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(probably) imported into Texas, USA, in
early April 2003, in a shipment of Gambian
rats that were destined for the pet trade.
Transfer to native prairie dogs, which were in
turn shipped to other pet traders or were
displayed and handled in pet fairs, carried
monkeypox to Wisconsin, Indiana, Illinois,
Missouri, Kansas and Ohio, and resulted in a
total of 71 human infections in these states
by early July 2003 (REF. 3).

In all of these examples, little or nothing is
known about the natural circulation of the
pathogens concerned within their countries
of origin, or about the precise method, or
likelihood, of their transfer to new areas. For
every ‘new’ or ‘emerging’ disease of this type,
there could be many others that are carried
by the same mechanisms, but which then fail
to establish in new countries for reasons that
are also unclear.

These examples, and many more like them,
show that the modern equivalent of the spread
of cholera from the Broad Street pump to
Londoners in the 1840s (REF. 4) could now
encompass the world and its population.
‘Small-world’effects increasingly ‘connect’geo-
graphically distant places5 — affecting not only
knowledge, trade and tourism, but also infec-
tious diseases. The immediate questions to be
answered are which diseases will be involved in
such transfers, from which sources, to which
destinations and by what routes; and what will
be the chances of the diseases establishing and
spreading from any point of introduction?

A geographical information system
(GIS), which can hold both the disease data
and any other information within the same

geographical framework, has the analytical
power to help answer these questions.
When the diseases in question are known,
or suspected, to have environmental risk
factors, the addition of remotely sensed
(RS) environmental data to the GIS greatly
enhances its explanatory power6. This article
explains how using RS data in a GIS can
help us understand the spatio-temporal
dynamics of a wide range of disease systems,
especially, but not exclusively, those with
environmental correlates.

Steps to understanding epidemiology
To predict where diseases might spread, it is
necessary to understand their epidemiology
in the regions in which they have been his-
torically recorded. First, we must identify
the pieces of the puzzle — the pathogen, its
vertebrate hosts and the routes of transmis-
sion between hosts. Second, the patterns of
each disease must be recorded — both the
distribution in space and changes with
time. An essential part of this second step is
an appreciation of the environment in
which transmission is taking place. Third,
we need to understand the dynamic
processes of transmission that ultimately
determine the patterns that are observed.
Given this baseline knowledge, we might
finally be able to estimate the likelihood of
pathogen spread to, and establishment in,
new areas.

Diagnosis. The first task is essentially one of
diagnosis, a task that is not always simple in
complex natural biological systems. Identifying
the pieces of the puzzle can lead to an expecta-
tion of the resulting patterns,but it can be diffi-
cult to anticipate the number of important
pieces that are involved. For example, it might
have been expected that West Nile virus in
North America would be transmitted by only a
few native American mosquito species (the
vectors). A pathogen in a new continent is
unlikely to find many competent vectors, and
many flaviviruses (the family to which West
Nile virus belongs) typically have only one

West Nile virus, severe acute respiratory
syndrome and monkeypox are infectious
diseases that have recently been introduced
into areas far from their region of origin. The
greatest risk of new diseases comes from
zoonoses — pathogens that circulate
among wild animals and are occasionally
transferred to humans by intermediate
invertebrate hosts or vectors that are
sensitive to climatic conditions. Analytical
tools that are based on geographical
information systems and that can
incorporate remotely sensed information
about the environment offer the potential to
define the limiting conditions for any disease
in its native region for which there are at
least some distribution data. The direction,
intensity or likelihood of its spread to new
regions could then be predicted, potentially
allowing disease early-warning systems to
be developed.

West Nile virus first appeared in the New
World in 1999, in New York, USA. By the
end of 2002, this virus had spread to Canada
and 44 states of the USA (plus the District of
Columbia) and, in 2002 alone, caused clini-
cal infections in more than 4,000 people and
284 deaths1.

Severe acute respiratory syndrome (SARS)
was first recognized in China in mid-
November 2002. By mid-June 2003, it had
affected more than 8,000 people, killing 790,
in 33 countries of all the inhabited continents
of the world2.

Monkeypox, which is related to smallpox,
is known historically only in Africa, but was
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Whilst the database origins allow all the
usual calculations of summary or averaged
data, the geographical essence of GISs
allows them to be used to reveal the spatio-
temporal structure of disease cases. For
example, disease clusters — the geographical
co-occurrence of cases that indicates local
transmission of infectious diseases or the
presence of environmental determinants of
non-infectious diseases — are common.
Childhood arthritis is not traditionally
thought of as infectious, but the recognition
of a cluster of cases in Old Lyme, Connecticut
in the late 1970s11 (albeit without the benefit
of a GIS) ultimately led to the discovery of
tick-borne Lyme borreliosis12, the most
widespread and prevalent vector-borne
infection in the northern temperate world.

Satellite imagery for monitoring environments.
Satellite imagery (BOX 1) is a powerful compo-
nent of modern disease GISs. Satellite sensors
provide data from which information about
rainfall, temperature, humidity and vegeta-
tion conditions at the Earth’s surface can be
derived. These conditions are crucial for the
indirect transmission of pathogens by vectors
or intermediate hosts, such as insects, ticks,
snails or rodents6,13,14. Environmental condi-
tions might also be important for any directly
transmitted (for example, host-to-host) path-
ogens that must survive for any period of
time outside the host. Bovine tuberculosis
outbreaks in cattle herds are thought by many
to be caused by contamination from infected
wild animals, and high-risk areas have been
predicted accurately using seasonal features of
atmospheric humidity and air temperature15.
This result might offer some clues about the
precise route of transmission, which is still
unknown.

Seasonal changes and risk maps. For many
pathogens, and especially for those with inter-
mediate hosts, transmission is seasonal.
Furthermore, the continuing existence of the
pathogen depends not just on conditions dur-
ing the transmission season (usually spring
through to autumn in temperate regions, and
the rainy season in tropical regions), but also
on conditions during winter or the dry season
— these conditions can determine the sur-
vival of the pathogen or its vector from one
year to the next. Satellite images with high
spatial resolution, such as Landsat imagery,
are not recorded sufficiently often to capture
the full details of seasonal cycles; their infre-
quent images often miss important periods.

Satellite imagery at high temporal resolu-
tion (BOX 1), however, can produce clear
monthly pictures (although at the expense of

typically sparse, even for well-established,
perennial diseases, researchers seek to make
predictive maps to fill in the gaps using
richer environmental data. All available
information is gathered — for example,
records of the known presence or intensity
of the disease from areas as geographically
extensive, and covering as wide a range of
natural environments, as possible. This
information is stored within a GIS that is, at
its core, little more than a database that also
records the geographical location of each
observation9. In addition, the GIS must con-
tain the environmental and other data in the
same geographical framework, thereby
allowing correlations to be established
between these data and the disease data10.

principal vector species and relatively few addi-
tional species of any transmission importance
in any region7. By August 2003, however, West
Nile virus, its RNA or antigens had been
detected in 43 mosquito species in the United
States8 (although this does not prove full
transmission competence). Had this large
number of potential vector species been
known or predicted in advance, the rapid
spread of West Nile virus in North America
would not have been so surprising.

Disease patterns in space and time — statistical
models. The second set of problems — that
of the distribution, incidence or prevalence
of a disease — is usually tackled using statis-
tical techniques. As empirical disease data are

Box 1 | Satellites for epidemiology

Satellites provide global data on environmental conditions at spatial resolutions that cannot be
achieved by meteorological networks. Satellite sensors detect reflected visible or infra-red
radiation within the 0.3–14 µm region of the electromagnetic spectrum, but design constraints
dictate certain combinations of spatial, temporal and spectral resolutions, and therefore
different uses of data from different satellite types.

• Earth-observing satellites. These produce data with spatial resolutions (that is, pixel sizes) of
1–4 m (the Ikonos 2 satellite, which has four multispectral channels plus one panchromatic
channel), 2.5–20 m (the Satellite pour l’Observation de la Terre (SPOT); four multispectral
channels, 1 panchromatic channel and 4 coarser resolution channels of 1.1 km), 30–120 m 
(the Landsat 1–5 satellites; up to seven channels) or 15–60m (the Landsat 7 satellite; seven
multispectral channels plus one panchromatic channel), but low repeat frequencies of only 
11 (Ikonos), 26 (SPOT) or 16 (Landsat) days.

• Orbiting oceanographic or atmospheric satellites. These satellites have lower spatial resolutions,
as low as 1.1 km (the National Oceanographic and Atmospheric Administration Advanced Very
High Resolution Radiometer (NOAA AVHRR); six channels), but they produce two images per
day of the entire Earth’s surface. This satellite series has given us a ~20-year set of continuous
observations, but has now been effectively replaced by the Terra and Aqua spacecraft with their
Moderate Resolution and Imaging Spectrometer (MODIS; 36 channels with 0.25–1 km
resolution, and a 1–2 day return time) and, in the case of the Terra satellites, the Advanced Space-
borne Thermal Emission and Reflection Radiometer (ASTER; 14 channels with 15 m–90 m
resolution, 16-day return time; see Terra satellite in the Online links).

• Geostationary weather satellites. These satellites maintain a constant position relative to the
earth, and give spatial resolutions of 1–8 km (the Geostationary Operational Environmental
Satellite (GOES) for the Americas; five channels) or 2.5–5 km (the Meteosats 4–6 for Europe and
Africa; three channels) and two images of the entire Earth half-disk each hour. The Meteostats
4–6 will be superceded by the recently commissioned Meteosat Second Generation (MSG)
satellite with its Spinning Enhanced Visible and Infrared Imager (SEVIRI; 12 channels, half-disk
images every 15 minutes; see the European Space Agency in the Online links).

Atmospheric contamination, such as clouds, commonly obscures images, so low-frequency
images provide only occasional snapshots that cannot record the important seasonal
determinants of pathogen transmission rates. By contrast, high-frequency images can be
combined to produce relatively cloud-free monthly ‘maximum-value composites’39, that are of
greater use in studying dynamic epidemiological processes.

The processed satellite sensor data can be used directly, but are often combined to produce
indices that are related to ground-based variables relevant to epidemiological events. These
include land surface temperature (LST) data, which are related to the Earth’s surface
temperature; the normalized difference vegetation index (NDVI), which is related to plant
photosynthetic activity and is a useful correlate of ground moisture conditions; near-
surface air temperature (TvX); and cold cloud duration (CCD) correlated with rainfall (all
reviewed in REF. 39).
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into these areas17. The significant increases
in the incidence of tick-borne encephalitis
(TBE) over the past two decades have indeed 
been accompanied by new records in many
supposedly ‘false-positive’ regions18–21.

With every powerful technique there is a
disadvantage. The ability of GISs to produce

spatial resolution), but the result is large
volumes of data, which often show strong
serial correlations that affect the power of sta-
tistical analyses. To reduce the volume of data
and remove these serial correlations without
losing the biologically meaningful signals, a
technique of time-series analysis that was
invented by the French mathematician Joseph
Fourier (1768–1830) is used. Fourier solved a
problem in calculus that had defeated
Newton and subsequent generations of
mathematicians, by showing that a complex
time series can always be expressed as the
sum of a series of sine curves with different
amplitudes, frequencies and phases (that is,
timings) around a characteristic mean.
Using Fourier’s techniques, therefore, it is
possible to extract information about the
annual, bi-annual and tri-annual cycles of
rainfall, temperature and other parameters
that characterize the natural environments of
diseases from the multi-temporal satellite
data (FIG. 1) (it is this shift from the time to the
frequency domain that removes the serial
correlation in the satellite data). The output of
temporal Fourier analysis is a set of orthogonal
(that is, uncorrelated) variables that capture
the seasonality that is of interest in epidemi-
ology6,13,16, and these variables can therefore
be used to classify habitats and describe vec-
tor and pathogen distributions. For disease
systems, Fourier variables are the environ-
mental equivalent of the genes of individual
pathogens, and whole Fourier-processed
images (FIG. 2) that capture all the interactive
space–time features of a habitat can be
likened to the organismal genome.

In a GIS, the statistical relationships that are
established between the disease and environ-
mental data sets are applied at the full spatial
resolution of the latter, richer data sets, to
produce a ‘risk map’ (FIG. 3). This effectively
shows the similarity of environmental con-
ditions in unsurveyed places to environmental
conditions in which the disease has been
recorded as being either present or absent.
This similarity is usually expressed as the prob-
ability with which each area on the ground
(corresponding to one picture element, or
‘pixel’, of the satellite imagery) belongs to the
class of areas that are known to contain the dis-
ease. Errors in risk maps arise for several rea-
sons; sometimes the input data are out-of-date,
or simply wrong; sometimes the explanatory
variables that are used are inappropriate; and
sometimes the model itself is wrong. Only
false-negatives (that is, false predictions of
absence) are clear indicators of an incorrect or
inappropriate model, and much can be learnt
by investigating why these arise. Even when
none of these applies, risk maps often indicate

larger areas as ‘at risk’ than are known to be
affected by the disease at present (that is, many
false-positives), because an organism or disease
will not occupy all ‘suitable’habitats. False-pos-
itives also highlight an important application
of predictive risk maps — to warn health
agencies of the potential spread of a disease
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Figure 1 | Normalized difference vegetation index signal from a point in central Wales, UK. 
The monthly normalized difference vegetation index (NDVI) signal from a point in central Wales, UK
(3.58°W, 52.34°N) for 1996–1999 is shown in light blue, the mean monthly signal for this period is shown
in red (displaced vertically by 0.1 for clarity), the temporal Fourier fit to these data is shown in orange, and
the annual, bi-annual and tri-annual components of this fit are shown in yellow, purple and green,
respectively (right-hand scale). The temporal Fourier fit describes the average annual cycle at this site well. 

Figure 2 | Normalized difference vegetation index data (NVDI) Fourier images of Europe.
a | The mean is shown in red. b | The annual amplitude is shown in blue. c | The annual phase (that is, the
timing of the annual peak) is shown in green. d | All three signals are shown together, which shows how
this method of analysis captures habitat seasonality across Europe (notice, for example, that the mean is
generally higher in western Europe, with the exception of many parts of Spain, but the annual amplitude is
higher in eastern Europe). The white arrow in the mean image points to the site from which the data for
FIG. 1 were obtained.
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makes the future unpredictable using such
statistical approaches.

Infection processes in space and time
Satellite imagery at high temporal resolution
is also a powerful tool in the third step of
understanding epidemiology using dynamic
biological or process-based models. These
models capture details of pathogen trans-
mission in a series of mathematical equa-
tions that describe the birth and death of
organisms, and transmission processes,
directly. The same remotely sensed data that
are used to describe the patterns of infection
in statistical models can also be used to
explain transmission in biological models.
For example, satellite data have been corre-
lated with key behavioural or demographic
rates of the vectors (FIG. 4a) of indirectly
transmitted diseases, thereby identifying the
conditions that are best for pathogen trans-
mission. A model of a tsetse-fly population,
which is driven by satellite-derived variables,
captures 93% of the observed seasonal 
pattern (FIG. 4b). Given the extra layers of
complexity that are involved in pathogen
transmission by vectors, it is not surprising
that the model of trypanosomiasis seasonal
prevalence, which is driven, in turn, by this
tsetse model, gives a less good fit (62%) to
the disease data (FIG. 4b). In this case, the
model assumed that cattle supply only 
30% of the blood meals for the tsetse, but are
the only significant source of trypanosome
infections for the flies, when in reality
wildlife species also play a part in transmis-
sion22. This emphasizes our first point — the
importance of identifying all the pieces 
of the puzzle before we can make reliable
predictions.

The persistence of an infectious agent
can also be predicted from the widely used
R

0
equation, which arises from rearranging

the transmission equations to determine
whether, at very low prevalence in an
entirely susceptible population, an infection
will increase or decline to extinction23.
Given that six out of the seven parameters
and variables of the R

0
equation for vector-

borne pathogens are determined not by the
vertebrate host but by the vector24, which is
highly susceptible to climatic influences, it 
is possible to produce R

0
maps for vector-

borne diseases using satellite imagery;
however, the first attempts have not yet been
validated. A map describing the relative
transmission risk of the directly transmitted
foot and mouth disease in the United
Kingdom revealed considerable spatial het-
erogeneity25, but the mapping was not based
on any environmental variables that might

Longer-term changes. With historical, geo-
referenced disease records over several
(preferably many) years, time-series analysis
can be applied to make predictions about the
future of the disease. Long-term records of
disease are relatively rare, and usually apply
to point or small-area locations. The prob-
lem with statistical approaches (for example,
various auto-regressive techniques) to these
types of data is that they assume that the
transmission dynamics of disease in the future
will be similar to those of the past. In reality,
pathogen–host systems are always evolving
and their environments are changing, which

multiple, derived layers of data often com-
pounds any errors that are present in each
contributory variable. This is especially likely
when no attempt is made to verify these
derived layers through field observations
(for example, checking vegetation classifica-
tions that are based on satellite data), and the
effects are especially severe when the errors
are systematic. The production of visually
appealing, even statistically sound, results
that do not reveal anything useful about
either pattern or process is perhaps the
greatest danger facing newcomers to this
powerful technology.
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Figure 3 | Results of statistical modelling of the distribution of vectors and disease using
selected temporal Fourier-processed images as predictor variables. a | The distribution of
Glossina morsitans (three subspecies) throughout Africa. b | The distribution of Glossina palpalis
(two subspecies) in West Africa. c | The distribution of tick-borne encephalitis in Europe (historical mapped
data is shown cross-hatched in black). The predicted habitat suitability for the vectors or disease are on 
a probability scale from zero (red) to 1 (green) (see inset for legend); (a) 91% correct with 7% false-
positives (that is, false predictions of presence) and 2% false-negatives (that is, false predictions of
absence); sensitivity 0.96, specificity 0.857; (b) 96% correct with 3% false-positives and 1% false-negatives;
sensitivity 0.97, specificity 0.94; (c) 90.5% correct with 8.1% false-positives, 1.4% false-negatives;
sensitivity 0.966, specificity 0.865. Modified with permission from REFS 40,41 © (2000) Elsevier Science.
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tropical) areas of the world33, and the second
is a consequence of the computing require-
ments of global circulation models34. We can
do little about the historical climatic data
sets, and computing power is not predicted
to increase sufficiently rapidly to address 
the second problem in the near future.
Climatically speaking, we know neither
where we are coming from, nor where we are
headed, with anything like the precision that
is required to predict spatially variable,
climatically sensitive diseases.

Conclusions
With today’s global connectivity, humans are
now the new vectors of infectious agents,
travelling, or trading over, greater distances
at faster speeds than can be achieved
unaided by any pathogen or its vectors. The
consequent increasingly urgent need to
develop global disease early-warning systems
(DEWS) is fortunately matched by rapidly
developing tools: RS imagery within a GIS
now offers greater power for describing,
explaining and predicting epidemiological
phenomena than ever before. Furthermore,
although global routes of infection are
increasingly common, global information
flow has increased in parallel, thanks to the
internet, and information can be transmitted
even faster than any pathogen. In the most
recent example, once the international 
community became aware of SARS, the
response in laboratories and health agencies

help explain this spatial pattern. A map of
fully parameterized R

0
values would show

potential sources (R
0
≥ 1) and sinks (R

0
<1)

of infection, and would be of obvious bene-
fit to control efforts, because only sources of
infection require control, and only to levels
where they also become sinks.

Climate and global spread of disease
Taken on a global scale, these same ideas can
identify potential sources of infection for new
disease outbreaks elsewhere. As there are so
few global disease data sets, we are generally
forced to use one or other statistical approach
to disease mapping. Climatic similarities
between areas that are, at present, disease-
affected and disease-free, can be used as a
guide to the environmental permissiveness of
these latter areas for the diseases in question.
Like risk mapping, however, climate matching
is a probabilistic exercise; similarity of climates
does not guarantee similarity of diseases, but
simply makes it more likely, all other things
being equal. The present-day match of the
UK climate to global climates (FIG. 5) indicates
that UK inhabitants might expect to share
climatically determined diseases not just with
parts of mainland Europe, but also with
China and North America. Given suitable
connections by trade or travel26, if only one of
these climatically matched regions is a source
of emergence of any new disease — as China
is for new strains of influenza — all of these
regions could potentially suffer from it.

Much attention has been focused
recently on the impacts of past and future
climate changes on diseases27,28. To identify
causality rather than coincidence in past
events as a prerequisite for future predic-
tions, we must have evidence of significant
changes both in the climatic drivers of
infection and in the incidence of the dis-
eases themselves, at the same times, in the
same places and in the right ‘direction’
according to our understanding of how cli-
mate affects transmission. The step increase
in the incidence of TBE in Sweden from
1983 to 1986 (REF. 29), for example, preceded
the sudden increase in temperature at the
end of the 1980s (REF. 21), showing that
milder winters and springs cannot have
been the causal factors, as claimed30. The
analytical power in a GIS is the obvious
way9 to explore which of many disparate
factors — biological and non-biological —
might be causal for spatially heterogeneous
changes in disease incidence on continental
scales, as has been recorded for TBE in
Europe31 and malaria in Africa32.

To predict future impacts, future climate
scenarios must be obtained at a sufficiently
high spatial resolution to be useful, together
with good models of climate and disease
linkages. Unfortunately, at present, the spa-
tial resolution of both past and future cli-
mate data sets is inadequate; the first is
owing to historically inadequate meteo-
rological station coverage in many (mostly
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Figure 4 | Biological models driven by remotely sensed data. a | The relationship between the mortality rate of the tsetse Glossina morsitans submorsitans at
Bansang, The Gambia, West Africa, and the satellite-derived land surface temperature for the previous month. Mortality is the two-point (previous, present month)
smoothed density-independent mortality (d.i.m.) that is calculated from regular trapped samples of flies. b | A least-squares-fitted biological tsetse population
model (red line), which is driven by satellite data by the relationship shown in (a), describes 93% of the variance of the observed mean monthly field data (yellow
line). The fitted tsetse model was then used in a simple disease transmission model (lower, green line) and describes 62% of the variance of the observed field data
(blue line). Field data are the average monthly values from the sample sites, and are repeated over a 3-year period in the figure for clarity. Modified with permission
from REF. 40 © (2000) Elsevier Science.
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time into smaller units, allow unit-to-unit
variation of disease–environment interac-
tions35,36; and other advanced techniques
allow continuous variation in these interac-
tions37. Similar techniques can be applied in
the spatial domain to satellite imagery. The
enormous range of pixel sizes that are avail-
able in commercial satellite imagery (from
0.6 m to >1 km) challenges us to develop
methods to identify the appropriate data res-
olutions, and to integrate these data into
spatial units that are relevant to disease
transmission, such as the movement range
of an infected individual for a directly trans-
mitted pathogen, or the flight range of an
insect for a vector-borne pathogen. Again,
wavelet and other techniques might help
here, by enabling us to look at the environ-
ment from the perspective of disease systems
that are driven more by biological realism
than by technological wizardry. A unified
space–time theory of epidemics, in which a
three-dimensional space–time pixel replaces
a two-dimensional one as the basic record-
ing unit, is still some way off 38, but GIS and
RS technologies are the vehicles that, poten-
tially, will get us there the fastest. All we have
to decide is in which direction to go.
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around the world — which resulted in an
unprecedented rapid identification of the
agent, its routes of transmission and the
networks of connectivity — apparently
achieved a (temporary?) halt to its progress
within much less than a year. By contrast,
however, although the response to the intro-
duction of West Nile virus in the United
States was equally impressive (a delay of less
than 2 months between the first (unrecog-
nized) human case in New York and identifi-
cation of the virus), the spread of this disease
has not been stopped, and it must now be
regarded as endemic throughout much of
the United States. The differences between
these two diseases can be attributed to many
factors, but all will be embedded within 
one or other parameter or variable of the
transmission and R

0
equations.

Finally, we highlight two key issues in epi-
demic disease prediction that have pervaded
this review — space and time. Although 
epidemiological surveillance networks, or
global satellite systems, constrain the collec-
tion of data to particular intervals of time
(the reporting period) or space (the pixel
size), diseases do not respect such artificial
units. We must develop methods that allow
us to move seamlessly across scales of time
and space as we analyse epidemics that occur
throughout the spectrum from small iso-
lated communities to the global population.
Classical time-series analysis of disease data,
or Fourier analyses of temporal satellite
series, assume a constancy (mathematical
stationarity) in the disease system or the
environment that is rarely shown in practice.
Wavelet techniques, which essentially divide

Figure 5 | The use of meteorological data averages to define ten climate zones in Great Britain. The mean, maxima and minima of temperature, rainfall
and vapour pressure measurements from gridded meteorological data averages for 1961–1990 (REF. 33) were clustered within an image-processing system
(ERDAS Imagine © Leica Geosystems, ISODATA clustering) to define ten climate zones in Great Britain (see map on right, arbitrary colours). The global map
shows how matches to these climate zones occur in Europe, North America and China, with smaller area matches elsewhere. White indicates no significant
matching. Reproduced with permission from REF. 42 © (2002). Crown copyright material is reproduced with the permission of the Controller of HMSO and the
Queen's Printer for Scotland.
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an antibody raised against an antigen
‘uniquely’ present on tumour cells1. As we
have entered the gene therapy era however,
the focus has switched to the delivery of the
gene that encodes the therapeutic protein —
predominantly through the use of eukaryotic
viral vectors2,3.

There are several inherent difficulties with
the use of viral vectors. They exhibit a general
lack of specificity for tumours and, once they
have been delivered to the site of the tumour
(for example, by direct injection), are relatively
inefficient at being distributed throughout the
tumour mass. Strategies have been devised to
overcome these deficiencies, and progress is
being made in several areas, including altering
the viral tropism4 and engineering the viruses
such that they replicate selectively in tumour
cells5,6. Alternatively, the possibility of devel-
oping non-viral delivery systems, based on
liposomes or polyethyl glycol derivatives, for
example, is being explored7,8.

Irrespective of the delivery system used,
tumour specificity can also be elicited by
placing the introduced therapeutic gene
under the control of promoter elements that
are only active in the tumour environment,
thereby mitigating against production of the
therapeutic agent in inadvertently transduced
healthy tissues9–11. One of the most widely
investigated strategies has been to incorporate
hypoxia-regulatory elements (HREs) into
the promoters that are used10. HREs are the
binding sites for the hypoxia-inducible 
transcription factor 1 (HIF-1), which is over-
produced under hypoxic (a reduced level of
tissue oxygen tension) conditions12,13.

Anti-cancer strategies that are based on
HREs are feasible because in most solid
tumours the oxygen levels are reduced, as a
consequence of poor vasculation. Although
hypoxia leads to resistance to radiothera-
peutic and chemotherapeutic agents, and
an increased predisposition for tumour
metastases14, these conditions also present
an ideal environment for the growth of
obligately anaerobic bacteria. Indeed, the
colonization of colonic tumours by bacte-
ria, such as Clostridium sp., can often repre-
sent the first indication that a patient has 
a cancerous growth. Experiments have
shown that although intravenously injected
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Online links

FURTHER INFORMATION
European Space Agency: http://www.esa.int 
Oxford Tick Research Group:
http://users.ox.ac.uk/~zool0048/
TALA Research Group: http://www.tala.ox.ac.uk/
Terra satellite: http://terra.nasa.gov
Access to this interactive links box is free online.

During the past decade, the search for an
effective system for the selective delivery of
high therapeutic doses of anti-cancer
agents to tumours has explored a variety of
ingenious and increasingly complex
biological systems. These systems are most
often based on gene therapy and use viral
vectors as the delivery vehicle. Invariably,
such systems have been found wanting with
respect to a lack of tumour specificity, poor
levels of transgene expression and inefficient
distribution of the vector throughout the
tumour mass. By contrast, the ability of
intravenously injected clostridial spores to
infiltrate, then selectively germinate in, the
hypoxic regions of solid tumours seems to
be a totally natural phenomenon, which
requires no fundamental alterations and is
exquisitely specific.

In many instances, traditional cancer treatments
(surgery, radiotherapy and chemotherapy) are
reasonably successful in controlling the disease.
There are, however, many tumours and
circumstances where these approaches are
ineffective. Consequently, there is intensive
activity around the world to develop alterna-
tive approaches. A fundamental requirement
of any new anti-cancer therapy is the facility
to subject tumour cells to a toxic agent and at
the same time exclude normal healthy tissues
from such exposure. Despite their conceptual
simplicity, the derivation of such therapies is
proving extremely challenging.

Over the past two decades, a significant
amount of effort has focused on attempting to
localize protein-based anti-cancer agents
specifically to the site of tumours. The resulting
therapeutic effect is dependent on the class of
protein that is used. These range from proteins
that, to a certain extent, have a direct effect (for
example, immunogens, toxins and cytokines),
to enzymes that are able to generate a cytotoxic
drug from an innocuous precursor, such as
prodrug-converting enzymes.

In all cases, these agents have been shown
to be highly effective in killing tumour cells
in studies using appropriate cell lines. The
challenge has been to bring about their selec-
tive delivery to the tumour. Initially, strategies
were devised that sought to target the protein
itself, most prominently through its fusion to
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