Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Modulation of p53 during bacterial infections

Abstract

In recent years, numerous bacterial pathogens have been shown to inactivate the major tumour suppressor p53 during infection. This inactivation impedes the protective response of the host cell to the genotoxicity that often results from bacterial infection. Moreover, a new aspect of the antibacterial activity of p53 that has recently come to light — downregulation of host cell metabolism to interfere with intracellular bacterial replication — has further highlighted the crucial role of p53 in host–pathogen interactions, as host cell metabolism is relevant for all intracellular bacteria, as well as other pathogens that replicate inside host cells and use host metabolites. In this Progress article, we summarize recent work that has advanced our knowledge of the interaction between pathogenic bacteria and p53, and we discuss the known and expected outcomes of this interaction for pathogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: p53 pathways.
Figure 2: Bacterial modulation of p53.
Figure 3: Consequences of p53 modulation for the infection process.

Similar content being viewed by others

References

  1. Lane, D. P. p53, guardian of the genome. Nature 358, 15–16 (1992).

    Article  CAS  PubMed  Google Scholar 

  2. Martinez, J. D. Restoring p53 tumor suppressor activity as an anticancer therapeutic strategy. Future Oncol. 6, 1857–1862 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Essmann, F. & Schulze-Osthoff, K. Translational approaches targeting the p53 pathway for anti-cancer therapy. Br. J. Pharmacol. 165, 328–344 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Vousden, K. H. & Ryan, K. M. p53 and metabolism. Nat. Rev. Cancer 9, 691–700 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Warburg, O. Origin of cancer cells. Science 123, 309–314 (1956).

    Article  CAS  PubMed  Google Scholar 

  6. Lyssiotis, C. A. & Cantley, L. C. SIRT6 puts cancer metabolism in the driver's seat. Cell 151, 1155–1156 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sebastian, C. et al. The histone deacetylase SIRT6 is a tumor suppressor that controls cancer metabolism. Cell 151, 1185–1199 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Vogelstein, B., Lane, D. & Levine, A. J. Surfing the p53 network. Nature 408, 307–310 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Vousden, K. H. & Lu, X. Live or let die: the cell's response to p53. Nat. Rev. Cancer 2, 594–604 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Dupré, A., Boyer-Chatenet, L. & Gautier, J. Two-step activation of ATM by DNA and the Mre11–Rad50–Nbs1 complex. Nat. Struct. Mol. Biol. 13, 451–457 (2006).

    Article  PubMed  Google Scholar 

  11. Stommel, J. M. & Wahl, G. M. Accelerated MDM2 auto-degradation induced by DNA-damage kinases is required for p53 activation. EMBO J. 23, 1547–1556 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schultz, L. B., Chehab, N. H., Malikzay, A. & Halazonetis, T. D. p53 binding protein 1 (53BP1) is an early participant in the cellular response to DNA double-strand breaks. J. Cell Biol. 151, 1381–1390 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Harper, J. W., Adami, G. R., Wei, N., Keyomarsi, K. & Elledge, S. J. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75, 805–816 (1993).

    Article  CAS  PubMed  Google Scholar 

  14. Hoffman, W. H., Biade, S., Zilfou, J. T., Chen, J. D. & Murphy, M. Transcriptional repression of the anti-apoptotic survivin gene by wild type p53. J. Biol. Chem. 277, 3247–3257 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Moroni, M. C. et al. Apaf-1 is a transcriptional target for E2F and p53. Nat. Cell Biol. 3, 552–558 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Wolff, S., Erster, S., Palacios, G. & Moll, U. M. p53's mitochondrial translocation and MOMP action is independent of Puma and Bax and severely disrupts mitochondrial membrane integrity. Cell Res. 18, 733–744 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Amaral, J. D., Xavier, J. M., Steer, C. J. & Rodrigues, C. M. P. The role of p53 in apoptosis. Discov. Med. 45, 145–152 (2010).

    Google Scholar 

  18. Kentner, D. et al. Shigella reroutes host cell central metabolism to obtain high-flux nutrient supply for vigorous intracellular growth. Proc. Natl Acad. Sci. USA 111, 9929–9934 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Ojcius, D. M., Degani, H., Mispelter, J. & Dautry-Varsat, A. Enhancement of ATP levels and glucose metabolism during an infection by Chlamydia. J. Biol. Chem. 273, 7052–7058 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Steeb, B. et al. Parallel exploitation of diverse host nutrients enhances Salmonella virulence. PLoS Pathog. 9, e1003301 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Siegl, C., Prusty, B. K., Karunakaran, K., Wischhusen, J. & Rudel, T. Tumor suppressor p53 alters host cell metabolism to limit Chlamydia trachomatis infection. Cell Rep. 9, 918–929 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Toller, I. M. et al. Carcinogenic bacterial pathogen Helicobacter pylori triggers DNA double-strand breaks and a DNA damage response in its host cells. Proc. Natl Acad. Sci. USA 108, 14944–14949 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Leitao, E. et al. Listeria monocytogenes induces host DNA damage and delays the host cell cycle to promote infection. Cell Cycle 13, 928–940 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Samba-Louaka, A. et al. Listeria monocytogenes dampens the DNA damage response. PLoS Pathog. 10, e1004470 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bergounioux, J. et al. Calpain activation by the Shigella flexneri effector VirA regulates key steps in the formation and life of the bacterium's epithelial niche. Cell Host Microbe 11, 240–252 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. Vielfort, K. et al. Neisseria gonorrhoeae infection causes DNA damage and affects the expression of p21, 27 and p53 in non-tumor epithelial cells. J. Cell Sci. 126, 339–347 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Chumduri, C., Gurumurthy, R. K., Zadora, P. K., Mi, Y. & Meyer, T. F. Chlamydia infection promotes host DNA damage and proliferation but impairs the DNA damage response. Cell Host Microbe 13, 746–758 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Shibata, A. et al. CagA status of Helicobacter pylori infection and p53 gene mutations in gastric adenocarcinoma. Carcinogenesis 23, 419–424 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Wei, J. X. et al. Regulation of p53 tumor suppressor by Helicobacter pylori in gastric epithelial cells. Gastroenterology 139, 1333–1343 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Buti, L. et al. Helicobacter pylori cytotoxin-associated gene A (CagA) subverts the apoptosis-stimulating protein of p53 (ASPP2) tumor suppressor pathway of the host. Proc. Natl Acad. Sci. USA 108, 9238–9243 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Gudkov, A. V., Gurova, K. V. & Komarova, E. A. Inflammation and p53: a tale of two stresses. Genes Cancer 2, 503–516 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nagata, N. et al. Enhanced expression of activation-induced cytidine deaminase in human gastric mucosa infected by Helicobacter pylori and its decrease following eradication. J. Gastroenterol. 49, 427–435 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Wei, J. et al. Pathogenic bacterium Helicobacter pylori alters the expression profile of p53 protein isoforms and p53 response to cellular stresses. Proc. Natl Acad. Sci. USA 109, E2543–E2550 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Verbeke, P. et al. Recruitment of BAD by the Chlamydia trachomatis vacuole correlates with host-cell survival. PLoS Pathog. 2, e45 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Rajalingam, K. et al. Mcl-1 is a key regulator of apoptosis resistance in Chlamydia trachomatis-infected cells. PLoS ONE 3, e3102 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Subbarayal, P. et al. EphrinA2 receptor (EphA2) is an invasion and intracellular signaling receptor for Chlamydia trachomatis. PLoS Pathog. 11, e1004846 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Prusty, B. K. et al. Imbalanced oxidative stress causes chlamydial persistence during non-productive human herpes virus co-infection. PLoS ONE 7, e47427 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tipples, G. & McClarty, G. The obligate intracellular bacterium Chlamydia trachomatis is auxotrophic for three of the four ribonucleoside triphosphates. Mol. Microbiol. 8, 1105–1114 (1993).

    Article  CAS  PubMed  Google Scholar 

  39. Jiang, P. et al. p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase. Nat. Cell Biol. 13, 310–316 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. González, E. et al. Chlamydia infection depends on a functional MDM2–p53 axis. Nat. Commun. 5, 5201 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Saleemuddin, A. et al. Risk factors for a serous cancer precursor ('p53 signature') in women with inherited BRCA mutations. Gynecol. Oncol. 111, 226–232 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Carneiro, L. A. et al. Shigella induces mitochondrial dysfunction and cell death in nonmyleoid cells. Cell Host Microbe 5, 123–136 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Faherty, C. S. & Maurelli, A. T. Spa15 of Shigella flexneri is secreted through the type III secretion system and prevents staurosporine-induced apoptosis. Infect. Immun. 77, 5281–5290 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dean, P., Muhlen, S., Quitard, S. & Kenny, B. The bacterial effectors EspG and EspG2 induce a destructive calpain activity that is kept in check by the co-delivered Tir effector. Cell. Microbiol. 12, 1308–1321 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rudel, T. To die or not to die — Shigella has an answer. Cell Host Microbe 11, 219–221 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Wu, S. et al. Salmonella typhimurium infection increases p53 acetylation in intestinal epithelial cells. Am. J. Physiol. Gastrointest. Liver Physiol. 298, 784–794 (2010).

    Article  Google Scholar 

  47. Reed, S. M. & Quelle, D. E. p53 acetylation: regulation and consequences. Cancers (Basel) 7, 30–69 (2014).

    Article  Google Scholar 

  48. Pesch, J., Brehm, U., Staib, C. & Grummt, F. Repression of interleukin-2 and interleukin-4 promoters by tumor suppressor protein p53. J. Interferon Cytokine Res. 16, 595–600 (1996).

    Article  CAS  PubMed  Google Scholar 

  49. Komarova, E. A. et al. p53 is a suppressor of inflammatory response in mice. FASEB J. 19, 1030–1032 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Liu, G., Park, Y. J., Tsuruta, Y., Lorne, E. & Abraham, E. p53 attenuates lipopolysaccharide-induced NF-κB activation and acute lung injury. J. Immunol. 182, 5063–5071 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Taura, M. et al. p53 regulates Toll-like receptor 3 expression and function in human epithelial cell lines. Mol. Cell. Biol. 28, 6557–6567 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Menendez, D., Shatz, M. & Resnick, M. A. Interactions between the tumor suppressor p53 and immune responses. Curr. Opin. Oncol. 25, 85–92 (2013).

    Article  CAS  PubMed  Google Scholar 

  53. Kaushansky, A. et al. Suppression of host p53 is critical for plasmodium liver-stage infection. Cell Rep. 3, 630–637 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Littman, A. J. et al. Chlamydia pneumoniae infection and risk of lung cancer. Cancer Epidemiol. Biomarkers Prev. 13, 1624–1630 (2004).

    PubMed  Google Scholar 

  55. Yoshimoto, S. et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 499, 97–101 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. Scheffner, M., Werness, B. A., Huibregtse, J. M., Levine, A. J. & Howley, P. M. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63, 1129–1136 (1990).

    Article  CAS  PubMed  Google Scholar 

  57. Querido, E. et al. Degradation of p53 by adenovirus E4orf6 and E1B55K proteins occurs via a novel mechanism involving a Cullin-containing complex. Genes Dev. 15, 3104–3117 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sato, Y. et al. Degradation of phosphorylated p53 by viral protein–ECS E3 ligase complex. PLoS Pathog. 5, e1000530 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Shin, Y. C. et al. Inhibition of the ATM/p53 signal transduction pathway by Kaposi's sarcoma-associated herpesvirus interferon regulatory factor 1. J. Virol. 80, 2257–2266 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Friborg, J., Kong, W. P., Hottiger, M. O. & Nabel, G. J. p53 inhibition by the LANA protein of KSHV protects against cell death. Nature 402, 889–894 (1999).

    Article  CAS  PubMed  Google Scholar 

  61. Ueda, H. et al. Functional inactivation but not structural mutation of p53 causes liver cancer. Nat. Genet. 9, 41–47 (1995).

    Article  CAS  PubMed  Google Scholar 

  62. Pise-Masison, C. A. et al. Inactivation of p53 by human T-cell lymphotropic virus type 1Tax requires activation of the NF-κB pathway and is dependent on p53 phosphorylation. Mol. Cell. Biol. 20, 3377–3386 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Dobbelstein, M. & Roth, J. The large T antigen of simian virus 40 binds and inactivates p53 but not p73. J. Gen. Virol. 79, 3079–3083 (1998).

    Article  CAS  PubMed  Google Scholar 

  64. Li, C. J., Wang, C., Friedman, D. J. & Pardee, A. B. Reciprocal modulations between p53 and Tat of human immunodeficiency virus type 1. Proc. Natl Acad. Sci. USA 92, 5461–5464 (1995).

    Article  CAS  PubMed  Google Scholar 

  65. Majumder, M., Ghosh, A. K., Steele, R., Ray, R. & Ray, R. B. Hepatitis C virus NS5A physically associates with p53 and regulates p21/waf1 gene expression in a p53-dependent manner. J. Virol. 75, 1401–1407 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Groskreutz, D. J. et al. Respiratory syncytial virus decreases p53 protein to prolong survival of airway epithelial cells. J. Immunol. 179, 2741–2747 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Haller, D. et al. Cytoplasmic sequestration of p53 promotes survival in leukocytes transformed by Theileria. Oncogene 29, 3079–3086 (2010).

    Article  CAS  PubMed  Google Scholar 

  68. Helicobacter and Cancer Collaborative Group. Gastric cancer and Helicobacter pylori: a combined analysis of 12 case control studies nested within prospective cohorts. Gut 49, 347–353 (2001).

    Article  Google Scholar 

  69. Kamangar, F. et al. Opposing risks of gastric cardia and noncardia gastric adenocarcinomas associated with Helicobacter pylori seropositivity. J. Natl Cancer Inst. 98, 1445–1452 (2006).

    Article  PubMed  Google Scholar 

  70. Sagaert, X., Van Cutsem, E., De Hertogh, G., Geboes, K. & Tousseyn, T. Gastric MALT lymphoma: a model of chronic inflammation-induced tumor development. Nat. Rev. Gastroenterol. Hepatol. 7, 336–346 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Bagnoli, F., Buti, L., Tompkins, L., Covacci, A. & Amieva, M. R. Helicobacter pylori CagA induces a transition from polarized to invasive phenotypes in MDCK cells. Proc. Natl Acad. Sci. USA 102, 16339–16344 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Huang, J. Q., Zheng, G. F., Sumanac, K., Irvine, E. J. & Hunt, R. H. Meta-analysis of the relationship between cagA seropositivity and gastric cancer. Gastroenterology 125, 1636–1644 (2003).

    Article  PubMed  Google Scholar 

  73. Matsuoka, T. & Yashiro, M. The role of PI3K/Akt/mTOR signaling in gastric carcinoma. Cancers (Basel) 6, 1441–1463 (2014).

    Article  CAS  Google Scholar 

  74. Becker, K. F. et al. E-cadherin gene mutations provide clues to diffuse type gastric carcinomas. Cancer Res. 54, 3845–3852 (1994).

    CAS  PubMed  Google Scholar 

  75. Bhardwaj, V. et al. Helicobacter pylori bacteria alter the p53 stress response via ERK-HDM2 pathway. Oncotarget 6, 1531–1543 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank V. Kozjak-Pavlovic for critical comments on the manuscript. This work was supported by grants from the Bundesministerium für Bildung und Forschung (BMBF) Medizinische Infektionsgenomik (0315834 A), and the Interdisciplinary Center for Clinical Research (IZKF) Würzburg, grant B-192 to T.R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Rudel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siegl, C., Rudel, T. Modulation of p53 during bacterial infections. Nat Rev Microbiol 13, 741–748 (2015). https://doi.org/10.1038/nrmicro3537

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro3537

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing