Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

DNA uptake during bacterial transformation

Key Points

  • Genetic competence refers to the ability of some bacteria to undergo transformation — to take up exogenous DNA and incorporate it stably into their own genome.

  • Naturally transformable organisms express specialized proteins that function in DNA uptake and processing. These proteins are usually conserved among the competent bacteria, both Gram-positive and Gram-negative.

  • Among the proteins that are involved in DNA uptake, a subset is related to components of the type IV pilus and type II secretion systems. In piliated Gram-negative organisms, these proteins are involved in both pilus formation and DNA uptake, leading to a correlation between these two phenotypes.

  • The function of this group of proteins is to bring DNA from the surface, across the outer membrane, peptidoglycan layer and periplasmic space (in Gram-negatives), or across the cell wall (in Gram-positives), to the cytoplasmic membrane.

  • By contrast, Helicobacter pylori uses proteins that are related to components of the type IV secretion and conjugation systems to bring DNA to the cytoplasmic membrane.

  • A translocation complex mediates the transport of DNA across the cytoplasmic membrane. The proteins in this complex are: a DNA receptor, a polytopic membrane protein that can form a channel and an ATP-binding protein. These components show characteristics of elements from ABC transporter systems.

Abstract

Naturally competent bacteria are able to take up exogenous DNA and undergo genetic transformation. The transport of DNA from the extracellular milieu into the cytoplasm is a complex process, and requires proteins that are related to those involved in the assembly of type IV pili and type II secretion systems, as well as a DNA translocase complex at the cytoplasmic membrane. Here, we will review the current knowledge of DNA transport during transformation.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Comparison of machinery required for type II secretion, type IV pilus formation and transformation in Gram-negative and Gram-positive bacteria.

References

  1. Lorenz, M. G. & Wackernagel, W. Bacterial gene transfer by natural genetic transformation in the environment. Microbiol. Rev. 58, 563–602 (1994).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. MacFadyen, L. P. et al. Competence development by Haemophilus influenzae is regulated by the availability of nucleic acid precursors. Mol. Microbiol. 40, 700–707 (2001).

    CAS  PubMed  Article  Google Scholar 

  3. Claverys, J. P. & Havarstein, L. S. Extracellular-peptide control of competence for genetic transformation in Streptococcus pneumoniae. Front. Biosci. 7, d1798–d1814 (2002).

    CAS  PubMed  Article  Google Scholar 

  4. Hamoen, L. W., Venema, G. & Kuipers, O. P. Controlling competence in Bacillus subtilis: shared use of regulators. Microbiology 149, 9–17 (2003).

    CAS  PubMed  Article  Google Scholar 

  5. Claverys, J. P. & Martin, B. Bacterial 'competence' genes: signatures of active transformation, or only remnants? Trends Microbiol. 11, 161–165 (2003).

    CAS  PubMed  Article  Google Scholar 

  6. Inamine, G. S. & Dubnau, D. ComEA, a Bacillus subtilis integral membrane protein required for genetic transformation, is needed for both DNA binding and transport. J. Bacteriol. 177, 3045–3051 (1995).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. Berge, M., Moscoso, M., Prudhomme, M., Martin, B. & Claverys, J. P. Uptake of transforming DNA in Gram-positive bacteria: a view from Streptococcus pneumoniae. Mol. Microbiol. 45, 411–421 (2002).

    CAS  PubMed  Article  Google Scholar 

  8. Strauss, N. Configuration of transforming deoxyribonucleic acid during entry into Bacillus subtilis. J. Bacteriol. 89, 288–293 (1965).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. Provvedi, R., Chen, I. & Dubnau, D. NucA is required for DNA cleavage during transformation of Bacillus subtilis. Mol. Microbiol. 40, 634–644 (2001).

    CAS  PubMed  Article  Google Scholar 

  10. Lacks, S. & Greenberg, B. Single-strand breakage on binding of DNA to cells in the genetic transformation of Diplococcus pneumoniae. J. Mol. Biol. 101, 255–275 (1976).

    CAS  PubMed  Article  Google Scholar 

  11. Morrison, D. A. & Guild, W. R. Breakage prior to entry of donor DNA in pneumococcus transformation. Biochim. Biophys. Acta. 299, 545–556 (1973).

    CAS  PubMed  Article  Google Scholar 

  12. Sisco, K. L. & Smith, H. O. Sequence-specific DNA uptake in Haemophilus transformation. Proc. Natl Acad. Sci. USA 76, 972–976 (1979).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. Goodman, S. D. & Scocca, J. J. Identification and arrangement of the DNA sequence recognized in specific transformation of Neisseria gonorrhoeae. Proc. Natl Acad. Sci. USA 85, 6982–6986 (1988).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. Elkins, C., Thomas, C. E., Seifert, H. S. & Sparling, P. F. Species-specific uptake of DNA by gonococci is mediated by a 10-base-pair sequence. J. Bacteriol. 173, 3911–3913 (1991).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. Danner, D. B., Deich, R. A., Sisco, K. L. & Smith, H. O. An eleven-base-pair sequence determines the specificity of DNA uptake in Haemophilus transformation. Gene 11, 311–318 (1980).

    CAS  PubMed  Article  Google Scholar 

  16. Fitzmaurice, W. P., Benjamin, R. C., Huang, P. C. & Scocca, J. J. Characterization of recognition sites on bacteriophage HP1c1 DNA which interact with the DNA uptake system of Haemophilus influenzae. Gene 31, 187–196 (1984).

    CAS  PubMed  Article  Google Scholar 

  17. Wang, Y., Goodman, S. D., Redfield, R. J. & Chen, C. Natural transformation and DNA uptake signal sequences in Actinobacillus actinomycetemcomitans. J. Bacteriol. 184, 3442–3449 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. Smith, H. O., Tomb, J. F., Dougherty, B. A., Fleischmann, R. D. & Venter, J. C. Frequency and distribution of DNA uptake signal sequences in the Haemophilus influenzae Rd genome. Science 269, 538–540 (1995).

    CAS  PubMed  Article  Google Scholar 

  19. Parkhill, J. et al. Complete DNA sequence of a serogroup A strain of Neisseria meningitidis Z2491. Nature 404, 502–506 (2000).

    CAS  PubMed  Article  Google Scholar 

  20. Tettelin, H. et al. Complete genome sequence of Neisseria meningitidis serogroup B strain MC58. Science 287, 1809–1815 (2000).

    CAS  PubMed  Article  Google Scholar 

  21. Aas, F. E. et al. Competence for natural transformation in Neisseria gonorrhoeae: components of DNA binding and uptake linked to type IV pilus expression. Mol. Microbiol. 46, 749–760 (2002).

    CAS  PubMed  Article  Google Scholar 

  22. Aas, F. E., Lovold, C. & Koomey, M. An inhibitor of DNA binding and uptake events dictates the proficiency of genetic transformation in Neisseria gonorrhoeae: mechanism of action and links to type IV pilus expression. Mol. Microbiol. 46, 1441–1450 (2002). References 21 and 22 show that expression of two minor pilins can modulate the ability of Neisseria gonorrhoeae to bind and take up DNA; the role of PilT, the traffic NTPase responsible for pilus retraction and twitching motility, is also investigated.

    CAS  PubMed  Article  Google Scholar 

  23. Kahn, M. E., Barany, F. & Smith, H. O. Transformasomes: specialized membranous structures that protect DNA during Haemophilus transformation. Proc. Natl Acad. Sci. USA 80, 6927–6931 (1983).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. Drake, S. L., Sandstedt, S. A. & Koomey, M. PilP, a pilus biogenesis lipoprotein in Neisseria gonorrhoeae, affects expression of PilQ as a high-molecular-mass multimer. Mol. Microbiol. 23, 657–668 (1997).

    CAS  PubMed  Article  Google Scholar 

  25. Nouwen, N. et al. Secretin PulD: association with pilot PulS, structure, and ion-conducting channel formation. Proc. Natl Acad. Sci. USA 96, 8173–8177 (1999).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. Collins, R. F., Davidsen, L., Derrick, J. P., Ford, R. C. & Tonjum, T. Analysis of the PilQ secretin from Neisseria meningitidis by transmission electron microscopy reveals a dodecameric quaternary structure. J. Bacteriol. 183, 3825–3832 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. Nouwen, N., Stahlberg, H., Pugsley, A. P. & Engel, A. Domain structure of secretin PulD revealed by limited proteolysis and electron microscopy. EMBO J. 19, 2229–2236 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. Opalka, N. et al. Structure of the filamentous phage pIV multimer by cryo-electron microscopy. J. Mol. Biol. 325, 461–470 (2003).

    CAS  PubMed  Article  Google Scholar 

  29. Marciano, D. K., Russel, M. & Simon, S. M. An aqueous channel for filamentous phage export. Science 284, 1516–1519 (1999).

    CAS  PubMed  Article  Google Scholar 

  30. Drake, S. L. & Koomey, M. The product of the pilQ gene is essential for the biogenesis of type IV pili in Neisseria gonorrhoeae. Mol. Microbiol. 18, 975–986 (1995).

    CAS  PubMed  Article  Google Scholar 

  31. Parge, H. E. et al. Structure of the fibre-forming protein pilin at 2. 6 Å resolution. Nature 378, 32–38 (1995).

    CAS  PubMed  Article  Google Scholar 

  32. Merz, A. J., So, M. & Sheetz, M. P. Pilus retraction powers bacterial twitching motility. Nature 407, 98–102 (2000).

    CAS  PubMed  Article  Google Scholar 

  33. Skerker, J. M. & Berg, H. C. Direct observation of extension and retraction of type IV pili. Proc. Natl Acad. Sci. USA 98, 6901–6904 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. Mattick, J. S. Type IV pili and twitching motility. Annu. Rev. Microbiol. 56, 289–314 (2002).

    CAS  PubMed  Article  Google Scholar 

  35. LaPointe, C. F. & Taylor, R. K. The type 4 prepilin peptidases comprise a novel family of aspartic acid proteases. J. Biol. Chem. 275, 1502–1510 (2000).

    CAS  PubMed  Article  Google Scholar 

  36. Nunn, D. Bacterial type II protein export and pilus biogenesis: more than just homologies? Trends Cell Biol. 9, 402–408 (1999).

    CAS  PubMed  Article  Google Scholar 

  37. Keizer, D. W. et al. Structure of a pilin monomer from Pseudomonas aeruginosa: implications for the assembly of pili. J. Biol. Chem. 276, 24186–24193 (2001).

    CAS  PubMed  Article  Google Scholar 

  38. Tonjum, T. & Koomey, M. The pilus colonization factor of pathogenic neisserial species: organelle biogenesis and structure/function relationships — a review. Gene 192, 155–163 (1997).

    CAS  PubMed  Article  Google Scholar 

  39. Wolfgang, M., van Putten, J. P., Hayes, S. F., Dorward, D. & Koomey, M. Components and dynamics of fiber formation define a ubiquitous biogenesis pathway for bacterial pili. EMBO J. 19, 6408–6418 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. Wolfgang, M. et al. PiIT mutations lead to simultaneous defects in competence for natural transformation and twitching motility in piliated Neisseria gonorrhoeae. Mol. Microbiol. 29, 321–330 (1998).

    CAS  PubMed  Article  Google Scholar 

  41. Russel, M. Macromolecular assembly and secretion across the bacterial cell envelope: type II protein secretion systems. J. Mol. Biol. 279, 485–499 (1998).

    CAS  PubMed  Article  Google Scholar 

  42. Sandkvist, M. Biology of type II secretion. Mol. Microbiol. 40, 271–283 (2001).

    CAS  PubMed  Article  Google Scholar 

  43. Pugsley, A. P. The complete general secretory pathway in Gram-negative bacteria. Microbiol. Rev. 57, 50–108 (1993).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. Sauvonnet, N., Vignon, G., Pugsley, A. P. & Gounon, P. Pilus formation and protein secretion by the same machinery in Escherichia coli. EMBO J. 19, 2221–2228 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. Durand, E. et al. Type II protein secretion in Pseudomonas aeruginosa: the pseudopilus is a multifibrillar and adhesive structure. J. Bacteriol. 185, 2749–2758 (2003). References 44 and 45 confirmed the long-held suspicion that the pseudopilins from type II secretion systems can be assembled by the other components of the secreton into a higher-order structure, the pseudopilus; whether this finding applies to the pseudopilins involved in competence remains to be determined.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. Vignon, G. et al. Type IV-like pili formed by the type II secreton: specificity, composition, bundling, polar localization, and surface presentation of peptides. J. Bacteriol. 185, 3416–3428 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. Sparling, P. F. Genetic transformation of Neisseria gonorrhoeae to streptomycin resistance. J. Bacteriol. 92, 1364–1371 (1966).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. Stone, B. J. & Kwaik, Y. A. Natural competence for DNA transformation by Legionella pneumophila and its association with expression of type IV pili. J. Bacteriol. 181, 1395–1402 (1999).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. Graupner, S. et al. Type IV pilus genes pilA and pilC of Pseudomonas stutzeri are required for natural genetic transformation, and pilA can be replaced by corresponding genes from nontransformable species. J. Bacteriol. 182, 2184–2190 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. Yoshihara, S. et al. Mutational analysis of genes involved in pilus structure, motility and transformation competency in the unicellular motile cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol. 42, 63–73 (2001).

    CAS  PubMed  Article  Google Scholar 

  51. Kennan, R. M., Dhungyel, O. P., Whittington, R. J., Egerton, J. R. & Rood, J. I. The type IV fimbrial subunit gene (fimA) of Dichelobacter nodosus is essential for virulence, protease secretion, and natural competence. J. Bacteriol. 183, 4451–4458 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. Mathis, L. S. & Scocca, J. J. On the role of pili in transformation of Neisseria gonorrhoeae. J. Gen. Microbiol. 130, 3165–3173 (1984).

    CAS  PubMed  Google Scholar 

  53. Forest, K. T. & Tainer, J. A. Type-4 pilus-structure: outside to inside and top to bottom — a minireview. Gene 192, 165–169 (1997).

    CAS  PubMed  Article  Google Scholar 

  54. Rudel, T. et al. Role of pili and the phase-variable PilC protein in natural competence for transformation of Neisseria gonorrhoeae. Proc. Natl Acad. Sci. USA 92, 7986–7990 (1995).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. Gibbs, C. P. et al. Reassortment of pilin genes in Neisseria gonorrhoeae occurs by two distinct mechanisms. Nature 338, 651–652 (1989).

    CAS  PubMed  Article  Google Scholar 

  56. Long, C. D., Tobiason, D. M., Lazio, M. P., Kline, K. A. & Seifert, H. S. Low-level pilin expression allows for substantial DNA transformation competence in Neisseria gonorrhoeae. Infect. Immun. 71, 6279–6291 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. Chen, I. & Dubnau, D. DNA transport during transformation. Front. Biosci. 8, s544–s556 (2003).

    CAS  PubMed  Article  Google Scholar 

  58. Wolfgang, M., van Putten, J. P. Hayes, S. F. & Koomey, M. The comP locus of Neisseria gonorrhoeae encodes a type IV prepilin that is dispensable for pilus biogenesis but essential for natural transformation. Mol. Microbiol. 31, 1345–1357 (1999).

    CAS  PubMed  Article  Google Scholar 

  59. Friedrich, A., Rumszauer, J., Henne, A. & Averhoff, B. Pilin-like proteins in the extremely thermophilic bacterium Thermus thermophilus HB27: implication in competence for natural transformation and links to type IV pilus biogenesis. Appl. Environ. Microbiol. 69, 3695–3700 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. Porstendorfer, D., Drotschmann, U. & Averhoff, B. A novel competence gene, comP, is essential for natural transformation of Acinetobacter. Appl. Environ. Microbiol. 63, 4150–4157 (1997).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. Graupner, S. & Wackernagel, W. Pseudomonas stutzeri has two closely related pilA genes (type IV pilus structural protein) with opposite influences on natural genetic transformation. J. Bacteriol. 183, 2359–2366 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. Dubnau, D. & Provvedi, R. Internalizing DNA. Res. Microbiol. 151, 475–480 (2000).

    CAS  PubMed  Article  Google Scholar 

  63. Meima, R. et al. The bdbDC operon of Bacillus subtilis encodes thiol-disulfide oxidoreductases required for competence development. J. Biol. Chem. 277, 6994–7001 (2002).

    CAS  PubMed  Article  Google Scholar 

  64. Provvedi, R. & Dubnau, D. ComEA is a DNA receptor for transformation of competent Bacillus subtilis. Mol. Microbiol. 31, 271–280 (1999). The authors show that ComEA, a conserved competence protein required for both DNA binding and uptake, is itself a non-sequence-specific double-strand-DNA-binding protein, acting as a cell-surface DNA receptor.

    CAS  PubMed  Article  Google Scholar 

  65. Graupner, S., Weger, N., Sohni, M. & Wackernagel, W. Requirement of novel competence genes pilT and pilU of Pseudomonas stutzeri for natural transformation and suppression of pilT deficiency by a hexahistidine tag on the type IV pilus protein PilAI. J. Bacteriol. 183, 4694–4701 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  66. van Nieuwenhoven, M. H., Hellingwerf, K. J., Venema, G. & Konings, W. N. Role of proton motive force in genetic transformation of Bacillus subtilis. J. Bacteriol. 151, 771–776 (1982).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  67. Wolfgang, M., Park, H. S., Hayes, S. F., van Putten, J. P. & Koomey, M. Suppression of an absolute defect in type IV pilus biogenesis by loss-of-function mutations in pilT, a twitching motility gene in Neisseria gonorrhoeae. Proc. Natl Acad. Sci. USA 95, 14973–14978 (1998).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  68. Saier, M. H. Jr. A functional-phylogenetic classification system for transmembrane solute transporters. Microbiol. Mol. Biol. Rev. 64, 354–411 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  69. van der Heide, T. & Poolman, B. ABC transporters: one, two or four extracytoplasmic substrate-binding sites? EMBO Rep. 3, 938–943 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  70. Chen, I. & Gotschlich, E. C. ComE, a competence protein from Neisseria gonorrhoeae with DNA-binding activity. J. Bacteriol. 183, 3160–3168 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  71. Friedrich, A., Hartsch, T. & Averhoff, B. Natural transformation in mesophilic and thermophilic bacteria: identification and characterization of novel, closely related competence genes in Acinetobacter sp. strain BD413 and Thermus thermophilus HB27. Appl. Environ. Microbiol. 67, 3140–3148 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  72. Dubnau, D. DNA uptake in bacteria. Annu. Rev. Microbiol. 53, 217–244 (1999).

    CAS  PubMed  Article  Google Scholar 

  73. Facius, D. & Meyer, T. F. A novel determinant (comA) essential for natural transformation competence in Neisseria gonorrhoeae. Mol. Microbiol. 10, 699–712 (1993).

    CAS  PubMed  Article  Google Scholar 

  74. Graupner, S. & Wackernagel, W. Identification and characterization of novel competence genes comA and exbB involved in natural genetic transformation of Pseudomonas stutzeri. Res. Microbiol. 152, 451–460 (2001).

    CAS  PubMed  Article  Google Scholar 

  75. Facius, D., Fussenegger, M. & Meyer, T. F. Sequential action of factors involved in natural competence for transformation of Neisseria gonorrhoeae. FEMS Microbiol. Lett. 137, 159–164 (1996).

    CAS  PubMed  Article  Google Scholar 

  76. Barany, F., Kahn, M. E. & Smith, H. O. Directional transport and integration of donor DNA in Haemophilus influenzae transformation. Proc. Natl Acad. Sci. USA 80, 7274–7278 (1983).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  77. Chaussee, M. S. & Hill, S. A. Formation of single-stranded DNA during DNA transformation of Neisseria gonorrhoeae. J. Bacteriol. 180, 5117–5122 (1998).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  78. Berge, M., Mortier-Barriere, I., Martin, B. & Claverys, J. P. Transformation of Streptococcus pneumoniae relies on DprA- and RecA-dependent protection of incoming DNA single strands. Mol. Microbiol. 50, 527–536 (2003).

    CAS  PubMed  Article  Google Scholar 

  79. Nedenskov-Sorensen, P., Bukholm, G. & Bovre, K. Natural competence for genetic transformation in Campylobacter pylori. J. Infect. Dis. 161, 365–366 (1990).

    CAS  PubMed  Article  Google Scholar 

  80. Saunders, N. J., Peden, J. F. & Moxon, E. R. Absence in Helicobacter pylori of an uptake sequence for enhancing uptake of homospecific DNA during transformation. Microbiology 145, 3523–3528 (1999).

    CAS  PubMed  Article  Google Scholar 

  81. Israel, D. A., Lou, A. S. & Blaser, M. J. Characteristics of Helicobacter pylori natural transformation. FEMS Microbiol. Lett. 186, 275–280 (2000).

    CAS  PubMed  Article  Google Scholar 

  82. Bart, A., Smeets, L. C. & Kusters, J. G. DNA uptake sequences in Helicobacter pylori. Microbiology 146, 1255–1256 (2000).

    CAS  PubMed  Article  Google Scholar 

  83. Christie, P. J. Type IV secretion: intercellular transfer of macromolecules by systems ancestrally related to conjugation machines. Mol. Microbiol. 40, 294–305 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  84. Hofreuter, D., Odenbreit, S., Henke, G. & Haas, R. Natural competence for DNA transformation in Helicobacter pylori: identification and genetic characterization of the comB locus. Mol. Microbiol. 28, 1027–1038 (1998).

    CAS  PubMed  Article  Google Scholar 

  85. Hofreuter, D., Odenbreit, S. & Haas, R. Natural transformation competence in Helicobacter pylori is mediated by the basic components of a type IV secretion system. Mol. Microbiol. 41, 379–391 (2001). References 84 and 85 show that transformation in Helicobacter pylori is mediated by proteins related to components of type IV secretion systems, in contrast to other competence systems, which use type-II-secretion-related proteins.

    CAS  PubMed  Article  Google Scholar 

  86. Hofreuter, D., Karnholz, A. & Haas, R. Topology and membrane interaction of Helicobacter pylori ComB proteins involved in natural transformation competence. Int. J. Med. Microbiol. 293, 153–165 (2003).

    CAS  PubMed  Article  Google Scholar 

  87. Yeh, Y. C., Lin, T. L., Chang, K. C. & Wang, J. T. Characterization of a ComE3 homologue essential for DNA transformation in Helicobacter pylori. Infect. Immun. 71, 5427–5431 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  88. Bacon, D. J. et al. Involvement of a plasmid in virulence of Campylobacter jejuni 81-176. Infect. Immun 68, 4384–4390 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  89. Wiesner, R. S., Hendrixson, D. R. & DiRita, V. J. Natural transformation of Campylobacter jejuni requires components of a type II secretion system. J. Bacteriol. 185, 5408–5418 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  90. Redfield, R. J. Genes for breakfast: the have-your-cake-and-eat-it-too of bacterial transformation. J. Hered. 84, 400–404 (1993).

    CAS  PubMed  Article  Google Scholar 

  91. Redfield, R. J. Do bacteria have sex? Nature Rev. Genet. 2, 634–639 (2001).

    CAS  PubMed  Article  Google Scholar 

  92. Steinmoen, H., Teigen, A. & Havarstein, L. S. Competence-induced cells of Streptococcus pneumoniae lyse competence-deficient cells of the same strain during cocultivation. J. Bacteriol. 185, 7176–7183 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  93. Steinmoen, H., Knutsen, E. & Havarstein, L. S. Induction of natural competence in Streptococcus pneumoniae triggers lysis and DNA release from a subfraction of the cell population. Proc. Natl Acad. Sci. USA 99, 7681–7686 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  94. Dillard, J. P. & Seifert, H. S. A variable genetic island specific for Neisseria gonorrhoeae is involved in providing DNA for natural transformation and is found more often in disseminated infection isolates. Mol. Microbiol. 41, 263–277 (2001).

    CAS  PubMed  Article  Google Scholar 

  95. Griffith, F. Significance of Pneumococcal types. J. Hyg. 27, 113 (1928).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  96. Avery, O. T., MacLeod, C. M. & McCarthy, M. Studies on the chemical nature of the substance inducing transformation of pneumococcal types. I. Induction of transformation by a deoxyribonucleic acid fraction isolated from pneumococcus type III. J. Exp. Med. 79, 137 (1944). A seminal paper in the history of modern genetics, demonstrating that the 'transforming principle' is DNA.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  97. Dougherty, B. A. & Smith, H. O. Identification of Haemophilus influenzae Rd transformation genes using cassette mutagenesis. Microbiology 145, 401–409 (1999).

    CAS  PubMed  Article  Google Scholar 

  98. Friedrich, A., Prust, C., Hartsch, T., Henne, A. & Averhoff, B. Molecular analyses of the natural transformation machinery and identification of pilus structures in the extremely thermophilic bacterium Thermus thermophilus strain HB27. Appl. Environ. Microbiol. 68, 745–755 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  99. Koomey, M. Competence for natural transformation in Neisseria gonorrhoeae: a model system for studies of horizontal gene transfer. APMIS Suppl. 84, 56–61 (1998).

    CAS  PubMed  Article  Google Scholar 

  100. Pestova, E. V. & Morrison, D. A. Isolation and characterization of three Streptococcus pneumoniae transformation-specific loci by use of a lacZ reporter insertion vector. J. Bacteriol. 180, 2701–2710 (1998).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  101. Winther-Larsen, H. C. et al. Neisseria gonorrhoeae PilV, a type IV pilus-associated protein essential to human epithelial cell adherence. Proc. Natl Acad. Sci. USA 98, 15276–15281 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  102. Campbell, E. A., Choi, S. Y. & Masure, H. R. A competence regulon in Streptococcus pneumoniae revealed by genomic analysis. Mol. Microbiol. 27, 929–939 (1998).

    CAS  PubMed  Article  Google Scholar 

  103. Smeets, L. C. & Kusters, J. G. Natural transformation in Helicobacter pylori: DNA transport in an unexpected way. Trends Microbiol. 10, 159–162 (2002).

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

We thank members of our laboratory for helpful discussions and L. Mindich and B. Mulder for comments on the manuscript. We apologize to investigators whose work was not mentioned due to space constraints. The work cited from our lab was supported by NIH grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Dubnau.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez

Actinobacillus actinomycetemcomitans

Bacillus subtilis

Campylobacter jejuni

Haemophilus influenzae

Helicobacter pylori

Neisseria gonorrhoeae

Streptococcus pneumoniae

SwissProt

BdbC

BdbD

ComC

ComEA

ComEC

ComFA

ComGA

ComGB

ComGC

ComGD

ComGE

ComGF

NucA

PilAII

PilC

PilD

PilE

PilF

PilG

PilP

PilQ

PilT

PulD

PulE

PulF

PulG

PulH

PulI

PulJ

PulK

PulO

VirB4

VirB6

VirB7

VirB10

VirB11

VirD4

FURTHER INFORMATION

Transport Protein Database

TC 3A.11.1.1

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chen, I., Dubnau, D. DNA uptake during bacterial transformation. Nat Rev Microbiol 2, 241–249 (2004). https://doi.org/10.1038/nrmicro844

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro844

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing