Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The interplay between nucleoid organization and transcription in archaeal genomes

Abstract

The archaeal genome is organized by either eukaryotic-like histone proteins or bacterial-like nucleoid-associated proteins. Recent studies have revealed novel insights into chromatin dynamics and their effect on gene expression in archaeal model organisms. In this Progress article, we discuss the interplay between chromatin proteins, such as histones and Alba, and components of the basal transcription machinery, as well as between chromatin structure and gene-specific transcription factors in archaea. Such an interplay suggests that chromatin might have a role in regulating gene expression on both a global and a gene-specific level. Moreover, several archaeal transcription factors combine a global gene regulatory role with an architectural role, thus contributing to chromatin organization and compaction, as well as gene expression. We describe the emerging principles underlying how these factors cooperate in nucleoid structuring and gene regulation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chromatin organization in archaea.
Figure 2: Putative transcription regulatory mechanisms of chromatin proteins in archaea.
Figure 3: Interplay between transcription factors and histones modulates transcriptional regulation.

Similar content being viewed by others

References

  1. Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F. & Richmond, T. J. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389, 251–260 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Papantonis, A. & Cook, P. R. Transcription factories: genome organization and gene regulation. Chem. Rev. 113, 8683–8705 (2013).

    CAS  PubMed  Google Scholar 

  3. van der Valk, R. A., Vreede, J., Crémazy, F. & Dame, R. T. Genomic looping: a key principle of chromatin organization J. Mol. Microbiol. Biotechnol. 24, 344–359 (2014).

    CAS  PubMed  Google Scholar 

  4. Merkenschlager, M. & Odom, D. T. CTCF and cohesin: linking gene regulatory elements with their targets. Cell 152, 1285–1297 (2013).

    CAS  PubMed  Google Scholar 

  5. Bickmore, W. A. & van Steensel, B. Genome architecture: domain organization of interphase chromosomes. Cell 152, 1270–1284 (2013).

    CAS  PubMed  Google Scholar 

  6. Woldringh, C. L. The role of co-transcriptional translation and protein translocation (transertion) in bacterial chromosome segregation. Mol. Microbiol. 45, 17–29 (2002).

    CAS  PubMed  Google Scholar 

  7. Bannister, A. J. & Kouzarides, T. Regulation of chromatin by histone modifications. Cell Res. 21, 381–395 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Vignali, M., Hassan, A. H., Neely, K. E. & Workman, J. L. ATP-dependent chromatin-remodeling complexes. Mol. Cell. Biol. 20, 1899–1910 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Narlikar, G. J., Sundaramoorthy, R. & Owen-Hughes, T. Mechanisms and functions of ATP-dependent chromatin-remodeling enzymes. Cell 154, 490–503 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Ali Azam, T., Iwata, A., Nishimura, A., Ueda, S. & Ishihama, A. Growth phase-dependent variation in protein composition of the Escherichia coli nucleoid. J. Bacteriol. 181, 6361–6370 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Dame, R. T. The role of nucleoid-associated proteins in the organization and compaction of bacterial chromatin. Mol. Microbiol. 56, 858–870 (2005).

    CAS  PubMed  Google Scholar 

  12. Driessen, R. P. C. & Dame, R. T. Nucleoid-associated proteins in Crenarchaea. Biochem. Soc. Trans. 39, 116–121 (2011).

    CAS  PubMed  Google Scholar 

  13. Grohmann, D. & Werner, F. Recent advances in the understanding of archaeal transcription. Curr. Opin. Microbiol. 14, 328–334 (2011).

    CAS  PubMed  Google Scholar 

  14. Aravind, L. & Koonin, E. V. DNA-binding proteins and evolution of transcription regulation in the archaea. Nucleic Acids Res. 27, 4658–4670 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Bell, S. D., Botting, C. H., Wardleworth, B. N., Jackson, S. P. & White, M. F. The interaction of Alba, a conserved archaeal chromatin protein, with Sir2 and its regulation by acetylation. Science 296, 148–151 (2002).

    CAS  PubMed  Google Scholar 

  16. Aravind, L., Iyer, L. M. & Anantharaman, V. The two faces of Alba: the evolutionary connection between proteins participating in chromatin structure and RNA metabolism. Genome Biol. 4, R64 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Marsh, V. L., Peak-Chew, S. Y. & Bell, S. D. Sir2 and the acetyltransferase, Pat, regulate the archaeal chromatin protein, Alba. J. Biol. Chem. 280, 21122–21128 (2005).

    CAS  PubMed  Google Scholar 

  18. Guo, R., Xue, H. & Huang, L. Ssh10b, a conserved thermophilic archaeal protein, binds RNA in vivo. Mol. Microbiol. 50, 1605–1615 (2003).

    CAS  PubMed  Google Scholar 

  19. Liu, Y. et al. The Sac10b homolog in Methanococcus maripaludis binds DNA at specific sites. J. Bacteriol. 191, 2315–2329 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Xue, H., Guo, R., Wen, Y., Liu, D. & Huang, L. An abundant DNA binding protein from the hyperthermophilic archaeon Sulfolobus shibatae affects DNA supercoiling in a temperature-dependent fashion. J. Bacteriol. 182, 3929–3933 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Lurz, R., Grote, M., Dijk, J., Reinhardt, R. & Dobrinski, B. Electron microscopic study of DNA complexes with proteins from the Archaebacterium Sulfolobus acidocaldarius. EMBO J. 5, 3715–3721 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Jelinska, C. et al. Obligate heterodimerization of the archaeal Alba2 protein with Alba1 provides a mechanism for control of DNA packaging. Structure 13, 963–971 (2005).

    CAS  PubMed  Google Scholar 

  23. Laurens, N. et al. Alba shapes the archaeal genome using a delicate balance of bridging and stiffening the DNA. Nature Commun. 3, 1328 (2012).

    Google Scholar 

  24. Tanaka, T., Padavattan, S. & Kumarevel, T. Crystal structure of archaeal chromatin protein Alba2-double-stranded DNA complex from Aeropyrum pernix K1. J. Biol. Chem. 287, 10394–10402 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Sandman, K. & Reeve, J. N. Archaeal histones and the origin of the histone fold. Curr. Opin. Microbiol. 9, 520–525 (2006).

    CAS  PubMed  Google Scholar 

  26. Pereira, S. L., Grayling, R. A., Lurz, R. & Reeve, J. N. Archaeal nucleosomes. Proc. Natl Acad. Sci. USA 94, 12633–12637 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Reeve, J. N. et al. Archaeal histones: structures, stability and DNA binding. Biochem. Soc. Trans. 32, 227–230 (2004).

    CAS  PubMed  Google Scholar 

  28. Nalabothula, N. et al. Archaeal nucleosome positioning in vivo and in vitro is directed by primary sequence motifs. BMC Genomics 14, 391 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Maruyama, H. et al. An alternative beads-on-a-string chromatin architecture in Thermococcus kodakarensis. EMBO Rep. 14, 711–717 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Maruyama, H. et al. Histone and TK0471/TrmBL2 form a novel heterogeneous genome architecture in the hyperthermophilic archaeon Thermococcus kodakarensis. Mol. Biol. Cell 22, 386–398 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Musgrave, D., Forterre, P. & Slesarev, A. Negative constrained DNA supercoiling in archaeal nucleosomes. Mol. Microbiol. 35, 341–349 (2000).

    CAS  PubMed  Google Scholar 

  32. Pavlov, N. A., Cherny, D. I., Nazimov, I. V., Slesarev, A. I. & Subramaniam, V. Identification, cloning and characterization of a new DNA-binding protein from the hyperthermophilic methanogen Methanopyrus kandleri. Nucleic Acids Res. 30, 685–694 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Tomschik, M., Karymov, M. A., Zlatanova, J. & Leuba, S. H. The archaeal histone-fold protein HMf organizes DNA into bona fide chromatin fibers. Structure 9, 1201–1211 (2001).

    CAS  PubMed  Google Scholar 

  34. Ammar, R. et al. Chromatin is an ancient innovation conserved between Archaea and Eukarya. eLife 1, e00078 (2012).

    PubMed  PubMed Central  Google Scholar 

  35. Xie, Y. & Reeve, J. N. Transcription by an archaeal RNA polymerase is slowed but not blocked by an archaeal nucleosome. J. Bacteriol. 186, 3492–3498 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Sandman, K., Krzycki, J. A., Dobrinski, B., Lurz, R. & Reeve, J. N. HMf, a DNA-binding protein isolated from the hyperthermophilic archaeon Methanothermus fervidus, is most closely related to histones. Proc. Natl Acad. Sci. USA 87, 5788–5791 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Segal, E. et al. A genomic code for nucleosome positioning. Nature 442, 772–778 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Wurtzel, O. et al. A single-base resolution map of an archaeal transcriptome. Genome Res. 20, 133–141 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Guo, L. et al. Biochemical and structural characterization of Cren7, a novel chromatin protein conserved among Crenarchaea. Nucleic Acids Res. 36, 1129–1137 (2008).

    CAS  PubMed  Google Scholar 

  40. Mai, V. Q., Chen, X., Hong, R. & Huang, L. Small abundant DNA binding proteins from the thermoacidophilic archaeon Sulfolobus shibatae constrain negative DNA supercoils. J. Bacteriol. 180, 2560–2563 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen, L. et al. The hyperthermophile protein Sso10a is a dimer of winged helix DNA-binding domains linked by an antiparallel coiled coil rod. J. Mol. Biol. 341, 73–91 (2004).

    CAS  PubMed  Google Scholar 

  42. Hsu, C. H. & Wang, A. H. The DNA-recognition fold of Sso7c4 suggests a new member of SpoVT–AbrB superfamily from archaea. Nucleic Acids Res. 39, 6764–6774 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Hardy, C. D. & Martin, P. K. Biochemical characterization of DNA-binding proteins from Pyrobaculum aerophilum and Aeropyrum pernix. Extremophiles 12, 235–246 (2008).

    CAS  PubMed  Google Scholar 

  44. Luo, X. et al. CC1, a novel crenarchaeal DNA binding protein. J. Bacteriol. 189, 403–409 (2007).

    CAS  PubMed  Google Scholar 

  45. Wilkinson, S. P., Ouhammouch, M. & Geiduschek, E. P. Transcriptional activation in the context of repression mediated by archaeal histones. Proc. Natl Acad. Sci. USA 107, 6777–6781 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Grohmann, D. et al. The initiation factor TFE and the elongation factor Spt4/5 compete for the RNAP clamp during transcription initiation and elongation. Mol. Cell 43, 263–274 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Lange, U. & Hausner, W. Transcriptional fidelity and proofreading in Archaea and implications for the mechanism of TFS-induced RNA cleavage. Mol. Microbiol. 52, 1133–1143 (2004).

    CAS  PubMed  Google Scholar 

  48. Hausner, W., Lange, U. & Musfeldt, M. Transcription factor S, a cleavage induction factor of the archaeal RNA polymerase. J. Biol. Chem. 275, 12393–12399 (2000).

    CAS  PubMed  Google Scholar 

  49. Hirtreiter, A. et al. Spt4/5 stimulates transcription elongation through the RNA polymerase clamp coiled-coil motif. Nucleic Acids Res. 38, 4040–4051 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Martinez-Rucobo, F. W., Sainsbury, S., Cheung, A. C. & Cramer, P. Architecture of the RNA polymerase-Spt4/5 complex and basis of universal transcription processivity. EMBO J. 30, 1302–1310 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Werner, F. A nexus for gene expression-molecular mechanisms of Spt5 and NusG in the three domains of life. J. Mol. Biol. 417, 13–27 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Heinicke, I., Muller, J., Pittelkow, M. & Klein, A. Mutational analysis of genes encoding chromatin proteins in the archaeon Methanococcus voltae indicates their involvement in the regulation of gene expression. Mol. Genet. Genom. 272, 76–87 (2004).

    CAS  Google Scholar 

  53. Cubonova, L. et al. An archaeal histone is required for transformation of Thermococcus kodakarensis. J. Bacteriol. 194, 6864–6874 (2012).

    CAS  PubMed Central  Google Scholar 

  54. Marc, F., Sandman, K., Lurz, R. & Reeve, J. N. Archaeal histone tetramerization determines DNA affinity and the direction of DNA supercoiling. J. Biol. Chem. 277, 30879–30886 (2002).

    CAS  PubMed  Google Scholar 

  55. Dinger, M. E., Baillie, G. J. & Musgrave, D. R. Growth phase-dependent expression and degradation of histones in the thermophilic archaeon Thermococcus zilligii. Mol. Microbiol. 36, 876–885 (2000).

    CAS  PubMed  Google Scholar 

  56. Sandman, K., Grayling, R. A., Dobrinski, B., Lurz, R. & Reeve, J. N. Growth-phase-dependent synthesis of histones in the archaeon Methanothermus fervidus. Proc. Natl Acad. Sci. USA 91, 12624–12628 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Wolffe, A. P. & Hayes, J. J. Chromatin disruption and modification. Nucleic Acids Res. 27, 711–720 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Grunstein, M. Histone acetylation in chromatin structure and transcription. Nature 389, 349–352 (1997).

    CAS  PubMed  Google Scholar 

  59. Forbes, A. J. et al. Targeted analysis and discovery of posttranslational modifications in proteins from methanogenic archaea by top-down MS. Proc. Natl Acad. Sci. USA 101, 2678–2683 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Millan-Zambrano, G. & Chavez, S. Nuclear functions of prefoldin. Open Biol. 4, 140085 (2014).

    PubMed  PubMed Central  Google Scholar 

  61. Millan-Zambrano, G. et al. The prefoldin complex regulates chromatin dynamics during transcription elongation. PLoS Genet. 9, e1003776 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Miron-Garcia, M. C. et al. The yeast prefoldin-like URI-orthologue Bud27 associates with the RSC nucleosome remodeler and modulates transcription. Nucleic Acids Res. 42, 9666–9676 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Blander, G. & Guarente, L. The Sir2 family of protein deacetylases. Annu. Rev. Biochem. 73, 417–435 (2004).

    CAS  PubMed  Google Scholar 

  64. Zhao, K., Chai, X. & Marmorstein, R. Structure of a Sir2 substrate, Alba, reveals a mechanism for deacetylation-induced enhancement of DNA binding. J. Biol. Chem. 278, 26071–26077 (2003).

    CAS  PubMed  Google Scholar 

  65. Nie, Y., Cheng, X., Chen, J. & Sun, X. Nucleosome organization in the vicinity of transcription factor binding sites in the human genome. BMC Genomics 15, 493 (2014).

    PubMed  PubMed Central  Google Scholar 

  66. Ozonov, E. A. & van Nimwegen, E. Nucleosome free regions in yeast promoters result from competitive binding of transcription factors that interact with chromatin modifiers. PLoS Comput. Biol. 9, e1003181 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Ouhammouch, M., Dewhurst, R. E., Hausner, W., Thomm, M. & Geiduschek, E. P. Activation of archaeal transcription by recruitment of the TATA-binding protein. Proc. Natl Acad. Sci. USA 100, 5097–5102 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Ouhammouch, M. & Geiduschek, E. P. A thermostable platform for transcriptional regulation: the DNA-binding properties of two Lrp homologs from the hyperthermophilic archaeon Methanococcus jannaschii. EMBO J. 20, 146–156 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Peeters, E. & Charlier, D. The Lrp family of transcription regulators in archaea. Archaea 2010, 750457 (2010).

    PubMed  PubMed Central  Google Scholar 

  70. Luijsterburg, M. S., Noom, M. C., Wuite, G. J. & Dame, R. T. The architectural role of nucleoid-associated proteins in the organization of bacterial chromatin: a molecular perspective. J. Struct. Biol. 156, 262–272 (2006).

    CAS  PubMed  Google Scholar 

  71. Newman, E. B. & Lin, R. Leucine-responsive regulatory protein: a global regulator of gene expression in E. coli. Annu. Rev. Microbiol. 49, 747–775 (1995).

    CAS  PubMed  Google Scholar 

  72. Peeters, E., Albers, S. V., Vassart, A., Driessen, A. J. & Charlier, D. Ss-LrpB, a transcriptional regulator from Sulfolobus solfataricus, regulates a gene cluster with a pyruvate ferredoxin oxidoreductase-encoding operon and permease genes. Mol. Microbiol. 71, 972–988 (2009).

    CAS  PubMed  Google Scholar 

  73. Schwaiger, R. et al. Transcriptional control by two leucine-responsive regulatory proteins in Halobacterium salinarum R1. BMC Mol. Biol. 11, 40 (2010).

    PubMed  PubMed Central  Google Scholar 

  74. Yokoyama, K. et al. Feast/famine regulation by transcription factor FL11 for the survival of the hyperthermophilic archaeon Pyrococcus OT3. Structure 15, 1542–1554 (2007).

    CAS  PubMed  Google Scholar 

  75. Vassart, A. et al. Sa-Lrp from Sulfolobus acidocaldarius is a versatile, glutamine-responsive, and architectural transcriptional regulator. Microbiologyopen 2, 75–93 (2013).

    CAS  PubMed  Google Scholar 

  76. Napoli, A., Kvaratskelia, M., White, M. F., Rossi, M. & Ciaramella, M. A novel member of the bacterial-archaeal regulator family is a nonspecific DNA-binding protein and induces positive supercoiling. J. Biol. Chem. 276, 10745–10752 (2001).

    CAS  PubMed  Google Scholar 

  77. Fiorentino, G., Cannio, R., Rossi, M. & Bartolucci, S. Transcriptional regulation of the gene encoding an alcohol dehydrogenase in the archaeon Sulfolobus solfataricus involves multiple factors and control elements. J. Bacteriol. 185, 3926–3934 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Kessler, A. et al. A novel archaeal regulatory protein, Sta1, activates transcription from viral promoters. Nucleic Acids Res. 34, 4837–4845 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Orell, A. et al. Lrs14 transcriptional regulators influence biofilm formation and cell motility of Crenarchaea. ISME J. 7, 1886–1898 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Lee, S. J., Surma, M., Hausner, W., Thomm, M. & Boos, W. The role of TrmB and TrmB-like transcriptional regulators for sugar transport and metabolism in the hyperthermophilic archaeon Pyrococcus furiosus. Arch. Microbiol. 190, 247–256 (2008).

    CAS  PubMed  Google Scholar 

  81. Azkargorta, M., Wojtas, M. N., Abrescia, N. G. & Elortza, F. Lysine methylation mapping of crenarchaeal DNA-directed RNA polymerases by collision-induced and electron-transfer dissociation mass spectrometry. J. Proteome Res. 13, 2637–2648 (2014).

    CAS  PubMed  Google Scholar 

  82. Botting, C. H., Talbot, P., Paytubi, S. & White, M. F. Extensive lysine methylation in hyperthermophilic crenarchaea: potential implications for protein stability and recombinant enzymes. Archaea 2010, 106341 (2010).

    PubMed  PubMed Central  Google Scholar 

  83. Niu, Y. et al. A prototypic lysine methyltransferase 4 from archaea with degenerate sequence specificity methylates chromatin proteins Sul7d and Cren7 in different patterns. J. Biol. Chem. 288, 13728–13740 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Reimann, J. et al. Archaeal signal transduction: impact of protein phosphatase deletions on cell size, motility, and energy metabolism in Sulfolobus acidocaldarius. Mol. Cell. Proteomics 12, 3908–3923 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Reimann, J. et al. Regulation of archaella expression by the FHA and von Willebrand domain-containing proteins ArnA and ArnB in Sulfolobus acidocaldarius. Mol. Microbiol. 86, 24–36 (2012).

    CAS  PubMed  Google Scholar 

  86. Werner, F. & Grohmann, D. Evolution of multisubunit RNA polymerases in the three domains of life. Nature Rev. Microbiol. 9, 85–98 (2011).

    CAS  Google Scholar 

  87. Werner, F. Structure and function of archaeal RNA polymerases. Mol. Microbiol. 65, 1395–1404 (2007).

    CAS  PubMed  Google Scholar 

  88. Werner, F. & Weinzierl, R. O. Direct modulation of RNA polymerase core functions by basal transcription factors. Mol. Cell. Biol. 25, 8344–8355 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Bartlett, M. S., Thomm, M. & Geiduschek, E. P. Topography of the euryarchaeal transcription initiation complex. J. Biol. Chem. 279, 5894–5903 (2004).

    CAS  PubMed  Google Scholar 

  90. Grunberg, S., Bartlett, M. S., Naji, S. & Thomm, M. Transcription factor E is a part of transcription elongation complexes. J. Biol. Chem. 282, 35482–35490 (2007).

    PubMed  Google Scholar 

  91. Ao, X. et al. The Sulfolobus initiator element is an important contributor to promoter strength. J. Bacteriol. 195, 5216–5222 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Perez-Rueda, E. & Janga, S. C. Identification and genomic analysis of transcription factors in archaeal genomes exemplifies their functional architecture and evolutionary origin. Mol. Biol. Evol. 27, 1449–1459 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Charoensawan, V., Wilson, D. & Teichmann, S. A. Genomic repertoires of DNA-binding transcription factors across the tree of life. Nucleic Acids Res. 38, 7364–7377 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Peeters, E., Peixeiro, N. & Sezonov, G. Cis-regulatory logic in archaeal transcription. Biochem. Soc. Trans. 41, 326–331 (2013).

    CAS  PubMed  Google Scholar 

  95. Geiduschek, E. P. & Ouhammouch, M. Archaeal transcription and its regulators. Mol. Microbiol. 56, 1397–1407 (2005).

    CAS  PubMed  Google Scholar 

  96. Ochs, S. M. et al. Activation of archaeal transcription mediated by recruitment of transcription factor B. J. Biol. Chem. 287, 18863–18871 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Dahlke, I. & Thomm, M. A. Pyrococcus homolog of the leucine-responsive regulatory protein, LrpA, inhibits transcription by abrogating RNA polymerase recruitment. Nucleic Acids Res. 30, 701–710 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Kanai, T. et al. A global transcriptional regulator in Thermococcus kodakaraensis controls the expression levels of both glycolytic and gluconeogenic enzyme-encoding genes. J. Biol. Chem. 282, 33659–33670 (2007).

    CAS  PubMed  Google Scholar 

  99. Lipscomb, G. L. et al. SurR: a transcriptional activator and repressor controlling hydrogen and elemental sulphur metabolism in Pyrococcus furiosus. Mol. Microbiol. 71, 332–349 (2009).

    CAS  PubMed  Google Scholar 

  100. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research in the laboratory of R.T.D. is supported by grants from the Netherlands Organization for Scientific Research (864.08.001), High Tech Systems & Materials NanoNextNL program 8B, the FOM Foundation for Fundamental Research on Matter program 'Crowd management: the physics of genome processing in complex environments' and the Human Frontier Science Program (RGP0014/2014). E.P. is supported by the Research Foundation Flanders (FWO-Vlaanderen) and by the Research Council of Vrije Universiteit Brussel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Remus T. Dame.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peeters, E., Driessen, R., Werner, F. et al. The interplay between nucleoid organization and transcription in archaeal genomes. Nat Rev Microbiol 13, 333–341 (2015). https://doi.org/10.1038/nrmicro3467

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro3467

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing