HIGHLIGHTS

HIGHLIGHT ADVISORS

ADRIANO AGUZZI

UNIVERSITY HOSPITAL OF ZÜRICH, ZÜRICH, SWITZERLAND

NORMA ANDREWS

YALE UNIVERSITY SCHOOL OF MEDICINE, NEW HAVEN, CT, USA

ARTURO CASADEVALL

THE ALBERT EINSTEIN COLLEGE OF MEDICINE, BRONX, NY, USA

CECILIA CHENG-MAYER

ROCKEFELLER UNIVERSITY, NEW YORK, NY, USA

RITA COLWELL

UNIVERSITY OF MARYLAND BIOTECHNOLOGY INSTITUTE, BALTIMORE, MD, USA

STANLEY FALKOW

STANFORD UNIVERSITY SCHOOL OF MEDICINE, STANFORD, CA, USA

TIMOTHY FOSTER

TRINITY COLLEGE, DUBLIN, IRELAND

KEITH GULL UNIVERSITY OF OXFORD, OXFORD, UK

NEIL GOW

UNIVERSITY OF ABERDEEN, ABERDEEN, UK

HANS-DIETER KLENK PHILIPPS UNIVERSITY, MARBURG, GERMANY

BERNARD MOSS NIAID, NATIONAL INSTITUTES OF HEALTH, BETHESDA, MD, USA

JOHN REX ASTRAZENECA, CHESHIRE, UK

DAVID ROOS UNIVERSITY OF PENNSYLVANIA, PHILADELPHIA, PA, USA

PHILIPPE SANSONETTI INSTITUT PASTEUR, PARIS, FRANCE

CHIHIRO SASAKAWA UNIVERSITY OF TOKYO,

TOKYO, JAPAN

ROBIN WEISS

UNIVERSITY COLLEGE LONDON, LONDON, UK

MICROBIAL ADHESION

Dock, lock and latch

The attachment of microorganisms to host tissue represents a first crucial step in most bacterial infections and involves direct interaction between a bacterial surface adhesin and a host ligand. For extracellular pathogens like *Staphylococcus epidermidis*,

> frequently exposed to the high fluid shear forces

present in the bloodstream, a strong, robust interaction is required to initate colonization and ultimately infection. Reporting in *Cell*, Sthanam Narayana, Magnus Höök and colleagues have elucidated the molecular basis for one such interaction — between a cellwall-anchored protein from *S. epidermidis* (SdrG) and the host protein, fibrinogen — and propose a general mode of ligand binding for related adhesins in Gram-positive bacteria.

SdrG is one of a family of bacterial surface proteins that mediate interaction with the host extracellular matrix. Known as MSCRAMMS (microbial surface components recognizing adhesive matrix molecules), this family of adhesins have a similar modular design and an IgG-like folded domain organization, and are implicated as being important for microbial virulence. Ponnuraj et al. solved the structure of the ligand-binding domain of SdrG, both as an apoprotein, and in complex with a synthetic peptide analagous to the binding site in its ligand, fibrinogen. They further investigated the binding mechanism using site-directed mutagenesis, truncation mutagensis and peptide amino acid replacement. Analysis of the structure revealed that the SdrG protein has an open conformation that allows access of the ligand to a binding cleft. Following binding of the ligand, a structural rearrangement is induced at the C-terminus of the

protein such that access to and from the binding cleft is blocked, and the 'docked' peptide is 'locked' in place. To stabilize the structure, the rearranged C-terminal β -sheet inserts between two β -sheets in an adjacent domain, 'latching' the protein-ligand complex together. Investigation of the interaction using mutant proteins and peptides provided strong support for this multi-step model of microbial adhesion.

The Höök and Narayana groups have also recently solved the structures of the ligand-binding domain of fibrinogen-binding MSCRAMMS from *Staphylococcus* aureus Investigation of these data in conjunction with a survey of the available genomes of other pathogenic Grampositive bacteria, revealed the presence of key features of the dock, lock and latch mechanism in a wide variety of MSCRAMM candidates. These anaylses suggest that this interaction mechanism is likely to represent a general mode of ligand-binding in this group of related adhesins from Gram-positive bacteria.

David O'Connell

References and links

ORIGINAL RESEARCH PAPER Ponnuraj, K. et al. A "dock, lock, and latch" structural model for a staphylococcal adhesin binding to fibrinogen. *Cell* **115**, 217–228 (2003)

FURTHER READING Foster, T. J. & Höök, M. et al. Surface protein adhesins of Staphylococcus aureus. Trends Microbiol. 6, 484–488 (1998) WEB SITES

Magnus Höök's laboratory:

http://www.tamu.edu/cemb/ Sthanam Narayana's laboratory: http://origin.cbse.uab.edu/faculty_staff/narayana/ index.html

SdrG interacting with a peptide that $\$ corresponds to its binding site in the human fibrinogen β -chain (residues 6-20; in purple). Courtesy of Sthanam Narayana, University of Alabama at Birmingham, USA.