact visual perception in memory-impaired patients with medial temporal lobe lesions. J. Neurosci. 26, 2235–2240 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hartley, T. et al. The hippocampus is required for short-term topographical memory in humans. Hippocampus 17, 34–48 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Maguire, E. A., Intraub, H. & Mullally, S. L. Scenes, spaces, and memory traces: what does the hippocampus do? Neuroscientist http://dx.doi.org/10.1177/1073858415600389 (2015).

  66. Binder, J. R., Bellgowan, P. S. F., Hammeke, T. A., Possing, E. T. & Frost, J. A. A comparison of two fMRI protocols for eliciting hippocampal activation. Epilepsia 46, 1061–1070 (2005).

    Article  PubMed  Google Scholar 

  67. Howard, L. R., Kumaran, D., Ólafsdóttir, H. F. & Spiers, H. J. Double dissociation between hippocampal and parahippocampal responses to object-background context and scene novelty. J. Neurosci. 31, 5253–5261 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lee, A. C., Scahill, V. L. & Graham, K. S. Activating the medial temporal lobe during oddity judgment for faces and scenes. Cereb. Cortex 18, 683–696 (2008).

    Article  PubMed  Google Scholar 

  69. Lee, A. C. H., Brodersen, K. H. & Rudebeck, S. R. Disentangling spatial perception and spatial memory in the hippocampus: a univariate and multivariate pattern analysis fMRI study. J. Cogn. Neurosci. 25, 534–546 (2013).

    Article  PubMed  Google Scholar 

  70. Aly, M., Ranganath, C. & Yonelinas, A. P. Detecting changes in scenes: the hippocampus is critical for strength-based perception. Neuron 78, 1127–1137 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Aly, M. & Yonelinas, A. P. Bridging consciousness and cognition in memory and perception: evidence for both state and strength processes. PLoS ONE 7, e30231 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Intraub, H. & Richardson, M. Wide-angle memories of close-up scenes. J. Exp. Psychol. Learn. Mem. Cogn. 15, 179–187 (1989).

    Article  CAS  PubMed  Google Scholar 

  73. Kim, S., Dede, A. J. O., Hopkins, R. O. & Squire, L. R. Memory, scene construction, and the human hippocampus. Proc. Natl Acad. Sci. USA 112, 4767–4772 (2015).

    Article  CAS  PubMed  Google Scholar 

  74. Chadwick, M., Mullally, S. & Maguire, E. A. The hippocampus extrapolates beyond the view in scenes: an fMRI study of boundary extension. Cortex 49, 2067–2079 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Race, E., Keane, M. M. & Verfaellie, M. Medial temporal lobe damage causes deficits in episodic memory and episodic future thinking not attributable to deficits in narrative construction. J. Neurosci. 31, 10262–10269 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Robinson, J. L. et al. Neurofunctional topography of the human hippocampus. Hum. Brain Mapp. 36, 5018–5037 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Blessing, E. M., Beissner, F., Schumann, A., Brünner, F. & Bär, K. J. A data-driven approach to mapping cortical and subcortical intrinsic functional connectivity along the longitudinal hippocampal axis. Hum. Brain Mapp. 37, 462–476 (2016).

    Article  PubMed  Google Scholar 

  78. Kondo, H., Saleem, K. S. & Price, J. L. Differential connections of the perirhinal and parahippocampal cortex with the orbital and medial prefrontal networks in macaque monkeys. J. Comp. Neurol. 493, 479–509 (2005).

    Article  PubMed  Google Scholar 

  79. Woollett, K. & Maguire, E. A. Acquiring “the knowledge” of London's layout drives structural brain changes. Curr. Biol. 21, 2109–2114 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Chebat, D.-R. et al. Alterations in right posterior hippocampus in early blind individuals. Neuroreport 18, 329–333 (2007).

    Article  PubMed  Google Scholar 

  81. Leporé, N. et al. Pattern of hippocampal shape and volume differences in blind subjects. Neuroimage 46, 949–957 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Fortin, M. et al. Wayfinding in the blind: larger hippocampal volume and supranormal spatial navigation. Brain 131, 2995–3005 (2008).

    Article  PubMed  Google Scholar 

  83. Insausti, R. & Muñoz, M. Cortical projections of the non-entorhinal hippocampal formation in the cynomolgus monkey (Macaca fascicularis). Eur. J. Neurosci. 14, 435–451 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. Blatt, G. J. & Rosene, D. L. Organization of direct hippocampal efferent projections to the cerebral cortex of the rhesus monkey: projections from CA1, prosubiculum, and subiculum to the temporal lobe. J. Comp. Neurol. 392, 92–114 (1998).

    Article  CAS  PubMed  Google Scholar 

  85. Maass, A. et al. Laminar activity in the hippocampus and entorhinal cortex related to novelty and episodic encoding. Nat. Commun. 5, 5547 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hafting, T., Fyhn, M., Molden, S., Moser, M. B. & Moser, E. I. Microstructure of a spatial map in the entorhinal cortex. Nature 436, 801–806 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. Frings, L. et al. Lateralization of hippocampal activation differs between left and right temporal lobe epilepsy patients and correlates with postsurgical verbal learning decrement. Epilepsy Res. 78, 161–170 (2008).

    Article  PubMed  Google Scholar 

  88. Barbas, H. & Blatt, G. J. Topographically specific hippocampal projections target functionally distinct prefrontal areas in the rhesus monkey. Hippocampus 5, 511–533 (1995).

    Article  CAS  PubMed  Google Scholar 

  89. Fudge, J. L., DeCampo, D. M. & Becoats, K. T. Revisiting the hippocampal–amygdala pathway in primates: association with immature-appearing neurons. Neuroscience 212, 104–119 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Aggleton, J. P., Wright, N., Rosene, D. L. & Saunders, R. C. Complementary patterns of direct amygdala and hippocampal projections to the macaque prefrontal cortex. Cereb. Cortex 25, 4351–4373 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Maguire, E. A. Memory consolidation in humans: new evidence and opportunities. Exp. Physiol. 99, 471–486 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Nieuwenhuis, I. L. C. & Takashima, A. The role of the ventromedial prefrontal cortex in memory consolidation. Behav. Brain Res. 218, 325–334 (2011).

    Article  PubMed  Google Scholar 

  93. Aggleton, J. P. Multiple anatomical systems embedded within the primate medial temporal lobe: implications for hippocampal function. Neurosci. Biobehav. Rev. 36, 1579–1596 (2012).

    Article  PubMed  Google Scholar 

  94. Duvernoy, H. M. The Human Hippocampus: An Atlas of Applied Anatomy (JF Bergmann, 1988).

    Book  Google Scholar 

  95. Boubela, R. N. et al. fMRI measurements of amygdala activation are confounded by stimulus correlated signal fluctuation in nearby veins draining distant brain regions. Sci. Rep. 5, 10499 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Winocur, G. & Moscovitch, M. Memory transformation and systems consolidation. J. Int. Neuropsychol. Soc. 17, 766–780 (2011).

    Article  PubMed  Google Scholar 

  97. Nadel, L., Winocur, G., Ryan, L. & Moscovitch, M. Systems consolidation and the hippocampus: two views. Debates Neurosci. 1, 55–66 (2007).

    Article  Google Scholar 

  98. Nadel, L. & Moscovitch, M. Memory consolidation, retrograde amnesia and the hippocampal complex. Curr. Opin. Neurobiol. 7, 217–227 (1997).

    Article  CAS  PubMed  Google Scholar 

  99. Byrne, P., Becker, S. & Burgess, N. Remembering the past and imagining the future: a neural model of spatial memory and imagery. Psychol. Rev. 114, 340–375 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Hawrylycz, M. J. et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 489, 391–399 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Fischl, B. et al. Predicting the location of entorhinal cortex from MRI. Neuroimage 47, 8–17 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Nieuwenhuys, R., Huijzen, C. & Voogd, J. The Human Central Nervous System (Springer, 2008).

    Book  Google Scholar 

  103. Nogueira, A. B. et al. Existence of a potential neurogenic system in the adult human brain. J. Transl. Med. 12, 75 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Hassabis, D. & Maguire, E. A. The construction system of the brain. Phil. Trans. R. Soc. B 364, 1263–1271 (2009).

    Article  PubMed  Google Scholar 

  105. Schacter, D. L. & Addis, D. R. The cognitive neuroscience of constructive memory: remembering the past and imagining the future. Phil. Trans. R. Soc. B 362, 773–786 (2007).

    Article  Google Scholar 

  106. Raichle, M. E. et al. A default mode of brain function. Proc. Natl Acad. Sci. USA 98, 676–682 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. Buckner, R. L., Roffman, J. L. & Smoller, J. W. Brain Genomics Superstruct Project (GSP). Harvard Dataverse V10 [online], (2014).

    Google Scholar 

  108. Yeo, B. T. et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165 (2011).

    Article  PubMed  Google Scholar 

  109. Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C. & Wager, T. D. Large-scale automated synthesis of human functional neuroimaging data. Nat. Methods 8, 665–670 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Spreng, R. N., Sepulcre, J., Turner, G. R., Stevens, W. D. & Schacter, D. L. Intrinsic architecture underlying the relations among the default, dorsal attention, and frontoparietal control networks of the human brain. J. Cogn. Neurosci. 25, 74–86 (2013).

    Article  PubMed  Google Scholar 

  111. Hayes, S. M., Salat, D. H. & Verfaellie, M. Default network connectivity in medial temporal lobe amnesia. J. Neurosci. 32, 14622–14629 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Bannerman, D. M. et al. Hippocampal synaptic plasticity, spatial memory and anxiety. Nat. Rev. Neurosci. 15, 181–192 (2014).

    Article  CAS  PubMed  Google Scholar 

  113. Pohlack, S. T., Nees, F., Ruttorf, M., Schad, L. R. & Flor, H. Activation of the ventral striatum during aversive contextual conditioning in humans. Biol. Psychol. 91, 74–80 (2012).

    Article  PubMed  Google Scholar 

  114. Marschner, A., Kalisch, R., Vervliet, B., Vansteenwegen, D. & Büchel, C. Dissociable roles for the hippocampus and the amygdala in human cued versus context fear conditioning. J. Neurosci. 28, 9030–9036 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Nees, F. & Pohlack, S. T. Functional MRI studies of the hippocampus. Front. Neurol. Neurosci. 34, 85–94 (2014).

    Article  PubMed  Google Scholar 

  116. Li, G., Fang, L., Fernández, G. & Pleasure, S. J. The ventral hippocampus is the embryonic origin for adult neural stem cells in the dentate gyrus. Neuron 78, 658–672 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Perera, T. D. et al. Necessity of hippocampal neurogenesis for the therapeutic action of antidepressants in adult nonhuman primates. PLoS ONE 6, e17600 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Maller, J. J., Daskalakis, Z. J. & Fitzgerald, P. B. Hippocampal volumetrics in depression: the importance of the posterior tail. Hippocampus 17, 1023–1027 (2007).

    Article  PubMed  Google Scholar 

  119. Leary, O. F. O. & Cryan, J. F. A ventral view on antidepressant action: roles for adult hippocampal neurogenesis along the dorsoventral axis. Trends Pharmacol. Sci. 35, 675–687 (2014).

    Article  CAS  Google Scholar 

  120. Köhler, S., Crane, J. & Milner, B. Differential Contributions of the parahippocampal place area and the anterior hippocampus to human memory for scenes. Hippocampus 12, 718–723 (2002).

    Article  PubMed  Google Scholar 

  121. Poppenk, J., McIntosh, A. R., Craik, F. I. M. & Moscovitch, M. Past experience modulates the neural mechanisms of episodic memory formation. J. Neurosci. 30, 4707–4716 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kumaran, D. & Maguire, E. A. Which computational mechanisms operate in the hippocampus during novelty detection? Hippocampus 17, 735–748 (2007).

    Article  PubMed  Google Scholar 

  123. Lepage, M., Habib, R. & Tulving, E. Hippocampal PET activations of memory encoding and retrieval: the HIPER model. Hippocampus 8, 313–322 (1998).

    Article  CAS  PubMed  Google Scholar 

  124. Martin, V. C., Schacter, D. L., Corballis, M. C. & Addis, D. R. A role for the hippocampus in encoding simulations of future events. Proc. Natl Acad. Sci. USA 108, 13858–13863 (2011).

    Article  CAS  PubMed  Google Scholar 

  125. Chadwick, M. J., Jolly, A. E. J., Amos, D. P., Hassabis, D. & Spiers, H. J. A goal direction signal in the human entorhinal/subicular region. Curr. Biol. 25, 87–92 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Viard, A., Doeller, C. F., Hartley, T., Bird, C. M. & Burgess, N. Anterior hippocampus and goal-directed spatial decision making. J. Neurosci. 31, 4613–4621 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are supported by The Wellcome Trust. The authors thank J. Ekanayake for helpful discussions about vasculature.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eleanor A. Maguire.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

FURTHER INFORMATION

Neurosynth

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeidman, P., Maguire, E. Anterior hippocampus: the anatomy of perception, imagination and episodic memory. Nat Rev Neurosci 17, 173–182 (2016). https://doi.org/10.1038/nrn.2015.24

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn.2015.24

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing