Key Points
-
Use of molecular techniques in the past 20 years has shown that only an extremely small fraction of the microbial diversity has so far been cultivated from all habitats investigated. How many different microorganisms are out there?
-
Recent research has shown that there is a largely unexplored microbial diversity in extreme environments, such as hot springs, hydrothermal vent sites, in ice and sea ice, in hypersaline environments and environments exhibiting extreme pH.
-
The high-throughput cultivation technologies are capable of producing a large number of cultures that are suitable for supplying adequate diversity for modern high-throughput screening systems in drug discovery.
-
The latest advances in microbial ecology methods, coupled with 16S rRNA phylogeny, could trigger a transformation in microbiology with a focus on new culture-dependent and culture-independent methods to both assess and access microbial diversity.
Abstract
Even though significant advances have been made in understanding microbial diversity, most microorganisms are still only characterized by 'molecular fingerprints' and have resisted cultivation. Many different approaches have been developed to overcome the problems associated with cultivation of microorganisms because one obvious benefit would be the opportunity to investigate the previously inaccessible resources that these microorganisms potentially harbour.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
References
Winogradsky, S. Ueber Schwefelbacterien. Botanische Zeitung 45, 489–507, 513–523, 529–539, 545–559, 569–576, 585–594 and 606–610 (1887).
Beijerinck, W. M. Ueber Spirillum desulfuricans als Ursache von Sulfatreduktion. Zentralblatt Bakteriol. 1, 1–9, 49–59, 104–114 (1895).
Hungate, R. E. The anaerobic mesophilic cellulolytic bacteria. Bact. Rev. 14, 1–49 (1950).
Schlegel, H. G. & Jannasch, H. W. Enrichment cultures. Annu. Rev. Microbiol. 21, 49–70 (1967).
de Man, J. C. The probability of most probable numbers. Eur. J. Appl. Microbiol. 1, 67–78 (1975).
van Niel, C. B. The biochemistry of bacteria. Annu. Rev. Biochem. 6, 595–620 (1937).
Cronan, J. E. Jr. Phospholipid alterations during growth of Escherichia coli. J. Bacteriol. 95, 2054–2061 (1968).
Reeves, H. C., Rabin, R., Wegener, W. S. & Ajl, S. J. Fatty acid synthesis and metabolism in microorganisms. Annu. Rev. Microbiol. 21, 225–256 (1967).
Saiki, R. K. et al. Enzymatic amplification of β-globin genomic sequences and restriction site analyses of sickle cell anemia. Science 230, 1350–1354 (1985).
Lazzarini, A., Cavaletti, L., Toppo, G. & Marinelli, F. Rare genera of actinomycetes as potential producers of new antibiotics. Antonie van Leeuwenhoek 79, 399–405 (2001).
Thierbach, G. & Reichenbach, H. Myxothiazol, a new antibiotic interfering with respiration. Antimicrob. Agents Chemother. 19, 504–507 (1981).
Reichenbach, H. Myxobacteria, producers of novel bioactive substances. J. Ind. Microbiol. Biotechnol. 27, 149–156 (2001).
Burja, A. M., Banaigs, B., Abou-Mansour, E., Burgess, J. G. & Wright, P. C. Marine cyanobacteria — a prolific source of natural products. Tetrahedron 57, 9347–9377 (2001).
Luesch, H., Harrigan, G. G., Goetz, G. & Horgen, F. D. The cyanobacterial origin of potent anticancer agents originally isolated from sea hares. Curr. Med. Chem. 9, 1791–1806 (2002).
Strohl, W. R. The role of natural products in a modern drug discovery program. Drug Discov. Today 5, 39–41 (2000).
Silva, C. J., Brian, P. & Peterson, T. in Handbook of Drug Screening (eds Seethala, R. & Fernandes, P. B.) 357–382 (Marcel Dekker, New York, 2001).
Zähner, H. & Fiedler, H. –P. in Fifty Years of Antimicrobials: Past Perspectives and Future Trends (ed. Russell, N. J.) 67–84 (Cambridge Univ. Press, UK, 1995).
Vicente, M. F., Basilio, A., Cabello, A. & Peláez, F. Microbial natural products as a source of antifungals. Clin. Microbiol. Infect. 9, 15–32 (2003).
Torsvik, V., Øvreås, L. & Thingstad, T. F. Prokaryotic diversity – magnitude, dynamics, and controlling factors. Science 296, 1064–1066 (2002). Overview of recent developments in environmental microbiology.
Cherry, J. R. & Fidantsef, A. L. Directed evolution of industrial enzymes: an update. Curr. Opin. Biotechnol. 14, 438–443 (2003).
Richardson, T. H. et al. A novel, high-performance enzyme for starch liquefaction. Discovery and optimization of a low pH, thermostable α-amylase. J. Biol. Chem. 277, 26501–26507 (2002).
Short, J. M. Recombinant approaches for accessing biodiversity. Nature Biotechnol. 15, 1322–1323 (1997)
Rosselló-Mora, R. & Amann, R. The species concept for prokaryotes. FEMS Microbiol. Rev. 25, 39–67 (2001).
Papke, R. T., Ramsing, N. B., Bateson, M. M. & Ward, D. M. Geographical isolation in hot spring cyanobacteria. Environ. Microbiol. 5, 650–659 (2003).
Whitaker, R. J., Grogan, D. W. & Taylor, J. W. Geographic barriers isolate endemic populations of hyperthermophilic archaea. Science 301, 976–978 (2003). Describes the intra-species diversity that is found in different geographical locations.
Whitman, W. B., Coleman, D. C. & Wiebe, W. J. Prokaryotes: the unseen majority. Proc. Natl Acad. Sci. USA 95, 6578–6583 (1998).
Woese, C. R., Stackebrandt, E., Macke, T. J. & Fox, G. E. A phylogenetic definition of the major eubacterial taxa. Syst. Appl. Microbiol. 6, 143–151 (1985).
Rappé, M. S. & Giovannoni, S. J. The uncultured microbial majority. Annu. Rev. Microbiol. 57, 369–394 (2003).
Hughes, J. B., Hellmann, J. J., Ricketts, T. H. & Bohannan, B. J. Counting the uncountable: statistical approaches to estimating microbial diversity. Appl. Environ. Microbiol. 67, 4399–4406 (2001).
Curtis, T. P., Sloan, W. T. & Scannell, J. W. Estimating prokaryotic diversity and its limits. Proc. Natl Acad. Sci. USA 99, 10494–10499 (2002).
Torsvik, V., Daae, F. L., Sandaa, R. A. & Øvreås, L. Novel techniques for analysing microbial diversity in natural and perturbed environments. J. Biotechnol. 64, 53–62 (1998).
Dykhuizen, D. E. Santa Rosalia revisited: why are there so many species of bacteria? Antonie van Leeuwenhoek 73, 25–33 (1998).
DeLong, E. F. Archaea in coastal marine environments. Proc. Natl Acad. Sci. USA 89, 5685–5689 (1992).
Fuhrman, J. A., McCallum, K. & Davis, A. A. Novel major archaebacterial group from marine plankton. Nature 356, 148–149 (1992).
Fuhrman, J. A. & Davis, A. A. Widespread archaea and novel bacteria from deep sea as shown by 16S rRNA gene sequences. Mar. Ecol. Prog. Ser. 150, 275–285 (1997).
Massana, R., DeLong, E. F. & Pedros-Alio, C. A few cosmopolitan phylotypes dominate planktonic archaeal assemblages in widely different oceanic provinces. Appl. Environ. Microbiol. 66, 1777–1787 (2000).
Karner, M. B., DeLong, E. F. & Karl, D. M. Archaeal dominance in the mesopelagic zone of the pacific ocean. Nature 409, 507–510 (2001).
Morris, R. M. et al. SAR11 clade dominates ocean surface bacterioplankton communities. Nature 420, 806–810 (2002).
Rappé, M. S., Connon, S. A., Vergin, K. L. & Giovannoni, S. J. Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. Nature 418, 630–633 (2002). Describes the isolation of the most abundant bacterium in the ocean.
Torsvik, V., Salte, K., Sørheim, R. & Goksøyr, J. Comparison of phenotypic diversity and DNA heterogeneity in a population of soil bacteria. Appl. Environ. Microbiol. 56, 776–781 (1990).
Sandaa, R. et al. Analysis of bacterial communities in heavy-metal-contaminated soils at different levels of resolution. FEMS Microbiol. Ecol. 30, 237–251 (1999).
Stephen, J. R. et al. Microbial characterization of a JP-4 fuel-contaminated site using a combined lipid biomarker/polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE)-based approach. Environ. Microbiol. 1, 231–241 (1999).
el Fantroussi, S., Verschuere, L., Verstraete, W. & Top, E. M. Effect of phenylurea herbicides on soil microbial communities estimated by analysis of 16S rRNA gene fingerprints and community-level physiological profiles. Appl. Environ. Microbiol. 65, 982–988 (1999).
Sessitsch, A., Weilharter, A., Gerzabek, M. H., Kirchmann, H. & Kandeler, E. Microbial population structures in soil particle size fractions of a long–term fertilizer field experiment. Appl. Environ. Microbiol. 67, 4215–4224 (2001).
Girvan, M. S., Bullimore, J., Pretty, J. N., Osborn, A. M. & Ball, A. S. Soil type is the primary determinant of the composition of the total and active bacterial communities in arable soils. Appl. Environ. Microbiol. 69, 1800–1809 (2003).
Kowalchuk, G. A., Buma, D. S., de Boer, W., Klinkhamer, P. G. & van Veen, J. A. Effects of above-ground plant species composition and diversity on the diversity of soil-borne microorganisms. Antonie van Leeuwenhoek 81, 509–520 (2002).
D'Hondt, S., Rutherford, S. & Spivack, A. J. Metabolic activity of subsurface life in deep–sea sediments. Science 295, 2067–2070 (2002).
Stevens, T. O. & McKinley, J. P. Lithoautotrophic microbial ecosystems in deep basalt aquifers. Science 270, 450–454 (1995).
Chapelle, F. H. et al. A hydrogen-based subsurface microbial community dominated by methanogens. Nature 415, 312–315 (2002).
Krumholz, L. R., McKinley, J. P., Ulrich, G. A. & Suflita, J. M. Confined subsurface microbial communities in cretaceous rock. Nature 386, 64–66 (1997).
Wellsbury, P. et al. Deep marine biosphere fuelled by increasing organic matter availability during burial and heating. Nature 388, 573–576 (1997).
Freund, F., Dickinson, J. T. & Cash, M. Hydrogen in rocks: an energy source for deep microbial communities. Astrobiology 2, 83–92 (2002).
Boivin-Jahns, V., Ruimy, R., Bianchi, A., Daumas, S. & Christen, R. Bacterial diversity in a deep-subsurface clay environment. Appl. Environ. Microbiol. 62, 3405–3412 (1996).
Reed, D. W. et al. Microbial communities from methane hydrate-bearing deep marine sediments in a forearc basin. Appl. Environ. Microbiol. 68, 3759–3770 (2002).
Takai, K. et al. Shifts in archaeal communities associated with lithological and geochemical variations in subsurface Cretaceous rock. Environ. Microbiol. 5, 309–320 (2003).
Takai, K. & Horikoshi, K. Molecular phylogenetic analysis of archaeal intron-containing genes coding for rRNA obtained from a deep-subsurface geothermal water pool. Appl. Environ. Microbiol. 65, 5586–5589 (1999).
Barns, S. M., Fundyga, R. E., Jeffries, M. W. & Pace, N. R. Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment. Proc. Natl Acad. Sci. USA 91, 1609–1613 (1994).
Barns, S. M., Delwiche, C. F., Palmer, J. D. & Pace, N. R. Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequences. Proc. Natl Acad. Sci. USA 93, 9188–9193 (1996).
Hugenholtz, P., Pitulle, C., Hershberger, K. L. & Pace, N. R. Novel division level bacterial diversity in a Yellowstone hot spring. J. Bacteriol. 180, 366–376 (1998).
Blank, C. E., Cady, S. L. & Pace, N. R. Microbial composition of near-boiling silica-depositing thermal springs throughout Yellowstone National Park. Appl. Environ. Microbiol. 68, 5123–5135 (2002).
Weiss, R. F., Lonsdale, P., Lupton, J. E., Bainbridge, A. E. & Craig, H. Hydrothermal plumes in the Galapagos Rift. Nature 267, 600–603 (1977).
Corliss, J. B. et al. Submarine thermal springs on the Galapagos Rift. Science 203, 1073–1083 (1979).
Huber, R., Huber, H. & Stetter, K. O. Towards the ecology of hyperthermophiles: biotopes, new isolation strategies and novel metabolic properties. FEMS Microbiol. Rev. 24, 615–623 (2000).
Takai, K. & Horikoshi, K. Genetic diversity of Archaea in deep-sea hydrothermal vent environments. Genetics 152, 1285–1297 (1999).
Nercessian, O., Reysenbach, A. L., Prieur, D. & Jeanthon, C. Archaeal diversity associated with in situ samplers deployed on hydrothermal vents on the East Pacific Rise (13°N). Environ. Microbiol. 5, 492–502 (2003).
Huber, J. A., Butterfield, D. A. & Baross, J. A. Temporal changes in archaeal diversity and chemistry in a mid-ocean ridge subseafloor habitat. Appl. Environ. Microbiol. 68, 1585–1594 (2002).
Schrenk, M. O., Kelley, D. S., Delaney, J. R. & Baross, J. A. Incidence and diversity of microorganisms within the walls of an active deep-sea sulfide chimney. Appl. Environ. Microbiol. 69, 3580–3592 (2003).
Thomas, D. N. & Dieckmann, G. S. Antarctic sea ice — a habitat for extremophiles. Science 295, 641–644 (2002).
Bowman, J. P., McCammon, S. A., Brown, M. V., Nichols, D. S. & McMeekin, T. A. Diversity and association of psychrophilic bacteria in Antarctic sea ice. Appl. Environ. Microbiol. 63, 3068–3078 (1997).
Brown, M. V. & Bowman, J. P. A molecular phylogenetic survey of sea-ice microbial communities (SIMCO). FEMS Microbiol. Ecol. 35, 267–275 (2001).
Christner, B. C., Kvitko, B. H. & Reeve, J. N. Molecular identification of Bacteria and Eukarya inhabiting an Antarctic cryoconite hole. Extremophiles 7, 177–183 (2003).
Priscu, J. C. et al. Geomicrobiology of subglacial ice above Lake Vostok, Antarctica. Science 286, 2141–2144 (1999).
Gordon, D. A., Priscu, J. & Giovannoni, S. Origin and phylogeny of microbes living in permanent Antarctic lake ice. Microb. Ecol. 39, 197–202 (2000).
Christner, B. C., Mosley-Thompson, E., Thompson, L. G. & Reeve, J. N. Isolation of bacteria and 16S rDNAs from Lake Vostok accretion ice. Environ. Microbiol. 3, 570–577 (2001).
Benlloch, S. et al. Prokaryotic genetic diversity throughout the salinity gradient of a coastal solar saltern. Environ. Microbiol. 4, 349–360 (2002).
Ochsenreiter, T., Pfeifer, F. & Schleper, C. Diversity of Archaea in hypersaline environments characterized by molecular-phylogenetic and cultivation studies. Extremophiles 6, 267–274 (2002).
Antón, J., Rosselló-Mora, R., Rodríguez-Valera, F. & Amann, R. Extremely halophilic bacteria in crystallizer ponds from solar salterns. Appl. Environ. Microbiol. 66, 3052–3057 (2000).
Baker, B. J. & Banfield, J. F. Microbial communities in acid mine drainage. FEMS Microbiol. Ecol. 44, 139–152 (2003).
González-Toril, E., Llobet–Brossa, E., Casamayor, E. O., Amann, R. & Amils, R. Microbial ecology of an extreme acidic environment, the Tinto River. Appl. Environ. Microbiol. 69, 4853–4865 (2003).
Edwards, K. J., Gihring, T. M. & Banfield, J. F. Seasonal variations in microbial populations and environmental conditions in an extreme acid mine drainage environment. Appl. Environ. Microbiol. 65, 3627–3632 (1999).
Edwards, K. J., Bond, P. L., Gihring, T. M. & Banfield, J. F. An archaeal iron-oxidizing extreme acidophile important in acid mine drainage. Science 287, 1796–1799 (2000).
Amaral Zettler, L. A., Messerli, M. A., Laatsch, A. D., Smith, P. J. & Sogin, M. L. From genes to genomes: beyond biodiversity in Spain's Rio Tinto. Biol. Bull. 204, 205–209 (2003).
Baker, B. J., Hugenholtz, P., Dawson, S. C. & Banfield, J. F. Extremely acidophilic protists from acid mine drainage host Rickettsiales-lineage endosymbionts that have intervening sequences in their 16S rRNA genes. Appl. Environ. Microbiol. 69, 5512–5518 (2003).
Rees, H. C., Grant, W. D., Jones, B. E. & Heaphy, S. Diversity of Kenyan soda lake alkaliphiles assessd by molecular methods. Extremophiles (in the press).
Humayoun, S. B., Bano, N. & Hollibaugh, J. T. Depth distribution of microbial diversity in Mono Lake, a meromictic soda lake in California. Appl. Environ. Microbiol. 69, 1030–1042 (2003).
Buchardt, B. et al. Submarine columns of ikaite tufa. Nature 390, 129–130 (1997).
Stougaard, P., Jørgensen, F., Johnsen, M. G. & Hansen, O. C. Microbial diversity in ikaite tufa columns: an alkaline, cold ecological niche in Greenland. Environ. Microbiol. 4, 487–493 (2002).
Boetius, A. et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407, 623–626 (2000).
Coates, J. D., Cole, K. A., Chakraborty, R., O'Connor, S. M. & Achenbach, L. A. Diversity and ubiquity of bacteria capable of utilizing humic substances as electron donors for anaerobic respiration. Appl. Environ. Microbiol. 68, 2445–2452 (2002).
del Giorgio, P. A. & Duarte, C. M. Respiration in the open ocean. Nature 420, 379–384 (2002).
Kolber, Z. S. et al. Contribution of aerobic photoheterotrophic bacteria to the carbon cycle in the ocean. Science 292, 2492–2495 (2001).
Zengler, K., Richnow, H. H., Rosselló-Mora, R., Michaelis, W. & Widdel, F. Methane formation from long-chain alkanes by anaerobic microorganisms. Nature 401, 266–269 (1999).
Dalsgaard, T., Canfield, D. E., Petersen, J., Thamdrup, B. & Acuna–Gonzalez, J. N2 production by the anammox reaction in the anoxic water column of Golfo Dulce, Costa Rica. Nature 422, 606–608 (2003).
Kuypers, M. M. et al. Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature 422, 608–611 (2003).
Lilburn, T. G. et al. Nitrogen fixation by symbiotic and free-living spirochetes. Science 292, 2495–2498 (2001).
Neubauer, S. C., Emerson, D. & Megonigal, J. P. Life at the energetic edge: kinetics of circumneutral iron oxidation by lithotrophic iron-oxidizing bacteria isolated from the wetland-plant rhizosphere. Appl. Environ. Microbiol. 68, 3988–3995 (2002).
Widdel, F. et al. Ferrous iron oxidation by anoxygenic phototrophic bacteria. Nature 362, 834–835 (1993).
Nealson, K. H., Belz, A. & McKee, B. Breathing metals as a way of life: geobiology in action. Antonie van Leeuwenhoek 81, 215–222 (2002).
Oremland, R. S. & Stolz, J. F. The ecology of arsenic. Science 300, 939–944 (2003).
Schink, B., Thiemann, V., Laue, H. & Friedrich, M. W. Desulfotignum phosphitoxidans sp. nov., a new marine sulfate reducer that oxidizes phosphite to phosphate. Arch. Microbiol. 177, 381–391 (2002).
Glaeser, J. & Overmann, J. Selective enrichment and characterization of Roseospirillum parvum, gen. nov. and sp. nov., a new purple nonsulfur bacterium with unusual light absorption properties. Arch. Microbiol. 171, 405–416 (1999).
Stahl, D. A., Lane, D. J., Olsen, G. J. & Pace, N. R. Analysis of hydrothermal vent-associated symbionts by ribosomal RNA. Science 224, 409–411 (1984).
Olsen, G. J., Lane, D. J., Giovannoni, S. J. & Pace, N. R. Microbial ecology and evolution: a ribosomal RNA approach. Annu. Rev. Microbiol. 40, 337–365 (1986).
Giovannoni, S. J., DeLong, E. F., Olsen, G. J. & Pace, N. R. Phylogenetic group-specific oligodeoxynucleotide probes for identification of single microbial cells. J. Bacteriol. 170, 720–726 (1988).
DeLong, E. F., Wickham, G. S. & Pace, N. R. Phylogenetic stains: ribosomal RNA-based probes for the identification of single cells. Science 243, 1360–1363 (1989).
DeLong, E. F., Taylor, L. T., Marsh, T. L. & Preston, C. M. Visualization and enumeration of marine planktonic archaea and bacteria by using polyribonucleotide probes and fluorescent in situ hybridization. Appl. Environ. Microbiol. 65, 5554–5563 (1999).
Muyzer, G., de Waal, E. C. & Uitterlinden, A. G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59, 695–700 (1993).
Heuer, H., Krsek, M., Baker, P., Smalla, K. & Wellington, E. M. Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl. Environ. Microbiol. 63, 3233–3241 (1997).
Moyer, C. L., Dobbs, F. C. & Karl, D. M. Estimation of diversity and community structure through restriction fragment length polymorphism distribution analysis of bacterial 16S rRNA genes from a microbial mat at an active, hydrothermal vent system, Loihi Seamount, Hawaii. Appl. Environ. Microbiol. 60, 871–879 (1994).
Liu, W. T., Marsh, T. L., Cheng, H. & Forney, L. J. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl. Environ. Microbiol. 63, 4516–4522 (1997).
Lee, N. et al. et al. Combination of fluorescent in situ hybridization and microautoradiography — a new tool for structure-function analyses in microbial ecology. Appl. Environ. Microbiol. 65, 1289–1297 (1999).
Ouverney, C. C. & Fuhrman, J. A. Combined microautoradiography — 16S rRNA probe technique for determination of radioisotope uptake by specific microbial cell types in situ. Appl. Environ. Microbiol. 65, 1746–1752 (1999).
Cottrell, M. T. & Kirchman, D. L. Natural assemblages of marine proteobacteria and members of the Cytophaga-Flavobacter cluster consuming low- and high-molecular-weight dissolved organic matter. Appl. Environ. Microbiol. 66, 1692–1697 (2000).
Boschker, H. T. S. et al. Direct linking of microbial populations to specific biogeochemical processes by 13C-labelling of biomarkers. Nature 392, 801–805 (1998).
Radajewski, S., Ineson, P., Parekh, N. R. & Murrell, J. C. Stable-isotope probing as a tool in microbial ecology. Nature 403, 646–9 (2000).
Robertson, D. E., Mathur, E. J., Swanson, R. V., Marrs, B. L. & Short, J. M. The discovery of new biocatalysts from microbial diversity. Soc. Indust. Microbiol. News 46, 3–8 (1996).
Rondon, M. R., Goodman, R. M. & Handelsman, J. The Earth's bounty: assessing and accessing soil microbial diversity. Trends Biotechnol. 17, 403–409 (1999).
Rondon, M. R. et al. Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl. Environ. Microbiol. 66, 2541–2547 (2000).
Pfeifer, B. A., Admiraal, S. J., Gramajo, H., Cane, D. E. & Khosla, C. Biosynthesis of complex polyketides in a metabolically engineered strain of E. coli. Science 291, 1790–1792 (2001).
DeSantis, G. et al. An enzyme library approach to biocatalysis: development of nitrilases for enantioselective production of carboxylic acid derivatives. J. Am. Chem. Soc. 124, 9024–9025 (2002).
Piel, J. A polyketide synthase-peptide synthetase gene cluster from an uncultured bacterial symbiont of Paederus beetles. Proc. Natl Acad. Sci. USA 99, 14002–14007 (2002).
MacNeil, I. A. et al. Expression and isolation of antimicrobial small molecules from soil DNA libraries. J. Mol. Microbiol. Biotechnol. 3, 301–308 (2001).
Handelsman, J., Rondon, M. R., Brady, S. F., Clardy, J. & Goodman, R. M. Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem. Biol. 5, R245–R249 (1998).
Wang, G. Y. et al. Novel natural products from soil DNA libraries in a streptomycete host. Org. Lett. 2, 2401–2404 (2000). The first example of the isolation of an antimicrobial compound from the environment using a recombinant approach.
Brady, S. F., Chao, C. J. & Clardy, J. New natural product families from an environmental DNA (eDNA) gene cluster. J. Am. Chem. Soc. 124, 9968–9969 (2002).
Stein, J. L., Marsh, T. L., Wu, K. Y., Shizuya, H. & DeLong, E. F. Characterization of uncultivated prokaryotes: isolation and analysis of a 40-kilobase-pair genome fragment from a planktonic marine archaeon. J. Bacteriol. 178, 591–599 (1996).
Béjà, O. et al. Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science 289, 1902–1906 (2000). The first attempt by recombinant techniques to link phylogeny to function.
Béjà, O., Spudich, E. N., Spudich, J. L., Leclerc, M. & DeLong, E. F. Proteorhodopsin phototrophy in the ocean. Nature 411, 786–789 (2001).
Quaiser, A. et al. First insight into the genome of an uncultivated crenarchaeote from soil. Environ. Microbiol. 4, 603–611 (2002).
Liles, M. R., Manske, B. F., Bintrim, S. B., Handelsman, J. & Goodman, R. M. A census of rRNA genes and linked genomic sequences within a soil metagenomic library. Appl. Environ. Microbiol. 69, 2684–2691 (2003).
Seow, K. T. et al. A study of iterative type II polyketide synthases, using bacterial genes cloned from soil DNA: a means to access and use genes from uncultured microorganisms. J. Bacteriol. 179, 7360–7368 (1997).
Rondon, M. R., Raffel, S. J., Goodman, R. M. & Handelsman, J. Toward functional genomics in bacteria: analysis of gene expression in Escherichia coli from a bacterial artificial chromosome library of Bacillus cereus. Proc. Natl Acad. Sci. USA 96, 6451–6455 (1999).
Sosio, M. et al. Artificial chromosomes for antibiotic–producing actinomycetes. Nature Biotechnol. 18, 343–345 (2000).
Zazopoulos, E. et al. A genomics-guided approach for discovering and expressing cryptic metabolic pathways. Nature Biotechnol. 21, 187–190 (2003).
Brady, S. F. & Clardy, J. Long-chain N-acyl amino acid antibiotics isolated from heterologously expressed environmental DNA. J. Am. Chem. Soc. 122, 12903–12904 (2000).
Brady, S. F., Chao, C. J., Handelsman, J. & Clardy, J. Cloning and heterologous expression of a natural product biosynthetic gene cluster from eDNA. Org. Lett. 3, 1981–1984 (2001).
Gillespie, D. E. et al. Isolation of antibiotics turbomycin A and B from a metagenomic library of soil microbial DNA. Appl. Environ. Microbiol. 68, 4301–4306 (2002).
Courtois, S. et al. Recombinant environmental libraries provide access to microbial diversity for drug discovery from natural products. Appl. Environ. Microbiol. 69, 49–55 (2003).
Martin, J. F. & Liras, P. Organization and expression of genes involved in the biosynthesis of antibiotics and other secondary metabolites. Annu. Rev. Microbiol. 43, 173–206 (1989).
Paradkar, A. S. & Jensen, S. E. in Biotechnology of Antibiotics (ed. Strohl, W. R.) 241–277 (Marcel Dekker, New York, 1997).
Yu, T. W. et al. The biosynthetic gene cluster of the maytansinoid antitumor agent ansamitocin from Actinosynnema pretiosum. Proc. Natl Acad. Sci. USA 99, 7968–7973 (2002).
Keller, N. P. & Hohn, T. M. Metabolic pathway gene clusters in filamentous fungi. Fungal Genet. Biol. 21, 17–29 (1997).
Dojka, M. A., Harris, J. K. & Pace, N. R. Expanding the known diversity and environmental distribution of an uncultured phylogenetic division of bacteria. Appl. Environ. Microbiol. 66, 1617–1621 (2000).
Ferguson, R. L., Buckley, E. N. & Palumbo, A. V. Response of marine bacterioplankton to differential filtration and confinement. Appl. Environ. Microbiol. 47, 49–55 (1984).
Eilers, H., Pernthaler, J., Glöckner, F. O. & Amann, R. Culturability and in situ abundance of pelagic bacteria from the North Sea. Appl. Environ. Microbiol. 66, 3044–3051 (2000).
Xu, H. S. et al. Survival and viability of nonculturable Escherichia coli and Vibrio cholerae in the estuarine and marine environment. Microb. Ecol. 8, 313–323 (1982).
Staley, J. T. & Konopka, A. Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu. Rev. Microbiol. 39, 321–346 (1985).
Button, D. K., Schut, F., Quang, P., Martin, R. & Roberston, B. R. Viability and isolation of marine bacteria by dilution culture: theory, procedures, and initial results. Appl. Environ. Microbiol. 59, 881–891 (1993).
Kaeberlein, T., Lewis, K. & Epstein, S. S. Isolating 'uncultivable' microorganisms in pure culture in a simulated natural environment. Science 296, 1127–1129 (2002).
Bruns, A., Cypionka, H. & Overmann, J. Cyclic AMP and acyl homoserine lactones increase the cultivation efficiency of heterotrophic bacteria from the Central Baltic Sea. Appl. Environ. Microbiol. 68, 3978–3987 (2002).
Connon, S. A. & Giovannoni, S. J. High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates. Appl. Environ. Microbiol. 68, 3878–3885 (2002).
Janssen, P. H., Yates, P. S., Grinton, B. E., Taylor, P. M. & Sait, M. Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions Acidobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia. Appl. Environ. Microbiol. 68, 2391–2396 (2002). Describes the isolation of many previously uncultivated bacteria using diluted media and prolonged incubation times.
Zengler, K. et al. Cultivating the uncultured. Proc. Natl Acad. Sci. USA 99, 15681–15686 (2002). Describes a new high-throughput cultivation method based on microencapsulation and flow cytometry.
Chin, K. J., Hahn, D., Hengstmann, U., Liesack, W. & Janssen, P. H. Characterization and identification of numerically abundant culturable bacteria from the anoxic bulk soil of rice paddy microcosms. Appl. Environ. Microbiol. 65, 5042–5049 (1999).
Sait, M., Hugenholtz, P. & Janssen, P. H. Cultivation of globally distributed soil bacteria from phylogenetic lineages previously only detected in cultivation-independent surveys. Environ. Microbiol. 4, 654–666 (2002).
Guan, L. L., Onuki, H. & Kamino, K. Bacterial growth stimulation with exogenous siderophore and synthetic N-acyl homoserine lactone autoinducers under iron-limited and low-nutrient conditions. Appl. Environ. Microbiol. 66, 2797–2803 (2000).
Bruns, A., Nübel, U., Cypionka, H. & Overmann, J. Effect of signal compounds and incubation conditions on the culturability of freshwater bacterioplankton. Appl. Environ. Microbiol. 69, 1980–1989 (2003).
Dean, F. B. et al. Comprehensive human genome amplification using multiple displacement amplification. Proc. Natl Acad. Sci. USA 99, 5261–5266 (2002).
Khodursky, A. B. et al. DNA microarray analysis of gene expression in response to physiological and genetic changes that affect tryptophan metabolism in Escherichia coli. Proc. Natl Acad. Sci. USA 97, 12170–12175 (2000).
Washburn, M. P., Wolters, D. & Yates, J. R. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nature Biotechnol. 19, 242–247 (2001).
Dictionary of Natural Products (Chapman & Hall/CRC, New York, 2003).
Carrisoza, S. Comparative analysis of access laws and policies of Pacific Rim countries, International ABS workshop: Accessing genetic resources and sharing the benefits: lessons from implementing the convention on biological diversity (Davis, California, 2003). [online], (cited 27 Nov 2003), <http://www.grcp.ucdavis.edu/projects/AccessPacRim/AccessPRhome.htm> (2003).
Short, J. M. et al. Production and use of normalized DNA libraries. US Patent 5,763,239 (1998).
Short, J. M. Protein activity screening of clones having DNA from uncultivated microorganisms. US Patent 5,958,672 (1999).
Short, J. M. et al. Production and use of normalized DNA libraries. US Patent 6,001,574 (1999).
Short, J. M. Enzyme kits and libraries. US Patent 6,004,788 (1999).
Short, J. M. Screening for novel bioactivities. US Patent 6,030,779 (2000).
Short, J. M. Method for screening for enzyme activity. US Patent 6,054,267 (2000).
Short, J. M. Screening for novel bioactivities. US Patent 6,057,103 (2000).
Short, J. M. Screening methods for enzymes and enzyme kits. US Patent 6,168,919 (2001).
Short, J. M. et al. High-throughput screening for novel enzymes. US Patent 6,174,673 (2001).
Short, J. M. Gene expression library produced from DNA from uncultivated microorganisms and methods for making the same. US Patent 6,280,926 (2002).
Short, J. M. Method for screening for enzyme activity. US Patent 6,344,328 (2002).
Short, J. M. Screening for novel bioactivities. US Patent 6,368,798 (2002).
Short, J. M. et al. Production and use of normalized DNA libraries. US Patent 6,444,426 (2002).
Short, J. M. Sequence based screening. US Patent 6,455,254 (2002).
Short, J. M. Production and use of normalized DNA libraries. Australian Patent 718573 (1997).
Short, J. M. Method of screening for enzyme activity. Australian Patent 720334 (1997).
Short, J. M. Method of screening for enzyme activity. Australian Patent 756201 (2000).
Acknowledgements
We would like to thank M. Rappé (University of Hawaii) for providing the phylogenetic tree, M. l Kulwiec for graphic support, J. M. Short, E. J. Mathur, and G. Woodnut for support. We would like to apologize to our colleagues because, due to space limitations, many references could not be cited.
Author information
Authors and Affiliations
Ethics declarations
Competing interests
Both M. Keller and K. Zengler are employees and shareholders of Diversa Corporation.
Related links
Glossary
- ENVIRONMENTAL CLONE LIBRARY
-
Constructed by cloning environmental DNA samples into suitable vectors.
- SUBSURFACE
-
The environment that is below the Earth's surface and that is independent of any (recent) photosynthetically supplied electron donors or acceptors.
- PHYLOTYPE
-
The evolutionary history of a microbiological species (mostly determined by 16S rRNA gene sequence comparison). Can be compared with a phenotype, which is a physical manifestation of a genetic trait in an organism.
- CHEMOLITHOAUTOTROPHIC
-
Metabolism that uses chemicals as the energy source (chemo) (compared with phototrophic metabolism, which utilizes light as the energy source), inorganic compounds (litho) as electron donors, and carbon dioxide as a carbon source (auto).
- LITHOLOGICAL
-
Pertaining to the character of a rock, as derived from the nature and mode of aggregation of its mineral contents.
- HYDROTHERMAL VENT
-
Areas on the ocean floor where warm or hot fluids are expelled through the Earth's crust to the overlying water. Hydrothermal activity is associated with the spreading centres of the Earth's surface or the subduction of tectonic plates along continental margins. Venting can occur from diffuse low-temperature flows to vigorous venting of hot, reduced fluids that are enriched in metals.
- EXTINCTION CULTURES
-
A given volume of sample is inoculated into culture vessels containing growth media. Successive sets of culture vessels are inoculated by subsequent dilution steps. After an incubation period, the vessels are scored for growth or lack of growth. Those vessels in which growth occurred are assumed to have contained at least one viable microorganism in the inoculant.
- MICROCOLONIES
-
Colonies of 20 to 100 cells that originated from a single bacterial cell. Microcolonies can be formed on solid surfaces or in a microcapsule.
Rights and permissions
About this article
Cite this article
Keller, M., Zengler, K. Tapping into microbial diversity. Nat Rev Microbiol 2, 141–150 (2004). https://doi.org/10.1038/nrmicro819
Issue Date:
DOI: https://doi.org/10.1038/nrmicro819
This article is cited by
-
The selection of copiotrophs may complicate biodiversity-ecosystem functioning relationships in microbial dilution-to-extinction experiments
Environmental Microbiome (2023)
-
Assessment of diversity of archaeal communities in Algerian chott
Extremophiles (2023)
-
CRISPR evolves among the winners
Nature Ecology & Evolution (2022)
-
A progesterone biosensor derived from microbial screening
Nature Communications (2020)