Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cooperative development of antimicrobials: looking back to look ahead

Abstract

As foundations and governments mobilize to tackle antimicrobial resistance (AMR), several experiments in academic–industrial collaboration have emerged. Here, I examine two historical precedents, the Penicillin Project and the Malaria Project of the Second World War, and two contemporary examples, the Tuberculosis Drug Accelerator programme and the Tres Cantos Open Lab. These and related experiments suggest that different strategies can be effective in managing academic–industrial collaborations, and that such joint projects can prosper in both multisite and single-site forms, depending on the specific challenges and goals of each project. The success of these strategies and the crisis of AMR warrant additional investment in similar projects.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Example of a network model: the Tuberculosis Drug Accelerator.
Figure 2: Example of a hub-and-spokes model: the Tres Cantos Open Lab Foundation.

References

  1. Nathan, C. & Cars, O. Antibiotic resistance—problems, progress, and prospects. New Engl. J. Med. 371, 1761–1763 (2014).

    Article  Google Scholar 

  2. O'Neill, J. C. Antimicrobial resistance: tackling a crisis for the health and wealth of nations. Review on Antimicrobial Resistance [online], (2014).

    Google Scholar 

  3. Nathan, C. Antibiotics at the crossroads. Nature 431, 899–902 (2004).

    CAS  Article  Google Scholar 

  4. Lax, E. The Mould in Dr Florey's Coat: the Remarkable True Story of Penicillin (Little, Brown & Co., 2004).

    Google Scholar 

  5. Abraham, E. P. & Chain, A. Purification of penicillin. Nature 149, 328–328 (1942).

    Article  Google Scholar 

  6. Abraham, E. P. et al. Further observations on penicillin. Lancet 238, 177–189 (1941).

    Article  Google Scholar 

  7. Chain, E. et al. Penicillin as a chemotherapeutic agent. Lancet 236, 226–228 (1940).

    Article  Google Scholar 

  8. Swann, J. P. The search for synthetic penicillin during World War II. Br. J. Hist. Sci. 16, 154–190 (1983).

    CAS  Article  Google Scholar 

  9. Rasmussen, N. Of “small men”, big science and bigger business: the Second World War and biomedical research in the United States. Minerva 40, 115–146 (2002).

    Article  Google Scholar 

  10. Brown, K. Penicillin Man: Alexander Fleming and the Antibiotic Revolution (Sutton Publishing, 2004).

    Google Scholar 

  11. Lockwood, J. S. War-time activities of the National Research Council and the Committee on Medical Research: with particular reference to team-work on studies of wounds and burns. Ann. Surg. 124, 314–327 (1946).

    Article  Google Scholar 

  12. Keefer, C. S. et al. Penicillin in the treatment of infections. A report of 500 cases. JAMA 122, 1217–1224 (1943).

    CAS  Article  Google Scholar 

  13. Richards, A. N. Penicillin. Statement released by the Committee on Medical Research. JAMA 122, 235–236 (1943).

    Article  Google Scholar 

  14. Sheehan, J. C. & Henery-Logan, K. R. The total synthesis of penicillin V. J. Am. Chem. Soc. 79, 1262–1263 (1957).

    CAS  Article  Google Scholar 

  15. Coggeshall, L. T. et al. Research work on chemotherapy. Science 192, 176–178 (1940).

    Article  Google Scholar 

  16. Masterson, K. M. The Malaria Project: The U.S. Government's Secret Mission to Find a Miracle Cure (New American Library, 2014).

    Google Scholar 

  17. Slater, L. B. War and Disease (Rutgers Univ. Press, 2014).

    Google Scholar 

  18. Coatney, G. R. Pitfalls in a discovery: the chronicle of chloroquine. Am. J. Trop. Med. Hyg. 12, 121–128 (1963).

    CAS  Article  Google Scholar 

  19. World Health Organization. Making a difference: 30 years of research and capacity building in tropical diseases. WHO [online], (2007).

  20. Bathurst, I. & Hentschel, C. Medicines for Malaria Venture: sustaining antimalarial drug development. Trends Parasitol. 22, 301–307 (2006).

    Article  Google Scholar 

  21. O'Brien, S. Meeting the societal need for new antibiotics: the challenges for the pharmaceutical industry. Br. J. Clin. Pharmacol. 79, 168–172 (2015).

    Article  Google Scholar 

  22. Rex, J. H. ND4BB: addressing the antimicrobial resistance crisis. Nat. Rev. Microbiol. 12, 231–232 (2014).

    CAS  Article  Google Scholar 

  23. Stavenger, R. A. & Winterhalter, M. TRANSLOCATION project: how to get good drugs into bad bugs. Sci. Transl. Med. 6, 228ed7 (2014).

    Article  Google Scholar 

  24. Chakraborty, S. et al. Para-aminosalicylic acid acts as an alternative substrate of folate metabolism in Mycobacterium tuberculosis. Science 339, 88–91 (2013).

    CAS  Article  Google Scholar 

  25. Dartois, V. The path of anti-tuberculosis drugs: from blood to lesions to mycobacterial cells. Nat. Rev. Microbiol. 12, 159–167 (2014).

    CAS  Article  Google Scholar 

  26. Kim, J. H. et al. A genetic strategy to identify targets for the development of drugs that prevent bacterial persistence. Proc. Natl Acad. Sci. USA 110, 19095–19100 (2013).

    CAS  Article  Google Scholar 

  27. Rottmann, M. et al. Spiroindolones, a potent compound class for the treatment of malaria. Science 329, 1175–1180 (2010).

    CAS  Article  Google Scholar 

  28. Morel, C. M. & Mossialos, E. Stoking the antibiotic pipeline. BMJ 340, c2115 (2010).

    Article  Google Scholar 

  29. Nathan, C. Aligning pharmaceutical innovation with medical need. Nat. Med. 13, 304–308 (2007).

    CAS  Article  Google Scholar 

  30. Nathan, C. Fresh approaches to anti-infective therapies. Sci. Transl. Med. 4, 140sr2 (2012).

    Article  Google Scholar 

  31. Payne, D. J., Gwynn, M. N., Holmes, D. J. & Pompliano, D. L. Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat. Rev. Drug Discov. 6, 29–40 (2007).

    CAS  Article  Google Scholar 

  32. Projan, S. J. Why is big Pharma getting out of antibacterial drug discovery? Curr. Opin. Microbiol. 6, 427–430 (2003).

    Article  Google Scholar 

  33. Van Boekel, T. P. et al. Global trends in antimicrobial use in food animals. Proc. Natl Acad. Sci. USA 112, 5649–5654 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

The author thanks L. L. Tmanova (Wood Library, Weill Cornell Medical College, New York, USA) for assistance, and K. Rhee and K. Burns-Huang (Weill Cornell Medical College) for their comments. The Department of Microbiology and Immunology at Weill Cornell Medical College is supported by the William Randolph Hearst Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl Nathan.

Ethics declarations

Competing interests

C.N. is a participant in the Tuberculosis Drug Accelerator (TBDA) (funded by the Bill & Melinda Gates Foundation) and a member of the Board of Governors of the Tres Cantos Open Lab Foundation.

Related links

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nathan, C. Cooperative development of antimicrobials: looking back to look ahead. Nat Rev Microbiol 13, 651–657 (2015). https://doi.org/10.1038/nrmicro3523

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro3523

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing