Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

From nerve net to nerve ring, nerve cord and brain — evolution of the nervous system


The puzzle of how complex nervous systems emerged remains unsolved. Comparative studies of neurodevelopment in cnidarians and bilaterians suggest that this process began with distinct integration centres that evolved on opposite ends of an initial nerve net. The 'apical nervous system' controlled general body physiology, and the 'blastoporal nervous system' coordinated feeding movements and locomotion. We propose that expansion, integration and fusion of these centres gave rise to the bilaterian nerve cord and brain.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Animal phylogeny.
Figure 2: Comparison of neurodevelopment in the frog, annelid and sea anemone.
Figure 3: A hypothetical scenario of nervous system evolution.
Figure 4: Development of gastrula-like body forms with an ectodermal nerve net in cnidarians and ctenophores.
Figure 5: The ANS in cnidarians and bilaterians.
Figure 6: Molecular regions in the BNS.
Figure 7: WNT and HH signalling in cnidarians and vertebrates.


  1. 1

    Pantin, C. F. A. The origin of the nervous system. Pubbl. Staz. Zool. Napoli 28, 171–181 (1956).

    Google Scholar 

  2. 2

    McFarlane, I. D., Graff, D. & Grimmelikhuijzen, C. J. P. in Evolution of the First Nervous Systems (ed. Anderson, P. A. V.) 111–127 (Plenum, 1990).

    Google Scholar 

  3. 3

    Bullock, T. H. & Horridge, G. A. Structure and Function in the Nervous System of Invertebrates (Freeman and company, 1965).

    Google Scholar 

  4. 4

    Horridge, G. A. in The Structure and Function of Nervous Tissue (ed. Bourne, G. H.) 1–31 (Academic Press, 1968).

    Google Scholar 

  5. 5

    Anctil, M. Chemical transmission in the sea anemone Nematostella vectensis: a genomic perspective. Comp. Biochem. Physiol. Part D Genom. Proteom. 4, 268–289 (2009).

    Google Scholar 

  6. 6

    Sedgwick, A. On the origin of metameric segmentation and some other morphological questions. Q. J. Microsc. Sci. 24, 43–82 (1884).

    Google Scholar 

  7. 7

    Galliot, B. et al. Origins of neurogenesis, a cnidarian view. Dev. Biol. 332, 2–24 (2009).

    CAS  PubMed  Google Scholar 

  8. 8

    Parker, G. H. The Elementary Nervous System (Lippincott, 1919).

    Google Scholar 

  9. 9

    Hertwig, O. & Hertwig, R. Studien zur Blättertheorie. Heft 1: Die Actinien (Gustav Fischer, 1879).

    Google Scholar 

  10. 10

    Mackie, G. O. The elementary nervous system revisited. Amer. Zool. 30, 907–920 (1990).

    Google Scholar 

  11. 11

    Watanabe, H., Fujisawa, T. & Holstein, T. W. Cnidarians and the evolutionary origin of the nervous system. Develop. Growth Differ. 51, 167–183 (2009).

    CAS  Google Scholar 

  12. 12

    Ma, X., Hou, X., Edgecombe, G. D. & Strausfeld, N. J. Complex brain and optic lobes in an early Cambrian arthropod. Nature 490, 258–261 (2012).

    CAS  PubMed  Google Scholar 

  13. 13

    Achim, K. & Arendt, D. Structural evolution of cell types by step-wise assembly of cellular modules. Curr. Opin. Genet. Dev. 27, 102–108 (2014).

    CAS  PubMed  Google Scholar 

  14. 14

    Pani, A. M. et al. Ancient deuterostome origins of vertebrate brain signalling centres. Nature 483, 289–294 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Denes, A. S. et al. Molecular architecture of annelid nerve cord supports common origin of nervous system centralization in bilateria. Cell 129, 277–288 (2007).

    CAS  PubMed  Google Scholar 

  16. 16

    Irimia, M. et al. Conserved developmental expression of Fezf in chordates and Drosophila and the origin of the zona limitans intrathalamica (ZLI) brain organizer. Evodevo 1, 7 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Haeckel, E. Die Gastraea-Theorie, die phylogenetische Classification des Thierreiches und die Homologie der Keimblätter. Jena Z. Naturwiss. 8, 1–55 (in German) (1874).

    Google Scholar 

  18. 18

    Marlow, H., Matus, D. Q. & Martindale, M. Q. Ectopic activation of the canonical Wnt signaling pathway affects ectodermal patterning along the primary axis during larval development in the anthozoan Nematostella vectensis. Dev. Biol. 380, 324–334 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19

    Tosches, M. A. & Arendt, D. The bilaterian forebrain: an evolutionary chimera. Curr. Opinions Neurobiol. 23, 1080–1089 (2013).

    CAS  Google Scholar 

  20. 20

    Ryan, J. F. et al. The genome of the ctenophore Mnemiopsis leidyi and its implications for cell type evolution. Science 342, 1242592 (2013).

    PubMed  PubMed Central  Google Scholar 

  21. 21

    Moroz, L. L. et al. The ctenophore genome and the evolutionary origins of neural systems. Nature 510, 109–114 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22

    Marlow, H. & Arendt, D. Evolution: ctenophore genomes and the origin of neurons. Curr. Biol. 24, R757–R761 (2014).

    CAS  PubMed  Google Scholar 

  23. 23

    Satterlie, R. A. Do jellyfish have central nervous systems? J. Exp. Biol. 214, 1215–1223 (2011).

    PubMed  Google Scholar 

  24. 24

    Westfall, J. A. & Elliott, C. E. Ultrastructure of the tentacle nerve plexus and putative neural pathways in sea anemones. Invert. Biol. 121, 202–211 (2002).

    Google Scholar 

  25. 25

    Richter, S. et al. Invertebrate neurophylogeny: suggested terms and definitions for a neuroanatomical glossary. Front. Zool. 7, 29 (2010).

    PubMed  PubMed Central  Google Scholar 

  26. 26

    Galliot, B. & Quiquand, M. A two-step process in the emergence of neurogenesis. Eur. J. Neurosci. 34, 847–862 (2011).

    PubMed  Google Scholar 

  27. 27

    Holland, N. D. Early central nervous system evolution: an era of skin brains? Nat. Rev. Neurosci. 4, 617–627 (2003).

    CAS  PubMed  Google Scholar 

  28. 28

    Lowe, C. J. et al. Anteroposterior patterning in hemichordates and the origins of the chordate nervous system. Cell 113, 853–865 (2003).

    CAS  PubMed  Google Scholar 

  29. 29

    Leys, S. P. & Eerkes-Medrano, D. Gastrulation in calcareous sponges: in search of Haeckel's gastraea. Integr. Comp. Biol. 45, 342–351 (2005).

    PubMed  Google Scholar 

  30. 30

    Peteya, D. J. A light and electron microscope study of the nervous system of Ceriantheopsis americanus (Cnidaria, Ceriantharia). Z. Zellforsch. Mikrosk. Anat. 141, 301–317 (1973).

    CAS  PubMed  Google Scholar 

  31. 31

    Marlow, H., Roettinger, E., Boekhout, M. & Martindale, M. Q. Functional roles of Notch signaling in the cnidarian Nematostella vectensis. Dev. Biol. 362, 295–308 (2012).

    CAS  PubMed  Google Scholar 

  32. 32

    Layden, M. J., Boekhout, M. & Martindale, M. Q. Nematostella vectensis achaete-scute homolog NvashA regulates embryonic ectodermal neurogenesis and represents an ancient component of the metazoan neural specification pathway. Development 139, 1013–1022 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33

    Nakanishi, N., Renfer, E., Technau, U. & Rentzsch, F. Nervous systems of the sea anemone Nematostella vectensis are generated by ectoderm and endoderm and shaped by distinct mechanisms. Development 139, 347–357 (2012).

    CAS  PubMed  Google Scholar 

  34. 34

    Royo, J. L. et al. Transphyletic conservation of developmental regulatory state in animal evolution. Proc. Natl Acad. Sci. USA 108, 14186–14191 (2011).

    CAS  PubMed  Google Scholar 

  35. 35

    Magie, C. R., Pang, K. & Martindale, M. Q. Genomic inventory and expression of Sox and Fox genes in the cnidarian Nematostella vectensis. Dev. Genes Evol. 215, 618–630 (2005).

    CAS  PubMed  Google Scholar 

  36. 36

    Watanabe, H. et al. Sequential actions of beta-catenin and Bmp pattern the oral nerve net in Nematostella vectensis. Nat. Commun. 5, 5536 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37

    Westfall, J. A., Elliott, C. F. & Carlin, R. W. Ultrastructural evidence for two-cell and three-cell neural pathways in the tentacle epidermis of the sea anemone Aiptasia pallida. J. Morphol. 251, 83–92 (2002).

    PubMed  Google Scholar 

  38. 38

    Grimmelikhuijzen, C. J. P. & Westfall, J. A. in The Nervous Systems of Invertebrates: An Evolutionary and Comparative Approach. (eds Breidbach, O. & Kutsch, W.) 7–24 (Birkhäuser Verlag, 1995).

    Google Scholar 

  39. 39

    Satterlie, R. A. Neuronal control of swimming in jellyfish: a comparative story. Can. J. Zool. 80, 1654–1669 (2002).

    Google Scholar 

  40. 40

    Mackie, G. O. Neuroid conduction and the evolution of conducting tissues. Q. Rev. Biol. 45, 319–332 (1970).

    CAS  PubMed  Google Scholar 

  41. 41

    Hyman, L. H. The Invertebrates: Protozoa Through Ctenophora. (McGraw-Hill Book Company, 1940).

    Google Scholar 

  42. 42

    Martindale, M. Q. & Henry, J. Q. Intracellular fate mapping in a basal metazoan, the ctenophore Mnemiopsis leidyi, reveals the origins of mesoderm and the existence of indeterminate cell lineages. Dev. Biol. 214, 243–257 (1999).

    CAS  PubMed  Google Scholar 

  43. 43

    Jager, M. et al. New insights on ctenophore neural anatomy: immunofluorescence study in Pleurobrachia pileus (Müller, 1776). J. Exp. Zool. B Mol. Dev. Evol. 316B, 171–187 (2010).

    PubMed  Google Scholar 

  44. 44

    McFarlane, I. D. Nerve nets and conducting systems in sea anemones: two pathways excite tentacle contractions in Calliactis parasitica. J. Exp. Biol. 108, 137–149 (1984).

    Google Scholar 

  45. 45

    McFarlane, I. D. Control of mouth opening and pharynx protrusion during feeding in the sea anemone Calliactis parasitica. J. Exp. Biol. 63, 615–626 (1975).

    CAS  PubMed  Google Scholar 

  46. 46

    Lawn, I. D. Swimming in the sea anemone Stomphia coccinea triggered by a slow conduction system. Nature 262, 708–709 (1976).

    CAS  PubMed  Google Scholar 

  47. 47

    Parkefelt, L., Skogh, C., Nilsson, D. E. & Ekstrom, P. Bilateral symmetric organization of neural elements in the visual system of a coelenterate, Tripedalia cystophora (Cubozoa). J. Comp. Neurol. 492, 251–262 (2005).

    PubMed  Google Scholar 

  48. 48

    Nakanishi, N., Hartenstein, V. & Jacobs, D. K. Development of the rhopalial nervous system in Aurelia sp.1 (Cnidaria, Scyphozoa). Dev. Genes Evol. 219, 301–317 (2009).

    PubMed  PubMed Central  Google Scholar 

  49. 49

    Moroz, L. L. Convergent evolution of neural systems in ctenophores. J. Exp. Biol. 218, 598–611 (2015).

    PubMed  PubMed Central  Google Scholar 

  50. 50

    Arendt, D. The evolution of cell types in animals: emerging principles from molecular studies. Nat. Rev. Genet. 9, 868–882 (2008).

    CAS  PubMed  Google Scholar 

  51. 51

    Arendt, D., Hausen, H. & Purschke, G. The 'division of labour' model of eye evolution. Phil. Trans. R. Soc. B 364, 2809–2817 (2009).

    PubMed  Google Scholar 

  52. 52

    Liang, C., Consortium, F., Forrest, A. R. & Wagner, G. P. The statistical geometry of transcriptome divergence in cell-type evolution and cancer. Nat. Commun. 6, 6066 (2015).

    CAS  PubMed  Google Scholar 

  53. 53

    Alaynick, W. A., Jessell, T. M. & Pfaff, S. L. SnapShot: spinal cord development. Cell 146, 178–178.e1 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54

    Steinmetz, P. R. et al. Six3 demarcates the anterior-most developing brain region in bilaterian animals. Evodevo 1, 14 (2010).

    PubMed  PubMed Central  Google Scholar 

  55. 55

    Chia, F. S. & Koss, R. Fine structural studies of the nervous system and the apical organ in the planula larva of the sea-anemone Anthopleura elegantissima. J. Morph. 160, 275–298 (1979).

    PubMed  Google Scholar 

  56. 56

    Marlow, H. Q. Srivastava, M., Matus, D. Q., Rokhsar, D. & Martindale, M. Q. Anatomy and development of the nervous system of Nematostella vectensis, an anthozoan cnidarian. Dev. Neurobiol. 69, 235–254 (2009).

    CAS  PubMed  Google Scholar 

  57. 57

    Hayward, D. C. et al. Gene structure and larval expression of cnox-2Am from the coral Acropora millepora. Dev. Genes Evol. 211, 10–19 (2001).

    CAS  PubMed  Google Scholar 

  58. 58

    Nakanishi, N., Yuan, D., Jacobs, D. K. & Hartenstein, V. Early development, pattern, and reorganization of the planula nervous system in Aurelia (Cnidaria, Scyphozoa). Dev. Genes Evol. 218, 511–524 (2008).

    PubMed  Google Scholar 

  59. 59

    Martin, V. J. & Thomas, M. B. Nerve elements in the planula of the hydrozoan Pennaria tiarella. J. Morphol. 166, 27–36 (1980).

    PubMed  Google Scholar 

  60. 60

    Nielsen, C. Larval nervous systems: true larval and precocious adult. J. Exp. Biol. 218, 629–636 (2015).

    PubMed  Google Scholar 

  61. 61

    Santagata, S., Resh, C., Hejnol, A., Martindale, M. Q. & Passamaneck, Y. J. Development of the larval anterior neurogenic domains of Terebratalia transversa (Brachiopoda) provides insights into the diversification of larval apical organs and the spiralian nervous system. Evodevo 3, 3 (2012).

    PubMed  PubMed Central  Google Scholar 

  62. 62

    Sinigaglia, C., Busengdal, H., Leclere, L., Technau, U. & Rentzsch, F. The bilaterian head patterning gene six3/6 controls aboral domain development in a cnidarian. PLoS Biol. 11, e1001488 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63

    Marlow, H. et al. Larval body patterning and apical organs are conserved in animal evolution. BMC Biol. 12, 7 (2014).

    PubMed  PubMed Central  Google Scholar 

  64. 64

    Conzelmann, M. et al. Conserved MIP receptor–ligand pair regulates Platynereis larval settlement. Proc. Natl Acad. Sci. USA 110, 8224–8229 (2013).

    CAS  PubMed  Google Scholar 

  65. 65

    Chia, F. S. & Bickell, L. in Settlement and Metamorphosis of Marine Invertebrate Larvae (eds Chia, F. S. & Rice, M. E.) 1–12 (Elsevier, 1978).

    Google Scholar 

  66. 66

    Plickert, G. Proportion-altering factor (Paf) stimulates nerve-cell formation in Hydractinia echinata. Cell Differ. Dev. 26, 19–27 (1989).

    CAS  PubMed  Google Scholar 

  67. 67

    Tessmar-Raible, K. et al. Conserved sensory-neurosecretory cell types in annelid and fish forebrain: insights into hypothalamus evolution. Cell 129, 1389–1400 (2007).

    CAS  PubMed  Google Scholar 

  68. 68

    Tosches, M. A., Bucher, D., Vopalensky, P. & Arendt, D. Melatonin signaling controls circadian swimming behavior in marine zooplankton. Cell 159, 46–57 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69

    Sinigaglia, C., Busengdal, H., Lerner, A., Oliveri, P. & Rentzsch, F. Molecular characterization of the apical organ of the anthozoan Nematostella vectensis. Dev. Biol. 398, 120–133 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70

    Lacalli, T. C. Structure and development of the apical organ in trochophores of Spirobranchus polycerus, Phyllodoce maculata, and Phyllodoce mucosa (Polychaeta). Proc. R. Soc. B Lond. 212, 381–402 (1981).

    Google Scholar 

  71. 71

    Dickinson, A. J. & Croll, R. P. Development of the larval nervous system of the gastropod Ilyanassa obsoleta. J. Comp. Neurol. 466, 197–218 (2003).

    PubMed  Google Scholar 

  72. 72

    Lacalli, T. C. The brain and central nervous system of Müller's larva. Can. J. Zool. 61, 39–51 (1983).

    Google Scholar 

  73. 73

    Byrne, M., Nakajima, Y., Chee, F. C. & Burke, R. D. Apical organs in echinoderm larvae: insights into larval evolution in the Ambulacraria. Evol. Dev. 9, 432–445 (2007).

    PubMed  Google Scholar 

  74. 74

    Jekely, G. Global view of the evolution and diversity of metazoan neuropeptide signaling. Proc. Natl Acad. Sci. USA 110, 8702–8707 (2013).

    CAS  PubMed  Google Scholar 

  75. 75

    Mirabeau, O. & Joly, J. S. Molecular evolution of peptidergic signaling systems in bilaterians. Proc. Natl Acad. Sci. USA 110, E2028–E2037 (2013).

    CAS  PubMed  Google Scholar 

  76. 76

    Conzelmann, M. et al. Neuropeptides regulate swimming depth of Platynereis larvae. Proc. Natl Acad. Sci. USA 108, E1174–E1183 (2011).

    CAS  PubMed  Google Scholar 

  77. 77

    Shimizu, H. & Fujisawa, T. Peduncle of Hydra and the heart of higher organisms share a common ancestral origin. Genesis 36, 182–186 (2003).

    CAS  PubMed  Google Scholar 

  78. 78

    Simmons, D. K., Pang, K. & Martindale, M. Q. Lim homeobox genes in the Ctenophore Mnemiopsis leidyi: the evolution of neural cell type specification. Evodevo 3, 2 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79

    Srivastava, M. et al. Early evolution of the LIM homeobox gene family. BMC Biol. 8, 4 (2010).

    PubMed  PubMed Central  Google Scholar 

  80. 80

    Robson, E. A. The nerve-net of a swimming anemone, Stomphia coccinea. Quart. J. Micr. Sci. 104, 535–549 (1963).

    Google Scholar 

  81. 81

    Grimmelikhuijzen, C. J., Graff, D. & McFarlane, I. D. Neurones and neuropeptides in coelenterates. Arch. Histol Cytol. 52 (Suppl.), 265–278 (1989).

    PubMed  Google Scholar 

  82. 82

    Koizumi, O. Nerve ring of the hypostome in Hydra: is it an origin of the central nervous system of bilaterian animals? Brain Behav. Evol. 69, 151–159 (2007).

    PubMed  Google Scholar 

  83. 83

    Westfall, J. A., Sayyar, K. L. & Elliott, C. F. Cellular origins of kinocilia, stereocilia, and microvilli on tentacles of sea anemones of the genus Calliactis (Cnidaria: Anthozoa). Invertebr. BioI. 117, 186–193 (1998).

    Google Scholar 

  84. 84

    Westfall, J. A. & Kinnamon, J. C. A second sensory-motor-interneuron with neurosecretory granules in Hydra. J. Neurocytol. 7, 365–379 (1978).

    CAS  PubMed  Google Scholar 

  85. 85

    Westfall, J. A. & Kinnamon, J. C. Perioral synaptic connections and their possible role in the feeding behavior of Hydra. Tissue Cell 16, 355–365 (1984).

    CAS  PubMed  Google Scholar 

  86. 86

    Balfour, F. M. A Treatise on Comparative Embryology vol 2, 311–312 (Macmillan, 1880).

    Google Scholar 

  87. 87

    Steinmetz, P. R., Zelada-Gonzales, F., Burgtorf, C., Wittbrodt, J. & Arendt, D. Polychaete trunk neuroectoderm converges and extends by mediolateral cell intercalation. Proc. Natl Acad. Sci. USA 104, 2727–2732 (2007).

    CAS  PubMed  Google Scholar 

  88. 88

    Arendt, D. & Nübler-Jung, K. Dorsal or ventral: similarities in fate maps and gastrulation patterns in annelids, arthropods and chordates. Mech. Dev. 61, 7–21 (1997).

    CAS  PubMed  Google Scholar 

  89. 89

    Mazza, M. E., Pang, K., Reitzel, A. M., Martindale, M. Q. & Finnerty, J. R. A conserved cluster of three PRD-class homeobox genes (homeobrain, rx and orthopedia) in the Cnidaria and Protostomia. Evodevo 1, 3 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. 90

    Röttinger, E., Dahlin, P. & Martindale, M. Q. A framework for the establishment of a cnidarian gene regulatory network for “endomesoderm” specification: the inputs of ß-catenin/TCF signaling. PLoS Genet. 8, e1003164 (2012).

    PubMed  PubMed Central  Google Scholar 

  91. 91

    de Jong, D. M. et al. Components of both major axial patterning systems of the Bilateria are differentially expressed along the primary axis of a 'radiate' animal, the anthozoan cnidarian Acropora millepora. Dev. Biol. 298, 632–643 (2006).

    CAS  PubMed  Google Scholar 

  92. 92

    Christodoulou, F. et al. Ancient animal microRNAs and the evolution of tissue identity. Nature 463, 1084–1088 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. 93

    Bang, A. G., Papalopulu, N., Goulding, M. D. & Kintner, C. Expression of Pax-3 in the lateral neural plate is dependent on a Wnt-mediated signal from posterior nonaxial mesoderm. Dev. Biol. 212, 366–380 (1999).

    CAS  PubMed  Google Scholar 

  94. 94

    Dichmann, D. S. & Harland, R. M. Nkx6 genes pattern the frog neural plate and Nkx6.1 is necessary for motoneuron axon projection. Dev. Biol. 349, 378–386 (2010).

    PubMed  PubMed Central  Google Scholar 

  95. 95

    Saha, M. S., Michel, R. B., Gulding, K. M. & Grainger, R. M. A. Xenopus homebox gene defines dorsal-ventral domains in the developing brain. Development 118, 193–202 (1993).

    CAS  PubMed  Google Scholar 

  96. 96

    Mazet, F. & Shimeld, S. M. The evolution of chordate neural segmentation. Dev. Biol. 251, 258–270 (2002).

    CAS  PubMed  Google Scholar 

  97. 97

    Fritzenwanker, J. H., Gerhart, J., Freeman, R. M. Jr & Lowe, C. J. The Fox/Forkhead transcription factor family of the hemichordate Saccoglossus kowalevskii. Evodevo 5, 17 (2014).

    PubMed  PubMed Central  Google Scholar 

  98. 98

    Kusserow, A. et al. Unexpected complexity of the Wnt gene family in a sea anemone. Nature 433, 156–160 (2005).

    CAS  PubMed  Google Scholar 

  99. 99

    Prakash, N. et al. A Wnt1-regulated genetic network controls the identity and fate of midbrain-dopaminergic progenitors in vivo. Development 133, 89–98 (2006).

    CAS  PubMed  Google Scholar 

  100. 100

    Martin, A., Maher, S., Summerhurst, K., Davidson, D. & Murphy, P. Differential deployment of paralogous Wnt genes in the mouse and chick embryo during development. Evol. Dev. 14, 178–195 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. 101

    Beretta, C. A., Brinkmann, I. & Carl, M. All four zebrafish Wnt7 genes are expressed during early brain development. Gene Expr. Patterns 11, 277–284 (2011).

    CAS  PubMed  Google Scholar 

  102. 102

    Agalliu, D., Takada, S., Agalliu, I., McMahon, A. P. & Jessell, T. M. Motor neurons with axial muscle projections specified by Wnt4/5 signaling. Neuron 61, 708–720 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. 103

    Zakin, L. D. et al. Structure and expression of Wnt13, a novel mouse Wnt2 related gene. Mech. Dev. 73, 107–116 (1998).

    CAS  PubMed  Google Scholar 

  104. 104

    Joksimovic, M., Patel, M., Taketo, M. M., Johnson, R. & Awatramani, R. Ectopic Wnt/β-catenin signaling induces neurogenesis in the spinal cord and hindbrain floor plate. PLoS ONE 7, e30266 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. 105

    Chapman, J. A. et al. The dynamic genome of Hydra. Nature 464, 592–596 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. 106

    Chung, S. et al. Wnt1-lmx1a forms a novel autoregulatory loop and controls midbrain dopaminergic differentiation synergistically with the SHH–FoxA2 pathway. Cell Stem Cell 5, 646–658 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. 107

    Wurst, W. & Prakash, N. Wnt1-regulated genetic networks in midbrain dopaminergic neuron development. J. Mol. Cell Biol. 6, 34–41 (2014).

    CAS  PubMed  Google Scholar 

  108. 108

    Nakatani, T., Kumai, M., Mizuhara, E., Minaki, Y. & Ono, Y. Lmx1a and Lmx1b cooperate with Foxa2 to coordinate the specification of dopaminergic neurons and control of floor plate cell differentiation in the developing mesencephalon. Dev. Biol. 339, 101–113 (2010).

    CAS  PubMed  Google Scholar 

  109. 109

    Filippi, A. et al. Expression and function of nr4a2, lmx1b, and pitx3 in zebrafish dopaminergic and noradrenergic neuronal development. BMC Dev. Biol. 7, 135 (2007).

    PubMed  PubMed Central  Google Scholar 

  110. 110

    Craven, S. E. et al. Gata2 specifies serotonergic neurons downstream of Sonic hedgehog. Development 131, 1165–1173 (2004).

    CAS  PubMed  Google Scholar 

  111. 111

    Mazza, M. E., Pang, K., Martindale, M. Q. & Finnerty, J. R. Genomic organization, gene structure, and developmental expression of three clustered otx genes in the sea anemone Nematostella vectensis. J. Exp. Zool. B Mol. Dev. Evol. 308, 494–506 (2007).

    PubMed  Google Scholar 

  112. 112

    Matus, D. Q., Magie, C. R., Pang, K., Martindale, M. Q. & Thomsen, G. H. The Hedgehog gene family of the cnidarian, Nematostella vectensis, and implications for understanding metazoan Hedgehog pathway evolution. Dev. Biol. 313, 501–518 (2008).

    CAS  PubMed  Google Scholar 

  113. 113

    Ryan, J. F. et al. Pre-bilaterian origins of the Hox cluster and the Hox code: evidence from the sea anemone, Nematostella vectensis. PLoS ONE 2, e153 (2007).

    PubMed  PubMed Central  Google Scholar 

  114. 114

    Strochlic, L. et al. Wnt4 participates in the formation of vertebrate neuromuscular junction. PLoS ONE 7, e29976 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. 115

    Gordon, L. R., Gribble, K. D., Syrett, C. M. & Granato, M. Initiation of synapse formation by Wnt-induced MuSK endocytosis. Development 139, 1023–1033 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. 116

    Inaki, M., Yoshikawa, S., Thomas, J. B., Aburatani, H. & Nose, A. Wnt4 is a local repulsive cue that determines synaptic target specificity. Curr. Biol. 17, 1574–1579 (2007).

    CAS  PubMed  Google Scholar 

  117. 117

    Cho, S. J. et al. Evolutionary dynamics of the wnt gene family: a lophotrochozoan perspective. Mol. Biol. Evol. 27, 1645–1658 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. 118

    Rosso, S. B. & Inestrosa, N. C. WNT signaling in neuronal maturation and synaptogenesis. Front. Cell. Neurosci. 7, 103 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. 119

    Clarke, J. D., Hayes, B. P., Hunt, S. P. & Roberts, A. Sensory physiology, anatomy and immunohistochemistry of Rohon-Beard neurones in embryos of Xenopus laevis. J. Physiol. 348, 511–525 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. 120

    Phillips, B. T. et al. Zebrafish msxB, msxC and msxE function together to refine the neural-nonneural border and regulate cranial placodes and neural crest development. Dev. Biol. 294, 376–390 (2006).

    CAS  PubMed  Google Scholar 

  121. 121

    Woda, J. M., Pastagia, J., Mercola, M. & Artinger, K. B. Dlx proteins position the neural plate border and determine adjacent cell fates. Development 130, 331–342 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. 122

    Park, B.-Y., Hong, C. S., Weaver, J. R., Rosocha, E. M. & Saint-Jeannet, J. P. Xaml1/Runx1 is required for the specification of Rohon-Beard sensory neurons in Xenopus. Dev. Biol. 362, 65–75 (2012).

    CAS  PubMed  Google Scholar 

  123. 123

    Matus, D. Q., Pang, K., Daly, M. & Martindale, M. Q. Expression of Pax gene family members in the anthozoan cnidarian, Nematostella vectensis. Evol. Dev. 9, 25–38 (2007).

    CAS  PubMed  Google Scholar 

  124. 124

    Layden, M. J., Meyer, N. P., Pang, K., Seaver, E. C. & Martindale, M. Q. Expression and phylogenetic analysis of the zic gene family in the evolution and development of metazoans. Evodevo 1, 12 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. 125

    Sullivan, J. C. et al. The evolutionary origin of the Runx/CBFβ transcription factors — studies of the most basal metazoans. BMC Evol. Biol. 8, 228 (2008).

    PubMed  PubMed Central  Google Scholar 

  126. 126

    Fritzsch, B. & Northcutt, R. G. Cranial and spinal nerve organization in amphioxus and lampreys: evidence for an ancestral craniate pattern. Acta Anat. (Basel) 148, 96–109 (1993).

    CAS  Google Scholar 

  127. 127

    Barale, E., Fasolo, A., Girardi, E., Artero, C. & Franzoni, M. F. Immunohistochemical investigation of γ-aminobutyric acid ontogeny and transient expression in the central nervous system of Xenopus laevis tadpoles. J. Comp. Neurol. 368, 285–294 (1996).

    CAS  PubMed  Google Scholar 

  128. 128

    Jager, M. et al. Evidence for involvement of Wnt signalling in body polarities, cell proliferation, and the neuro-sensory system in an adult ctenophore. PLoS ONE 8, e84363 (2013).

    PubMed  PubMed Central  Google Scholar 

  129. 129

    Pang, K., Ryan, J. F., Mullikin, J. C., Baxevanis, A. D. & Martindale, M. Q. Genomic insights into Wnt signaling in an early diverging metazoan, the ctenophore Mnemiopsis leidyi. Evodevo 1, 10 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. 130

    Ryan, J. F., Pang, K., Mullikin, J. C., Martindale, M. Q. & Baxevanis, A. D. The homeodomain complement of the ctenophore Mnemiopsis leidyi suggests that Ctenophora and Porifera diverged prior to the ParaHoxozoa. Evodevo 1, 9 (2010).

    PubMed  PubMed Central  Google Scholar 

  131. 131

    Tautz, D. Segmentation. Dev. Cell 7, 301–312 (2004).

    CAS  PubMed  Google Scholar 

  132. 132

    Valentine, J. W. Dickinsonia as a polypoid organism. Palaeobiology 18, 178–182 (1992).

    Google Scholar 

  133. 133

    Sperling, E. A. & Vinther, J. A placozoan affinity for Dickinsonia and the evolution of late Proterozoic metazoan feeding modes. Evol. Dev. 12, 201–209 (2010).

    PubMed  Google Scholar 

  134. 134

    Nielsen, C. How to make a protostome. Invertebr. Syst. 26, 25–40 (2012).

    Google Scholar 

  135. 135

    Schlosser, G. Evolutionary origins of vertebrate placodes: insights from developmental studies and from comparisons with other deuterostomes. J. Exp. Zool. B Mol. Dev. Evol. 304, 347–399 (2005).

    PubMed  Google Scholar 

  136. 136

    Posnien, N., Koniszewski, N. & Bucher, G. Insect Tc-six4 marks a unit with similarity to vertebrate placodes. Dev. Biol. 350, 208–216 (2010).

    PubMed  Google Scholar 

  137. 137

    Arendt, D., Tessmar, K., de Campos-Baptista, M. I., Dorresteijn, A. & Wittbrodt, J. Development of pigment-cup eyes in the polychaete Platynereis dumerilii and evolutionary conservation of larval eyes in Bilateria. Development 129, 1143–1154 (2002).

    CAS  PubMed  Google Scholar 

  138. 138

    Tomer, R., Denes, A., Tessmar-Raible, K. & Arendt, D. Cellular resolution expression profiling reveals common origin of annelid mushroom bodies and vertebrate pallium. Cell 142, 800–809 (2010).

    CAS  PubMed  Google Scholar 

  139. 139

    Nielsen, C. Animal Evolution: Interrelationships of the Living Phyla (Oxford Univ. press, 2012).

    Google Scholar 

  140. 140

    Hempelmann, F. Zur Naturgeschichte von Nereis dumerilii Aud. et Edw. Zoologica 25, 1–135 (in German) (1911).

    Google Scholar 

  141. 141

    Brusca, R. C. & Brusca, G. J. Invertebrates (Sinauer Associates, 2003).

    Google Scholar 

  142. 142

    Zuber, M. E., Gestri, G., Viczian, A. S., Barsacchi, G. & Harris, W. A. Specification of the vertebrate eye by a network of eye field transcription factors. Development 130, 5155–5167 (2003).

    CAS  PubMed  Google Scholar 

  143. 143

    Grimmelikhuijzen, C. J. Antisera to the sequence Arg-Phe-amide visualize neuronal centralization in hydroid polyps. Cell Tissue Res. 241, 171–182 (1985).

    CAS  Google Scholar 

  144. 144

    Fritzenwanker, J. H., Saina, M. & Technau, U. Analysis of forkhead and snail expression reveals epithelial-mesenchymal transitions during embryonic and larval development of Nematostella vectensis. Dev. Biol. 275, 389–402 (2004).

    CAS  PubMed  Google Scholar 

  145. 145

    Sainaa, M., Genikhovich, G., Renfer, E. & Technau, U. BMPs and chordin regulate patterning of the directive axis in a sea anemone. Proc. Natl Acad. Sci. USA 105, 18592–18597 (2009).

    Google Scholar 

  146. 146

    Steinmetz, P. R., Kostyuchenko, R. P., Fischer, A. & Arendt, D. The segmental pattern of otx, gbx, and Hox genes in the annelid Platynereis dumerilii. Evol. Dev. 13, 72–79 (2011).

    PubMed  Google Scholar 

  147. 147

    Niss, K. & Leutz, A. Expression of the homeobox gene GBX2 during chicken development. Mech. Dev. 76, 151–155 (1998).

    CAS  PubMed  Google Scholar 

  148. 148

    Peres, J. N., McNulty, C. L. & Durston, A. J. Interaction between X-Delta-2 and Hox genes regulates segmentation and patterning of the anteroposterior axis. Mech. Dev. 123, 321–333 (2006).

    CAS  PubMed  Google Scholar 

  149. 149

    DuBuc, T. Q., Ryan, J. F., Shinzato, C., Satoh, N. & Martindale, M. Q. Coral comparative genomics reveal expanded Hox cluster in the cnidarian–bilaterian ancestor. Integr. Comp. Biol. 52, 835–841 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. 150

    Chourrout, D. et al. Minimal ProtoHox cluster inferred from bilaterian and cnidarian Hox complements. Nature 442, 684–687 (2006).

    CAS  PubMed  Google Scholar 

  151. 151

    Arendt, D., Benito-Gutierrez, E., Brunet, T. & Marlow, H. Gastric pouches and the mucociliary sole: setting the stage for nervous system evolution. Phil. Trans. R. Soc. B 370, 20150286 (2015)

    PubMed  Google Scholar 

Download references


The authors thank K. Achim, E. Benito-Gutierrez, P. Bertucci, T. Brunet, T. Chartier, A. Lauri, H. Martinez Vergara, D. Puga, S. Rohr and P. Vopalensky for their comments and suggestions on earlier versions of the manuscript, and the entire Arendt laboratory for continuous exciting discussions.

Author information



Corresponding author

Correspondence to Detlev Arendt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides



A group of cnidarians with bilateral symmetry including the sea anemones, corals and sea pens. Anthozoans have a biphasic life cycle involving swimming planula larvae and adult polyps with tentacles; they do not have a medusa stage.

Apical nervous system

(ANS). An integrative nervous centre developing from the apical plate and composed of sensory-neurosecretory cells and of sensory neurons and interneurons projecting into the apical neuropil.

Apical neuropil

A neuropil located at the apical pole of cnidarian larvae and bilaterian primary larvae, underneath the 'apical organ'. The apical neuropil is formed by neurons that belong to the 'apical nervous system' and receives paracrine input from the apical organ.


A group of animals with bilateral symmetry, including the vertebrates, cephalochordates, sea urchins, insects, annelids and molluscs. Characteristic features relevant for nervous system evolution include a through-gut with mouth and anus, commissural interneurons, a chimeric brain and paired sensory organs.

Blastoporal nervous system

(BNS). An integrative nervous centre developing from ectoderm surrounding the blastopore.


A group of tube-dwelling cnidarian polyps that branched off early in the cnidarian tree and are thus especially informative about early cnidarian conditions


A group of animals characterized by their name-giving stinging cells (cnidocytes) and simple gut with a single opening; the cnidarians include jellyfishes, corals and sea anemones. Adults in this group are polyps and/or medusae.


One of a group of jelly-like animals with bilateral symmetry that spend their entire life swimming in the water, propelled by cilia in a comb-like arrangement; they have a nerve net and a primitive gut. The phylogenetic position of this group is not settled.


Traits present in distinct groups that are thought to be inherited from a similar trait in their last common ancestor. Homologous traits often share specific internal structures, similar positions within the body and continuity of phylogenetic distribution.


A group of cnidarians that form medusae as part of their adult life cycle. Medusozoans include the stinging jellyfish, box jellyfish and the developmental model systems Clytia hemisphaerica and Hydra Spp.

Nerve cords

The most-prominent longitudinal part of the central nervous system in bilaterian animals, extending along the animal's anterior–posterior axis. In vertebrates, the nerve cords correspond to the hindbrain and spinal cord.

Nerve rings

In Cnidaria, concentrations of neurons and axons around the pharynx or interconnecting the rhopalia.


A group of animals that includes the Cnidaria, Ctenophora and Bilateria but excludes more basal metazoans, such as the sponges (the Porifera). The defining feature of this group is the presence of neurons.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Arendt, D., Tosches, M. & Marlow, H. From nerve net to nerve ring, nerve cord and brain — evolution of the nervous system. Nat Rev Neurosci 17, 61–72 (2016).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing