Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A century of the phage: past, present and future

Abstract

Viruses that infect bacteria (bacteriophages; also known as phages) were discovered 100 years ago. Since then, phage research has transformed fundamental and translational biosciences. For example, phages were crucial in establishing the central dogma of molecular biology — information is sequentially passed from DNA to RNA to proteins — and they have been shown to have major roles in ecosystems, and help drive bacterial evolution and virulence. Furthermore, phage research has provided many techniques and reagents that underpin modern biology — from sequencing and genome engineering to the recent discovery and exploitation of CRISPR–Cas phage resistance systems. In this Timeline, we discuss a century of phage research and its impact on basic and applied biology.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Some major events in the 100 years of phage research.
Figure 2: The role of phages in bacterial pathogenicity and evolution.
Figure 3: Some phage-inspired antimicrobial approaches.

References

  1. Twort, F. W. An investigation on the nature of ultra-microscopic viruses. Bacteriophage 1, 127–129 (2011).

    Article  Google Scholar 

  2. D'Herelle, F. On an invisible microbe antagonistic toward dysenteric bacilli: brief note by Mr. F. D'Herelle, presented by Mr. Roux. 1917. Res. Microbiol. 158, 553–554 (2007).

    PubMed  Article  Google Scholar 

  3. Summers, W. C. Bacteriophage therapy. Annu. Rev. Microbiol. 55, 437–451 (2001).

    CAS  PubMed  Article  Google Scholar 

  4. Ruska, H., von Borries, B. & Ruska, E. Die Bedeutung der Übermikroskopie für die Virusforschung. Arch. Virusforsch (Arch. Virol.) 1, 155–169 (in German) (1940).

    Article  Google Scholar 

  5. Summers, W. C. in The Bacteriophages (ed. Calendar, R.) 3–7 (Oxford Univ. Press, 2006).

    Google Scholar 

  6. Ellis, E. L. & Delbruck, M. The growth of bacteriophage. J. Gen. Physiol. 22, 365–384 (1939).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. Luria, S. E. & Delbruck, M. Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28, 491–511 (1943).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. Hershey, A. D. & Chase, M. Independent functions of viral protein and nucleic acid in growth of bacteriophage. J. Gen. Physiol. 36, 39–56 (1952).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. Benzer, S. Fine structure of a genetic region in bacteriophage. Proc. Natl Acad. Sci. USA 41, 344–354 (1955).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  10. Crick, F. H., Barnett, L., Brenner, S. & Watts-Tobin, R. J. General nature of the genetic code for proteins. Nature 192, 1227–1232 (1961).

    CAS  PubMed  Article  Google Scholar 

  11. Jacob, F. & Monod, J. Genetic regulatory mechanisms in the synthesis of proteins. J. Mol. Biol. 3, 318–356 (1961).

    CAS  PubMed  Article  Google Scholar 

  12. Bertani, G. & Weigle, J. J. Host controlled variation in bacterial viruses. J. Bacteriol. 65, 113–121 (1953).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. Luria, S. E. & Human, M. L. A nonhereditary, host-induced variation of bacterial viruses. J. Bacteriol. 64, 557–569 (1952).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. Pingoud, A., Wilson, G. G. & Wende, W. Type II restriction endonucleases — a historical perspective and more. Nucleic Acids Res. 42, 7489–7527 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. Smith, H. O. & Wilcox, K. W. A restriction enzyme from Hemophilus influenzae: I. Purification and general properties. J. Mol. Biol. 51, 379–391 (1970).

    CAS  PubMed  Article  Google Scholar 

  16. Weiss, B. & Richardson, C. C. Enzymatic breakage and joining of deoxyribonucleic acid, I. Repair of single-strand breaks in DNA by an enzyme system from Escherichia coli infected with T4 bacteriophage. Proc. Natl Acad. Sci. USA 57, 1021–1028 (1967).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. Collins, J. & Hohn, B. Cosmids: a type of plasmid gene-cloning vector that is packageable in vitro in bacteriophage λ heads. Proc. Natl Acad. Sci. USA 75, 4242–4246 (1978).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  18. Zhu, B. Bacteriophage T7 DNA polymerase — sequenase. Front. Microbiol. 5, 181 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  19. Kleckner, N., Roth, J. & Botstein, D. Genetic engineering in vivo using translocatable drug-resistance elements. New methods in bacterial genetics. J. Mol. Biol. 116, 125–159 (1977).

    CAS  PubMed  Article  Google Scholar 

  20. Wasylyk, B. et al. Specific in vitro transcription of conalbumin gene is drastically decreased by single-point mutation in T-A-T-A box homology sequence. Proc. Natl Acad. Sci. USA 77, 7024–7028 (1980).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  21. Groisman, E. A. In vivo genetic engineering with bacteriophage Mu. Methods Enzymol. 204, 180–212 (1991).

    CAS  PubMed  Article  Google Scholar 

  22. Fiers, W. et al. Complete nucleotide sequence of bacteriophage MS2 RNA: primary and secondary structure of the replicase gene. Nature 260, 500–507 (1976).

    CAS  PubMed  Article  Google Scholar 

  23. Sanger, F. et al. Nucleotide sequence of bacteriophage ΦX174 DNA. Nature 265, 687–695 (1977).

    CAS  PubMed  Article  Google Scholar 

  24. Sanger, F., Coulson, A. R., Hong, G. F., Hill, D. F. & Petersen, G. B. Nucleotide sequence of bacteriophage λ DNA. J. Mol. Biol. 162, 729–773 (1982).

    CAS  PubMed  Article  Google Scholar 

  25. Bergh, O., Borsheim, K. Y., Bratbak, G. & Heldal, M. High abundance of viruses found in aquatic environments. Nature 340, 467–468 (1989).

    CAS  PubMed  Article  Google Scholar 

  26. Bratbak, G., Heldal, M., Norland, S. & Thingstad, T. F. Viruses as partners in spring bloom microbial trophodynamics. Appl. Environ. Microbiol. 56, 1400–1405 (1990).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. Proctor, L. M. & Fuhrman, J. A. Viral mortality of marine bacteria and cyanobacteria. Nature 343, 60–62 (1990).

    Article  Google Scholar 

  28. Suttle, C., Chan, A. & Cottrell, M. Infection of phytoplankton by viruses and reduction of primary productivity. Nature 347, 467–469 (1990).

    Article  Google Scholar 

  29. Clokie, M. R., Millard, A. D., Letarov, A. V. & Heaphy, S. Phages in nature. Bacteriophage 1, 31–45 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  30. Breitbart, M. Marine viruses: truth or dare. Ann. Rev. Mar. Sci. 4, 425–448 (2012).

    PubMed  Article  Google Scholar 

  31. Breitbart, M. et al. Genomic analysis of uncultured marine viral communities. Proc. Natl Acad. Sci. USA 99, 14250–14255 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. Hendrix, R. W., Smith, M. C., Burns, R. N., Ford, M. E. & Hatfull, G. F. Evolutionary relationships among diverse bacteriophages and prophages: all the world's a phage. Proc. Natl Acad. Sci. USA 96, 2192–2197 (1999).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  33. Pope, W. H. et al. Whole genome comparison of a large collection of mycobacteriophages reveals a continuum of phage genetic diversity. eLife 4, e06416 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  34. Koskella, B. & Brockhurst, M. A. Bacteria–phage coevolution as a driver of ecological and evolutionary processes in microbial communities. FEMS Microbiol. Rev. 38, 916–931 (2014).

    CAS  PubMed  Article  Google Scholar 

  35. Buckling, A., Craig Maclean, R., Brockhurst, M. A. & Colegrave, N. The Beagle in a bottle. Nature 457, 824–829 (2009).

    CAS  PubMed  Article  Google Scholar 

  36. Brussow, H., Canchaya, C. & Hardt, W. D. Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol. Mol. Biol. Rev. 68, 560–602 (2004).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  37. Waldor, M. K. & Mekalanos, J. J. Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 272, 1910–1914 (1996).

    CAS  PubMed  Article  Google Scholar 

  38. Freeman, V. J. Studies on the virulence of bacteriophage-infected strains of Corynebacterium diphtheriae. J. Bacteriol. 61, 675–688 (1951).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. Neely, M. N. & Friedman, D. I. Functional and genetic analysis of regulatory regions of coliphage H-19B: location of shiga-like toxin and lysis genes suggest a role for phage functions in toxin release. Mol. Microbiol. 28, 1255–1267 (1998).

    CAS  PubMed  Article  Google Scholar 

  40. Zinder, N. D. & Lederberg, J. Genetic exchange in Salmonella. J. Bacteriol. 64, 679–699 (1952).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. Modi, S. R., Lee, H. H., Spina, C. S. & Collins, J. J. Antibiotic treatment expands the resistance reservoir and ecological network of the phage metagenome. Nature 499, 219–222 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. Penades, J. R., Chen, J., Quiles-Puchalt, N., Carpena, N. & Novick, R. P. Bacteriophage-mediated spread of bacterial virulence genes. Curr. Opin. Microbiol. 23, 171–178 (2015).

    CAS  PubMed  Article  Google Scholar 

  43. McDaniel, L. D. et al. High frequency of horizontal gene transfer in the oceans. Science 330, 50 (2010).

    CAS  PubMed  Article  Google Scholar 

  44. Lang, A. S., Zhaxybayeva, O. & Beatty, J. T. Gene transfer agents: phage-like elements of genetic exchange. Nat. Rev. Microbiol. 10, 472–482 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. Novick, R. P., Christie, G. E. & Penades, J. R. The phage-related chromosomal islands of Gram-positive bacteria. Nat. Rev. Microbiol. 8, 541–551 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. Coulthurst, S. J. The type VI secretion system — a widespread and versatile cell targeting system. Res. Microbiol. 164, 640–654 (2013).

    CAS  PubMed  Article  Google Scholar 

  47. Shikuma, N. J. et al. Marine tubeworm metamorphosis induced by arrays of bacterial phage tail-like structures. Science 343, 529–533 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. Schmelcher, M. & Loessner, M. J. Application of bacteriophages for detection of foodborne pathogens. Bacteriophage 4, e28137 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  49. Chan, B. K., Abedon, S. T. & Loc-Carrillo, C. Phage cocktails and the future of phage therapy. Future Microbiol. 8, 769–783 (2013).

    CAS  PubMed  Article  Google Scholar 

  50. Nobrega, F. L., Costa, A. R., Kluskens, L. D. & Azeredo, J. Revisiting phage therapy: new applications for old resources. Trends Microbiol. 23, 185–191 (2015).

    CAS  PubMed  Article  Google Scholar 

  51. Wright, A., Hawkins, C. H., Anggard, E. E. & Harper, D. R. A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic-resistant Pseudomonas aeruginosa; a preliminary report of efficacy. Clin. Otolaryngol. 34, 349–357 (2009).

    CAS  PubMed  Article  Google Scholar 

  52. Roach, D. R. & Donovan, D. M. Antimicrobial bacteriophage-derived proteins and therapeutic applications. Bacteriophage 5, e1062590 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. Schuch, R., Nelson, D. & Fischetti, V. A. A bacteriolytic agent that detects and kills Bacillus anthracis. Nature 418, 884–889 (2002).

    CAS  PubMed  Article  Google Scholar 

  54. Young, R. Phage lysis: do we have the hole story yet? Curr. Opin. Microbiol. 16, 790–797 (2013).

    CAS  PubMed  Article  Google Scholar 

  55. Briers, Y. et al. Engineered endolysin-based 'Artilysins' to combat multidrug-resistant Gram-negative pathogens. mBio 5, e01379–14 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  56. Dubos, R. & Avery, O. T. Decomposition of the capsular polysaccharide of pneumococcus type III by a bacterial enzyme. J. Exp. Med. 54, 51–71 (1931).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. Lu, T. K. & Collins, J. J. Dispersing biofilms with engineered enzymatic bacteriophage. Proc. Natl Acad. Sci. USA 104, 11197–11202 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  58. Meyer, J. R. et al. Repeatability and contingency in the evolution of a key innovation in phage λ. Science 335, 428–432 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  59. Liu, M. et al. Reverse transcriptase-mediated tropism switching in Bordetella bacteriophage. Science 295, 2091–2094 (2002).

    CAS  PubMed  Article  Google Scholar 

  60. Yacoby, I. & Benhar, I. Targeted filamentous bacteriophages as therapeutic agents. Expert Opin. Drug Deliv. 5, 321–329 (2008).

    CAS  PubMed  Article  Google Scholar 

  61. Edgar, R., Friedman, N., Molshanski-Mor, S. & Qimron, U. Reversing bacterial resistance to antibiotics by phage-mediated delivery of dominant sensitive genes. Appl. Environ. Microbiol. 78, 744–751 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. Lu, T. K. & Collins, J. J. Engineered bacteriophage targeting gene networks as adjuvants for antibiotic therapy. Proc. Natl Acad. Sci. USA 106, 4629–4634 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  63. Rakonjac, J., Bennett, N. J., Spagnuolo, J., Gagic, D. & Russel, M. Filamentous bacteriophage: biology, phage display and nanotechnology applications. Curr. Issues Mol. Biol. 13, 51–76 (2011).

    CAS  PubMed  Google Scholar 

  64. Smith, G. P. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228, 1315–1317 (1985).

    CAS  PubMed  Article  Google Scholar 

  65. Henry, K. A., Arbabi-Ghahroudi, M. & Scott, J. K. Beyond phage display: non-traditional applications of the filamentous bacteriophage as a vaccine carrier, therapeutic biologic, and bioconjugation scaffold. Front. Microbiol. 6, 755 (2015).

    PubMed  PubMed Central  Google Scholar 

  66. Fokine, A. & Rossmann, M. G. Molecular architecture of tailed double-stranded DNA phages. Bacteriophage 4, e28281 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  67. Ackermann, H. W. Phage classification and characterization. Methods Mol. Biol. 501, 127–140 (2009).

    CAS  PubMed  Article  Google Scholar 

  68. Guo, F. et al. Visualization of uncorrelated, tandem symmetry mismatches in the internal genome packaging apparatus of bacteriophage T7. Proc. Natl Acad. Sci. USA 110, 6811–6816 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  69. Wikoff, W. R. et al. Topologically linked protein rings in the bacteriophage HK97 capsid. Science 289, 2129–2133 (2000).

    CAS  PubMed  Article  Google Scholar 

  70. Kanamaru, S. et al. Structure of the cell-puncturing device of bacteriophage T4. Nature 415, 553–557 (2002).

    CAS  PubMed  Article  Google Scholar 

  71. Dai, W. et al. Visualizing virus assembly intermediates inside marine cyanobacteria. Nature 502, 707–710 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  72. Dewey, J. S. et al. Micron-scale holes terminate the phage infection cycle. Proc. Natl Acad. Sci. USA 107, 2219–2223 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  73. Hu, B., Margolin, W., Molineux, I. J. & Liu, J. The bacteriophage T7 virion undergoes extensive structural remodeling during infection. Science 339, 576–579 (2013).

    CAS  PubMed  Article  Google Scholar 

  74. Citorik, R. J., Mimee, M. & Lu, T. K. Bacteriophage-based synthetic biology for the study of infectious diseases. Curr. Opin. Microbiol. 19, 59–69 (2014).

    CAS  PubMed  Article  Google Scholar 

  75. Smith, H. O., Hutchison, C. A., Pfannkoch, C. & Venter, J. C. Generating a synthetic genome by whole genome assembly: ΦX174 bacteriophage from synthetic oligonucleotides. Proc. Natl Acad. Sci. USA 100, 15440–15445 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  76. Fogg, P. C., Colloms, S., Rosser, S., Stark, M. & Smith, M. C. New applications for phage integrases. J. Mol. Biol. 426, 2703–2716 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  77. Sauer, B. & Henderson, N. Site-specific DNA recombination in mammalian cells by the Cre recombinase of bacteriophage P1. Proc. Natl Acad. Sci. USA 85, 5166–5170 (1988).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  78. Bonnet, J., Subsoontorn, P. & Endy, D. Rewritable digital data storage in live cells via engineered control of recombination directionality. Proc. Natl Acad. Sci. USA 109, 8884–8889 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  79. Shis, D. L. & Bennett, M. R. Library of synthetic transcriptional AND gates built with split T7 RNA polymerase mutants. Proc. Natl Acad. Sci. USA 110, 5028–5033 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  80. Dy, R. L., Richter, C., Salmond, G. P. C. & Fineran, P. C. Remarkable mechanisms in microbes to resist viral infections. Annu. Rev. Virol. 1, 307–331 (2014).

    PubMed  Article  CAS  Google Scholar 

  81. Barrangou, R. et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709–1712 (2007).

    CAS  PubMed  Article  Google Scholar 

  82. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  83. Rath, D., Amlinger, L., Rath, A. & Lundgren, M. The CRISPR–Cas immune system: biology, mechanisms and applications. Biochimie (2015).

  84. Doudna, J. A. & Charpentier, E. The new frontier of genome engineering with CRISPR–Cas9. Science 346, 1258096 (2014).

    PubMed  Article  CAS  Google Scholar 

  85. Liao, H. K. et al. Use of the CRISPR/Cas9 system as an intracellular defense against HIV-1 infection in human cells. Nat. Commun. 6, 6413 (2015).

    CAS  PubMed  Article  Google Scholar 

  86. Gantz, V. M. & Bier, E. The mutagenic chain reaction: a method for converting heterozygous to homozygous mutations. Science 348, 442–444 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  87. Selle, K. & Barrangou, R. Harnessing CRISPR–Cas systems for bacterial genome editing. Trends Microbiol. 23, 225–232 (2015).

    CAS  PubMed  Article  Google Scholar 

  88. Martel, B. & Moineau, S. CRISPR–Cas: an efficient tool for genome engineering of virulent bacteriophages. Nucleic Acids Res. 42, 9504–9513 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  89. Hendrix, R. W. Jumbo bacteriophages. Curr. Top. Microbiol. Immunol. 328, 229–240 (2009).

    CAS  PubMed  Google Scholar 

  90. King, A. M. Q., Lefkowitz, E., Adams, M. J. & Carstens, E. B. Virus Taxonomy: Classification and Nomenclature of Viruses (Elsevier, 2011).

    Google Scholar 

  91. Lwoff, A., Horne, R. & Tournier, P. A system of viruses. Cold Spring Harb. Symp. Quant. Biol. 27, 51–55 (1962).

    CAS  PubMed  Article  Google Scholar 

  92. Westra, E. R., Buckling, A. & Fineran, P. C. CRISPR–Cas systems: beyond adaptive immunity. Nat. Rev. Microbiol. 12, 317–326 (2014).

    CAS  PubMed  Article  Google Scholar 

  93. van der Oost, J., Westra, E. R., Jackson, R. N. & Wiedenheft, B. Unravelling the structural and mechanistic basis of CRISPR–Cas systems. Nat. Rev. Microbiol. 12, 479–492 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  94. Makarova, K. S. et al. An updated evolutionary classification of CRISPR–Cas systems. Nat. Rev. Microbiol. 13, 722–736 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  95. Zetsche, B. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163, 759–771 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  96. Levy, A. et al. CRISPR adaptation biases explain preference for acquisition of foreign DNA. Nature 520, 505–510 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  97. Goldberg, G. W., Jiang, W., Bikard, D. & Marraffini, L. A. Conditional tolerance of temperate phages via transcription-dependent CRISPR–Cas targeting. Nature 514, 633–637 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  98. Fineran, P. C. et al. Degenerate target sites mediate rapid primed CRISPR adaptation. Proc. Natl Acad. Sci. USA 111, E1629–E1638 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  99. Bondy-Denomy, J., Pawluk, A., Maxwell, K. L. & Davidson, A. R. Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system. Nature 493, 429–432 (2013).

    CAS  PubMed  Article  Google Scholar 

  100. Seed, K. D., Lazinski, D. W., Calderwood, S. B. & Camilli, A. A bacteriophage encodes its own CRISPR/Cas adaptive response to evade host innate immunity. Nature 494, 489–491 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

Research in the laboratory of G.P.C.S. is supported by grants from the UK Biotechnology and Biological Sciences Research Council (BBSRC) and the Cambridge Trusts, and through the financial support of the Society for General Microbiology, the Society for Applied Microbiology and the British Society for Plant Pathology. Research in the laboratory of P.C.F. is supported by the Marsden Fund, the Royal Society of New Zealand (RSNZ), a Rutherford Discovery Fellowship (RSNZ) to P.C.F., a University of Otago Research Grant, a Bequest Fund for Research in the Otago School of Medical Sciences and the Bio-Protection Centre of Research Excellence. The authors thank R. Dy for assistance with the preparation of some of the figures and R. Staals for comments on the manuscript. The authors apologize to the many phage researchers whose significant contributions could not be cited owing to space constraints.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to George P. C. Salmond or Peter C. Fineran.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

FURTHER INFORMATION

ICTV

PhagoBurn Trial

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Salmond, G., Fineran, P. A century of the phage: past, present and future. Nat Rev Microbiol 13, 777–786 (2015). https://doi.org/10.1038/nrmicro3564

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro3564

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing