Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Advances in molecular genetic systems in malaria

Key Points

  • The ability to genetically manipulate the malaria parasite to discover the functions of its genes has provided a powerful technique to gain detailed insight into Plasmodium spp. biology and to identify and characterize potential targets for antimalaria intervention.

  • The human malaria species Plasmodium falciparum and the rodent malaria species Plasmodium berghei have been the species predominantly used for gene manipulation studies. Although the genetic systems for these species vary in their efficiency and their approach and whether they are used in vitro or in vivo, their results can often be very complementary.

  • As a result of the haploid nature of malaria parasites, genes that have an important role in the blood stages of Plasmodium spp. cannot be genetically targeted for disruption using conventional knockout approaches, as this would lead to parasite death or severe growth defects. This has forced the development of conditional systems to rapidly regulate gene expression.

  • An array of conditional systems that are capable of regulating gene expression at the genome, transcript or protein level are now available for Plasmodium spp.. Each system has advantages and drawbacks, which should be considered carefully before choosing a system to regulate a gene of interest.

  • A variety of methods can be used to edit the Plasmodium genome. These include the use of piggyBac transposons that integrate randomly into the genome, or more precise editing tools such as the CRISPR–Cas9 system, zinc-finger nucleases and integrases.

  • Improvements to transfection efficiency and investment in the development of more robust genetic tools and phenotypic assays should lead to large-scale forward-genetic screens being possible in Plasmodium spp..

Abstract

Robust tools for analysing gene function in Plasmodium parasites, which are the causative agents of malaria, are being developed at an accelerating rate. Two decades after genetic technologies for use in Plasmodium spp. were first described, a range of genetic tools are now available. These include conditional systems that can regulate gene expression at the genome, transcriptional or protein level, as well as more sophisticated tools for gene editing that use piggyBac transposases, integrases, zinc-finger nucleases or the CRISPR–Cas9 system. In this Review, we discuss the molecular genetic systems that are currently available for use in Plasmodium falciparum and Plasmodium berghei, and evaluate the advantages and limitations of these tools. We examine the insights that have been gained into the function of genes that are important during the blood stages of the parasites, which may help to guide the development and improvement of drug therapies and vaccines.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Development of transfection technologies for Plasmodium parasites.
Figure 2: Strategies to conditionally regulate gene expression in Plasmodium parasites.
Figure 3: New strategies for editing the Plasmodium spp. genome.

Similar content being viewed by others

References

  1. World Health Organisation. World malaria report (WHO, 2014).

  2. Dondorp, A. M. et al. Artemisinin resistance in Plasmodium falciparum malaria. N. Engl. J. Med. 361, 455–467 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Olotu, A. et al. Four-year efficacy of RTS,S/AS01E and its interaction with malaria exposure. N. Engl. J. Med. 368, 1111–1120 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Duraisingh, M. T., Maier, A. G., Triglia, T. & Cowman, A. F. Erythrocyte-binding antigen 175 mediates invasion in Plasmodium falciparum utilizing sialic acid-dependent and -independent pathways. Proc. Natl Acad. Sci. USA 100, 4796–4801 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Baum, J., Maier, A. G., Good, R. T., Simpson, K. M. & Cowman, A. F. Invasion by P. falciparum merozoites suggests a hierarchy of molecular interactions. PLoS Pathog. 1, e37 (2005).

    PubMed  PubMed Central  Google Scholar 

  6. Stubbs, J. et al. Molecular mechanism for switching of P. falciparum invasion pathways into human erythrocytes. Science 309, 1384–1387 (2005).

    CAS  PubMed  Google Scholar 

  7. Triglia, T., Duraisingh, M. T., Good, R. T. & Cowman, A. F. Reticulocyte-binding protein homologue 1 is required for sialic acid-dependent invasion into human erythrocytes by Plasmodium falciparum. Mol. Microbiol. 55, 162–174 (2005).

    CAS  PubMed  Google Scholar 

  8. Lopaticki, S. et al. Reticulocyte and erythrocyte binding-like proteins function cooperatively in invasion of human erythrocytes by malaria parasites. Infect. Immun. 79, 1107–1117 (2011).

    CAS  PubMed  Google Scholar 

  9. Reiling, L. et al. The Plasmodium falciparum erythrocyte invasion ligand PfRH4 as a target of functional and protective human antibodies against malaria. PLoS ONE 7, e45253 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Persson, K. E. et al. Erythrocyte-binding antigens of Plasmodium falciparum are targets of human inhibitory antibodies and function to evade naturally acquired immunity. J. Immunol. 191, 785–794 (2013).

    CAS  PubMed  Google Scholar 

  11. Baum, J. et al. Reticulocyte-binding protein homologue 5 — an essential adhesin involved in invasion of human erythrocytes by Plasmodium falciparum. Int. J. Parasitol. 39, 371–380 (2009).

    CAS  PubMed  Google Scholar 

  12. Crosnier, C. et al. Basigin is a receptor essential for erythrocyte invasion by Plasmodium falciparum. Nature 480, 534–537 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Douglas, A. D. et al. The blood-stage malaria antigen PfRH5 is susceptible to vaccine-inducible cross-strain neutralizing antibody. Nature Commun. 2, 601 (2011).

    Google Scholar 

  14. Triglia, T., Wang, P., Sims, P. F., Hyde, J. E. & Cowman, A. F. Allelic exchange at the endogenous genomic locus in Plasmodium falciparum proves the role of dihydropteroate synthase in sulfadoxine-resistant malaria. EMBO J. 17, 3807–3815 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Fidock, D. A. et al. Mutations in the P. falciparum digestive vacuole transmembrane protein PfCRT and evidence for their role in chloroquine resistance. Mol. Cell 6, 861–871 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Reed, M. B., Saliba, K. J., Caruana, S. R., Kirk, K. & Cowman, A. F. Pgh1 modulates sensitivity and resistance to multiple antimalarials in Plasmodium falciparum. Nature 403, 906–909 (2000). References 15 and 16 are landmark papers in the field of antimalarial drug resistance and describe research that makes extensive use of allelic replacement technology.

    CAS  PubMed  Google Scholar 

  17. Sidhu, A. B., Verdier-Pinard, D. & Fidock, D. A. Chloroquine resistance in Plasmodium falciparum malaria parasites conferred by pfcrt mutations. Science 298, 210–213 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Sidhu, A. B., Valderramos, S. G. & Fidock, D. A. pfmdr1 mutations contribute to quinine resistance and enhance mefloquine and artemisinin sensitivity in Plasmodium falciparum. Mol. Microbiol. 57, 913–926 (2005).

    CAS  PubMed  Google Scholar 

  19. Franke-Fayard, B. et al. Murine malaria parasite sequestration: CD36 is the major receptor, but cerebral pathology is unlinked to sequestration. Proc. Natl Acad. Sci. USA 102, 11468–11473 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Ekland, E. H. & Fidock, D. A. Advances in understanding the genetic basis of antimalarial drug resistance. Curr. Opin. Microbiol. 10, 363–370 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Guttery, D. S., Holder, A. A. & Tewari, R. Sexual development in Plasmodium: lessons from functional analyses. PLoS Pathog. 8, e1002404 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Prudencio, M., Mota, M. M. & Mendes, A. M. A toolbox to study liver stage malaria. Trends Parasitol. 27, 565–574 (2011).

    PubMed  Google Scholar 

  23. van Dijk, M. R. et al. A central role for P48/45 in malaria parasite male gamete fertility. Cell 104, 153–164 (2001). This is an important early study that shows the power of gene-knockout technology in both rodent and human malaria parasites.

    CAS  PubMed  Google Scholar 

  24. Tomas, A. M. et al. P25 and P28 proteins of the malaria ookinete surface have multiple and partially redundant functions. EMBO J. 20, 3975–3983 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. van Schaijk, B. C. et al. Pfs47, paralog of the male fertility factor Pfs48/45, is a female specific surface protein in Plasmodium falciparum. Mol. Biochem. Parasitol. 149, 216–222 (2006).

    CAS  PubMed  Google Scholar 

  26. van Dijk, M. R. et al. Genetically attenuated, 36p-deficient malarial sporozoites induce protective immunity and apoptosis of infected liver cells. Proc. Natl Acad. Sci. USA 102, 12194–12199 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Mueller, A. K. et al. Plasmodium liver stage developmental arrest by depletion of a protein at the parasite-host interface. Proc. Natl Acad. Sci. USA 102, 3022–3027 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Mueller, A. K., Labaied, M., Kappe, S. H. & Matuschewski, K. Genetically modified Plasmodium parasites as a protective experimental malaria vaccine. Nature 433, 164–167 (2005).

    CAS  PubMed  Google Scholar 

  29. Tarun, A. S. et al. Protracted sterile protection with Plasmodium yoelii pre-erythrocytic genetically attenuated parasite malaria vaccines is independent of significant liver-stage persistence and is mediated by CD8+ T cells. J. Infect. Dis. 196, 608–616 (2007).

    CAS  PubMed  Google Scholar 

  30. van Schaijk, B. C. et al. Gene disruption of Plasmodium falciparum p52 results in attenuation of malaria liver stage development in cultured primary human hepatocytes. PLoS ONE 3, e3549 (2008).

    PubMed  PubMed Central  Google Scholar 

  31. Ishino, T., Chinzei, Y. & Yuda, M. Two proteins with 6-cys motifs are required for malarial parasites to commit to infection of the hepatocyte. Mol. Microbiol. 58, 1264–1275 (2005).

    CAS  PubMed  Google Scholar 

  32. Van Buskirk, K. M. et al. Preerythrocytic, live-attenuated Plasmodium falciparum vaccine candidates by design. Proc. Natl Acad. Sci. USA 106, 13004–13009 (2009).

    CAS  Google Scholar 

  33. Mikolajczak, S. A. et al. A next-generation genetically attenuated Plasmodium falciparum parasite created by triple gene deletion. Mol. Ther. 22, 1707–1715 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. van Schaijk, B. C. et al. A genetically attenuated malaria vaccine candidate based on P. falciparum b9/slarp gene-deficient sporozoites. eLife http://dx.doi.org/10.7554/eLife.03582 (2014).

  35. Fidock, D. A. & Wellems, T. E. Transformation with human dihydrofolate reductase renders malaria parasites insensitive to WR99210 but does not affect the intrinsic activity of proguanil. Proc. Natl Acad. Sci. USA 94, 10931–10936 (1997). This crucial study provided the P. falciparum research field with its most powerful selectable marker approach.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Deitsch, K., Driskill, C. & Wellems, T. Transformation of malaria parasites by the spontaneous uptake and expression of DNA from human erythrocytes. Nucleic Acids Res. 29, 850–853 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. van Dijk, M. R., Waters, A. P. & Janse, C. J. Stable transfection of malaria parasite blood stages. Science 268, 1358–1362 (1995). This seminal paper was the first to describe transfection in rodent malaria.

    CAS  PubMed  Google Scholar 

  38. Goonewardene, R. et al. Transfection of the malaria parasite and expression of firefly luciferase. Proc. Natl Acad. Sci. USA 90, 5234–5236 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Wu, Y., Sifri, C. D., Lei, H.-H., Su, X.-Z. & Wellems, T. E. Transfection of Plasmodium falciparum within human red blood cells. Proc. Natl Acad. Sci. USA 92, 973–977 (1995). This seminal paper was the first to describe stable transfection of P. falciparum.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Wu, Y., Kirkman, L. A. & Wellems, T. E. Transformation of Plasmodium falciparum malaria parasites by homologous integration of plasmids that confer resistance to pyrimethamine. Proc. Natl Acad. Sci. USA 93, 1130–1134 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Crabb, B. S. & Cowman, A. F. Characterization of promoters and stable transfection by homologous and nonhomologous recombination in Plasmodium falciparum. Proc. Natl Acad. Sci. USA 93, 7289–7294 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. van Dijk, M. R., Janse, C. J. & Waters, A. P. Expression of a Plasmodium gene introduced into subtelomeric regions of Plasmodium berghei chromosomes. Science 271, 662–665 (1996).

    CAS  PubMed  Google Scholar 

  43. de Koning-Ward, T. F., Janse, C. J. & Waters, A. P. The development of genetic tools for dissecting the biology of malaria parasites. Annu. Rev. Microbiol. 54, 157–185 (2000).

    CAS  PubMed  Google Scholar 

  44. Mota, M. M., Thathy, V., Nussenzweig, R. S. & Nussenzweig, V. Gene targeting in the rodent malaria parasite Plasmodium yoelii. Mol. Biochem. Parasitol. 113, 271–278 (2001).

    CAS  PubMed  Google Scholar 

  45. Jongco, A. M., Ting, L. M., Thathy, V., Mota, M. M. & Kim, K. Improved transfection and new selectable markers for the rodent malaria parasite Plasmodium yoelii. Mol. Biochem. Parasitol. 146, 242–250 (2006).

    CAS  PubMed  Google Scholar 

  46. Spence, P. J. et al. Transformation of the rodent malaria parasite Plasmodium chabaudi. Nature Protoc. 6, 553–561 (2011).

    CAS  Google Scholar 

  47. van der Wel, A. M. et al. Transfection of the primate malaria parasite Plasmodium knowlesi using entirely heterologous constructs. J. Exp. Med. 185, 1499–1503 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Kocken, C. H., van der Wel, A. & Thomas, A. W. Plasmodium cynomolgi: transfection of blood-stage parasites using heterologous DNA constructs. Exp. Parasitol. 93, 58–60 (1999).

    CAS  PubMed  Google Scholar 

  49. Kocken, C. H. et al. Plasmodium knowlesi provides a rapid in vitro and in vivo transfection system that enables double-crossover gene knockout studies. Infect. Immun. 70, 655–660 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Moon, R. W. et al. Adaptation of the genetically tractable malaria pathogen Plasmodium knowlesi to continuous culture in human erythrocytes. Proc. Natl Acad. Sci. USA 110, 531–536 (2013).

    CAS  PubMed  Google Scholar 

  51. Sanchez, C. P., Pfahler, J., Del Portillo, H. A. & Lanzer, M. Transient transfection of Plasmodium vivax blood-stage parasites. Methods Mol. Biol. 923, 151–159 (2013).

    CAS  PubMed  Google Scholar 

  52. Moraes Barros, R. R. et al. Editing the Plasmodium vivax genome, using zinc-finger nucleases. J. Infect. Dis. 211, 125–129 (2015).

    CAS  PubMed  Google Scholar 

  53. Crabb, B. S. et al. Targeted gene disruption shows that knobs enable malaria-infected red cells to cytoadhere under physiological shear stress. Cell 89, 287–296 (1997). This paper describes the first gene knockout in P. falciparum and the power of the technology to assess virulence mechanisms.

    CAS  PubMed  Google Scholar 

  54. O'Donnell, R. A. et al. A genetic screen for improved plasmid segregation reveals a role for Rep20 in the interaction of Plasmodium falciparum chromosomes. EMBO J. 21, 1231–1239 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Crabb, B. S. et al. Transfection of the human malaria parasite Plasmodium falciparum. Methods Mol. Biol. 270, 263–276 (2004).

    CAS  PubMed  Google Scholar 

  56. Braks, J. A., Franke-Fayard, B., Kroeze, H., Janse, C. J. & Waters, A. P. Development and application of a positive-negative selectable marker system for use in reverse genetics in Plasmodium. Nucleic Acids Res. 34, e39 (2006).

    PubMed  PubMed Central  Google Scholar 

  57. Maier, A., Braks, J., Waters, A. & Cowman, A. Negative selection using yeast cytosine deaminase/uracil phosphoribosyl transferase in Plasmodium falciparum for targeted gene deletion by double crossover recombination. Mol. Biochem. Parasitol. 150, 118–121 (2006).

    CAS  PubMed  Google Scholar 

  58. Janse, C. J., Ramesar, J. & Waters, A. P. High-efficiency transfection and drug selection of genetically transformed blood stages of the rodent malaria parasite Plasmodium berghei. Nature Protoc. 1, 346–356 (2006).

    CAS  Google Scholar 

  59. Janse, C. J. et al. A genotype and phenotype database of genetically modified malaria-parasites. Trends Parasitol. 27, 31–39 (2011).

    PubMed  Google Scholar 

  60. de Koning-Ward, T. F. et al. The selectable marker human dihydrofolate reductase enables sequential genetic manipulation of the Plasmodium berghei genome. Mol. Biochem. Parasitol. 106, 199–212 (2000).

    CAS  PubMed  Google Scholar 

  61. Lin, J. W. et al. A novel 'Gene Insertion/Marker Out' (GIMO) method for transgene expression and gene complementation in rodent malaria parasites. PLoS ONE 6, e29289 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Janse, C. J., Franke-Fayard, B. & Waters, A. P. Selection by flow-sorting of genetically transformed, GFP-expressing blood stages of the rodent malaria parasite, Plasmodium berghei. Nature Protoc. 1, 614–623 (2006).

    CAS  Google Scholar 

  63. Meissner, M. et al. Tetracycline analogue-regulated transgene expression in Plasmodium falciparum blood-stages using Toxoplasma gondii transactivators. Proc. Natl Acad. Sci. USA 102, 2980–2985 (2005). This was the first paper to show regulatable gene expression in P. falciparum.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Hoess, R. H., Ziese, M. & Sternberg, N. P1 site-specific recombination: nucleotide sequence of the recombining sites. Proc. Natl Acad. Sci. USA 79, 3398–3402 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. McLeod, M., Craft, S. & Broach, J. R. Identification of the crossover site during FLP-mediated recombination in the Saccharomyces cerevisiae plasmid 2 microns circle. Mol. Cell. Biol. 6, 3357–3367 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. van Schaijk, B. C., Vos, M. W., Janse, C. J., Sauerwein, R. W. & Khan, S. M. Removal of heterologous sequences from Plasmodium falciparum mutants using FLPe-recombinase. PLoS ONE 5, e15121 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. O'Neill, M. T., Phuong, T., Healer, J., Richard, D. & Cowman, A. F. Gene deletion from Plasmodium falciparum using FLP and Cre recombinases: implications for applied site-specific recombination. Int. J. Parasitol. 41, 117–123 (2011).

    CAS  PubMed  Google Scholar 

  68. Jullien, N., Sampieri, F., Enjalbert, A. & Herman, J. P. Regulation of Cre recombinase by ligand-induced complementation of inactive fragments. Nucleic Acids Res. 31, e131 (2003).

    PubMed  PubMed Central  Google Scholar 

  69. Jullien, N. et al. Conditional transgenesis using dimerizable Cre (DiCre). PLoS ONE 2, e1355 (2007).

    PubMed  PubMed Central  Google Scholar 

  70. Andenmatten, N. et al. Conditional genome engineering in Toxoplasma gondii uncovers alternative invasion mechanisms. Nature Methods 10, 125–127 (2013).

    CAS  PubMed  Google Scholar 

  71. Collins, C. R. et al. Robust inducible Cre recombinase activity in the human malaria parasite Plasmodium falciparum enables efficient gene deletion within a single asexual erythrocytic growth cycle. Mol. Microbiol. 88, 687–701 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Yap, A. et al. Conditional expression of apical membrane antigen 1 in Plasmodium falciparum shows it is required for erythrocyte invasion by merozoites. Cell. Microbiol. 16, 642–656 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Ecker, A., Lewis, R. E., Ekland, E. H., Jayabalasingham, B. & Fidock, D. A. Tricks in Plasmodium's molecular repertoire — escaping 3′UTR excision-based conditional silencing of the chloroquine resistance transporter gene. Int. J. Parasitol. 42, 969–974 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Combe, A. et al. Clonal conditional mutagenesis in malaria parasites. Cell Host Microbe 5, 386–396 (2009).

    CAS  PubMed  Google Scholar 

  75. Lacroix, C. et al. FLP/FRT-mediated conditional mutagenesis in pre-erythrocytic stages of Plasmodium berghei. Nature Protoc. 6, 1412–1428 (2011). This is an important and innovative new approach for conditional mutagenesis in rodent malaria.

    CAS  Google Scholar 

  76. Falae, A. et al. Role of Plasmodium berghei cGMP-dependent protein kinase in late liver stage development. J. Biol. Chem. 285, 3282–3288 (2010).

    CAS  PubMed  Google Scholar 

  77. Bargieri, D. Y. et al. Apical membrane antigen 1 mediates apicomplexan parasite attachment but is dispensable for host cell invasion. Nature Commun. 4, 2552 (2013).

    Google Scholar 

  78. Suarez, C., Volkmann, K., Gomes, A. R., Billker, O. & Blackman, M. J. The malarial serine protease SUB1 plays an essential role in parasite liver stage development. PLoS Pathog. 9, e1003811 (2013).

    PubMed  PubMed Central  Google Scholar 

  79. Tawk, L. et al. A key role for Plasmodium subtilisin-like SUB1 protease in egress of malaria parasites from host hepatocytes. J. Biol. Chem. 288, 33336–33346 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Baum, J. et al. Molecular genetics and comparative genomics reveal RNAi is not functional in malaria parasites. Nucleic Acids Res. 37, 3788–3798 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Gilson, P. et al. MSP119 miniproteins can serve as targets for invasion inhibitory antibodies in Plasmodium falciparum provided they contain the correct domains for cell surface trafficking. Mol. Microbiol. 68, 124–138 (2008).

    CAS  PubMed  Google Scholar 

  82. Balaji, S., Babu, M. M., Iyer, L. M. & Aravind, L. Discovery of the principal specific transcription factors of Apicomplexa and their implication for the evolution of the AP2-integrase DNA binding domains. Nucleic Acids Res. 33, 3994–4006 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Pino, P. et al. A tetracycline-repressible transactivator system to study essential genes in malaria parasites. Cell Host Microbe 12, 824–834 (2012). This is a powerful demonstration of the use of tetracycline inducible gene expression in Plasmodium spp..

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Elsworth, B. et al. PTEX is an essential nexus for protein export in malaria parasites. Nature 511, 587–591 (2014). This is a powerful demonstration of the use of inducible ribozyme expression in P. falciparum.

    CAS  PubMed  Google Scholar 

  85. Agop-Nersesian, C., Pfahler, J., Lanzer, J. & Meissner, M. Functional expression of ribozymes in Apicomplexa: towards exogenous control of gene expression by inducible RNA-cleavage. Int. J. Parasitol. 38, 673–681 (2008).

    CAS  PubMed  Google Scholar 

  86. Prommana, P. et al. Inducible knockdown of Plasmodium gene expression using the glmS ribozyme. PLoS ONE 8, e73783 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Banaszynski, L. A., Chen, L. C., Maynard-Smith, L. A., Ooi, A. G. & Wandless, T. J. A rapid, reversible, and tunable method to regulate protein function in living cells using synthetic small molecules. Cell 126, 995–1004 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Armstrong, C. & Goldberg, D. An FKBP destabilization domain modulates protein levels in Plasmodium falciparum. Nature Methods 4, 1007–1009 (2007). This article describes a FKBP DD approach to regulate protein expression in P. falciparum that proved to be a substantial advance in inducible gene expression.

    CAS  PubMed  Google Scholar 

  89. Muralidharan, V., Oksman, A., Iwamoto, M., Wandless, T. J. & Goldberg, D. E. Asparagine repeat function in a Plasmodium falciparum protein assessed via a regulatable fluorescent affinity tag. Proc. Natl Acad. Sci. USA 108, 4411–4416 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. de Azevedo, M. F. et al. Systematic analysis of FKBP inducible degradation domain tagging strategies for the human malaria parasite Plasmodium falciparum. PLoS ONE 7, e40981 (2012).

    PubMed  PubMed Central  Google Scholar 

  91. Russo, I., Oksman, A., Vaupel, B. & Goldberg, D. E. A calpain unique to alveolates is essential in Plasmodium falciparum and its knockdown reveals an involvement in pre-S-phase development. Proc. Natl Acad. Sci. USA 106, 1554–1559 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Dvorin, J. D. et al. A plant-like kinase in Plasmodium falciparum regulates parasite egress from erythrocytes. Science 328, 910–912 (2010). This is one of the best demonstrations of conditional mutagenesis in Plasmodium spp., highlighting the power of the FKBP approach.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Azevedo, M. F. et al. Inhibition of Plasmodium falciparum CDPK1 by conditional expression of its J-domain demonstrates a key role in schizont development. Biochem. J. 452, 433–441 (2013).

    CAS  PubMed  Google Scholar 

  94. Farrell, A. et al. A DOC2 protein identified by mutational profiling is essential for apicomplexan parasite exocytosis. Science 335, 218–221 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Jain, S. et al. The prokaryotic ClpQ protease plays a key role in growth and development of mitochondria in Plasmodium falciparum. Cell. Microbiol. 15, 1660–1673 (2013).

    CAS  PubMed  Google Scholar 

  96. Muralidharan, V., Oksman, A., Pal, P., Lindquist, S. & Goldberg, D. E. Plasmodium falciparum heat shock protein 110 stabilizes the asparagine repeat-rich parasite proteome during malarial fevers. Nature Commun. 3, 1310 (2012).

    Google Scholar 

  97. Beck, J. R., Muralidharan, V., Oksman, A. & Goldberg, D. E. HSP101/PTEX mediates export of diverse malaria effector proteins into the host erythrocyte. Nature 511, 592–595 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Pei, Y. et al. Plasmodium yoelii inhibitor of cysteine proteases is exported to exomembrane structures and interacts with yoelipain-2 during asexual blood-stage development. Cell. Microbiol. 15, 1508–1526 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Saridaki, T., Sanchez, C. P., Pfahler, J. & Lanzer, M. A conditional export system provides new insights into protein export in Plasmodium falciparum-infected erythrocytes. Cell. Microbiol. 10, 2483–2495 (2008).

    CAS  PubMed  Google Scholar 

  100. Goldfless, S. J., Wagner, J. C. & Niles, J. C. Versatile control of Plasmodium falciparum gene expression with an inducible protein–RNA interaction. Nature Commun. 5, 5329 (2014).

    CAS  Google Scholar 

  101. Voorberg-van der Wel, A. et al. Transgenic fluorescent Plasmodium cynomolgi liver stages enable live imaging and purification of malaria hypnozoite-forms. PLoS ONE 8, e54888 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Boyle, M. J. et al. Isolation of viable Plasmodium falciparum merozoites to define erythrocyte invasion events and advance vaccine and drug development. Proc. Natl Acad. Sci. USA 107, 14378–14383 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Ghorbal, M. et al. Genome editing in the human malaria parasite Plasmodium falciparum using the CRISPR–Cas9 system. Nature Biotech. 32, 819–821 (2014).

    CAS  Google Scholar 

  104. Nkrumah, L. J. et al. Efficient site-specific integration in Plasmodium falciparum chromosomes mediated by mycobacteriophage Bxb1 integrase. Nature Methods 3, 615–621 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Straimer, J. et al. Site-specific genome editing in Plasmodium falciparum using engineered zinc-finger nucleases. Nature Methods 9, 993–998 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. McNamara, C. W. et al. Targeting Plasmodium PI(4)K to eliminate malaria. Nature 504, 248–253 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Straimer, J. et al. Drug resistance. K13-propeller mutations confer artemisinin resistance in Plasmodium falciparum clinical isolates. Science 347, 428–431 (2015).

    CAS  PubMed  Google Scholar 

  108. Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Wagner, J. C., Platt, R. J., Goldfless, S. J., Zhang, F. & Niles, J. C. Efficient CRISPR-Cas9-mediated genome editing in Plasmodium falciparum. Nature Methods 11, 915–918 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Zhang, C. et al. Efficient editing of malaria parasite genome using the CRISPR/Cas9 system. mBio 5, e01414-14 (2014).

    PubMed  PubMed Central  Google Scholar 

  111. Pfander, C. et al. A scalable pipeline for highly effective genetic modification of a malaria parasite. Nature Methods 8, 1078–1082 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Schwach, F. et al. PlasmoGEM, a database supporting a community resource for large-scale experimental genetics in malaria parasites. Nucleic Acids Res. 43, D1176–D1182 (2015).

    CAS  PubMed  Google Scholar 

  113. Zhang, Y., Buchholz, F., Muyrers, J. P. & Stewart, A. F. A new logic for DNA engineering using recombination in Escherichia coli. Nature Genet. 20, 123–128 (1998).

    CAS  PubMed  Google Scholar 

  114. Wang, J. et al. An improved recombineering approach by adding RecA to λ Red recombination. Mol. Biotechnol. 32, 43–53 (2006).

    PubMed  Google Scholar 

  115. Gomes, A. R. et al. A genome-scale vector resource enables high-throughput reverse genetic screening in a malaria parasite. Cell Host Microbe 17, 404–413 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Tewari, R. et al. The systematic functional analysis of Plasmodium protein kinases identifies essential regulators of mosquito transmission. Cell Host Microbe 8, 377–387 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Balu, B., Shoue, D. A., Fraser, M. J. Jr & Adams, J. H. High-efficiency transformation of Plasmodium falciparum by the lepidopteran transposable element piggyBac. Proc. Natl Acad. Sci. USA 102, 16391–16396 (2005). This article describes a key first step toward saturation mutagenesis, and hence non-chemical forward genetics, in Plasmodium spp..

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Balu, B., Singh, N., Maher, S. P. & Adams, J. H. A genetic screen for attenuated growth identifies genes crucial for intraerythrocytic development of Plasmodium falciparum. PLoS ONE 5, e13282 (2010).

    PubMed  PubMed Central  Google Scholar 

  119. Fonager, J. et al. Development of the piggyBac transposable system for Plasmodium berghei and its application for random mutagenesis in malaria parasites. BMC Genomics 12, 155 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Crabb, B. S., de Koning-Ward, T. F. & Gilson, P. R. Toward forward genetic screens in malaria-causing parasites using the piggyBac transposon. BMC Biol. 9, 21 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Noulin, F., Borlon, C., Van Den Abbeele, J., D'Alessandro, U. & Erhart, A. 1912–2012: a century of research on Plasmodium vivax in vitro culture. Trends Parasitol. 29, 286–294 (2013).

    PubMed  Google Scholar 

  122. Hillenmeyer, M. E. et al. The chemical genomic portrait of yeast: uncovering a phenotype for all genes. Science 320, 362–365 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Giaever, G. et al. Functional profiling of the Saccharomyces cerevisiae genome. Nature 418, 387–391 (2002).

    CAS  PubMed  Google Scholar 

  124. Flannery, E. L., Chatterjee, A. K. & Winzeler, E. A. Antimalarial drug discovery — approaches and progress towards new medicines. Nature Rev. Microbiol. 11, 849–862 (2013).

    CAS  Google Scholar 

  125. Tilley, L., McFadden, G., Cowman, A. & Klonis, N. Illuminating Plasmodium falciparum-infected red blood cells. Trends Parasitol. 23, 268–277 (2007).

    PubMed  Google Scholar 

  126. Waller, R. F., Reed, M. B., Cowman, A. F. & McFadden, G. I. Protein trafficking to the plastid of Plasmodium falciparum is via the secretory pathway. EMBO J. 19, 1794–1802 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. McMillan, P. J. et al. Spatial and temporal mapping of the PfEMP1 export pathway in Plasmodium falciparum. Cell. Microbiol. 15, 1401–1418 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Menard, R. et al. Looking under the skin: the first steps in malarial infection and immunity. Nature Rev. Microbiol. 11, 701–712 (2013).

    CAS  Google Scholar 

  129. Frevert, U. & Nacer, A. Immunobiology of Plasmodium in liver and brain. Parasite Immunol. 35, 267–282 (2013).

    CAS  PubMed  Google Scholar 

  130. Ferrer, M. et al. Imaging of the spleen in malaria. Parasitol. Int. 63, 195–205 (2014).

    PubMed  Google Scholar 

  131. de Moraes, L. V., Tadokoro, C. E., Gomez-Conde, I., Olivieri, D. N. & Penha-Goncalves, C. Intravital placenta imaging reveals microcirculatory dynamics impact on sequestration and phagocytosis of Plasmodium-infected erythrocytes. PLoS Pathog. 9, e1003154 (2013).

    PubMed  PubMed Central  Google Scholar 

  132. Kimura, K. et al. CD8+ T cells specific for a malaria cytoplasmic antigen form clusters around infected hepatocytes and are protective at the liver stage of infection. Infect. Immun. 81, 3825–3834 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Pai, S. et al. Real-time imaging reveals the dynamics of leukocyte behaviour during experimental cerebral malaria pathogenesis. PLoS Pathog. 10, e1004236 (2014).

    PubMed  PubMed Central  Google Scholar 

  134. Franke-Fayard, B., Waters, A. P. & Janse, C. J. Real-time in vivo imaging of transgenic bioluminescent blood stages of rodent malaria parasites in mice. Nature Protoc. 1, 476–485 (2006).

    CAS  Google Scholar 

  135. Braks, J. et al. Bioluminescence imaging of P. berghei schizont sequestration in rodents. Methods Mol. Biol. 923, 353–368 (2013).

    CAS  PubMed  Google Scholar 

  136. Miller, J. L. et al. Quantitative bioluminescent imaging of pre-erythrocytic malaria parasite infection using luciferase-expressing Plasmodium yoelii. PLoS ONE 8, e60820 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Ploemen, I. H. et al. Visualisation and quantitative analysis of the rodent malaria liver stage by real time imaging. PLoS ONE 4, e7881 (2009).

    PubMed  PubMed Central  Google Scholar 

  138. Ramakrishnan, C. et al. Salivary gland-specific P. berghei reporter lines enable rapid evaluation of tissue-specific sporozoite loads in mosquitoes. PLoS ONE 7, e36376 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Annoura, T., Chevalley, S., Janse, C. J., Franke-Fayard, B. & Khan, S. M. Quantitative analysis of Plasmodium berghei liver stages by bioluminescence imaging. Methods Mol. Biol. 923, 429–443 (2013).

    CAS  PubMed  Google Scholar 

  140. Amante, F. H. et al. Immune-mediated mechanisms of parasite tissue sequestration during experimental cerebral malaria. J. Immunol. 185, 3632–3642 (2010).

    CAS  PubMed  Google Scholar 

  141. Ploemen, I. et al. Evaluation of immunity against malaria using luciferase-expressing Plasmodium berghei parasites. Malar. J. 10, 350 (2011).

    PubMed  PubMed Central  Google Scholar 

  142. Lin, J. W. et al. Screening inhibitors of P. berghei blood stages using bioluminescent reporter parasites. Methods Mol. Biol. 923, 507–522 (2013).

    CAS  PubMed  Google Scholar 

  143. Zuzarte-Luis, V., Sales-Dias, J. & Mota, M. M. Simple, sensitive and quantitative bioluminescence assay for determination of malaria pre-patent period. Malar. J. 13, 15 (2014).

    PubMed  PubMed Central  Google Scholar 

  144. Noulin, F. et al. Cryopreserved reticulocytes derived from hematopoietic stem cells can be invaded by cryopreserved Plasmodium vivax isolates. PLoS ONE 7, e40798 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Dembele, L. et al. Persistence and activation of malaria hypnozoites in long-term primary hepatocyte cultures. Nature Med. 20, 307–312 (2014).

    CAS  PubMed  Google Scholar 

  146. Waters, A. P., Thomas, A. W., van Dijk, M. R. & Janse, C. J. Transfection of malaria parasites. Methods 13, 134–147 (1997).

    CAS  PubMed  Google Scholar 

  147. Menard, R. et al. Circumsporozoite protein is required for development of malaria sporozoites in mosquitoes. Nature 385, 336–340 (1997).

    CAS  PubMed  Google Scholar 

  148. VanWye, J. D. & Haldar, K. Expression of green fluorescent protein in Plasmodium falciparum. Mol. Biochem. Parasitol. 87, 225–229 (1997).

    CAS  PubMed  Google Scholar 

  149. de Koning-Ward, T. F., Thomas, A. W., Waters, A. P. & Janse, C. J. Stable expression of green fluorescent protein in blood and mosquito stages of Plasmodium berghei. Mol. Biochem. Parasitol. 97, 247–252 (1998).

    CAS  PubMed  Google Scholar 

  150. de Koning-Ward, T. F., Sperança, M. A., Waters, A. P. & Janse, C. J. Analysis of stage specificity of promoters in Plasmodium berghei using luciferase as a reporter. Mol. Biochem. Parasitol. 100, 141–146 (1999).

    CAS  PubMed  Google Scholar 

  151. Mamoun, C. B., Gluzman, I. Y., Goyard, S. K. Beverley, S. M. & Goldberg, D. E. A set of independent selectable markers for transfection of the human malaria parasite Plasmodium falciparum. Proc. Natl Acad. Sci. USA 96, 8716–8720 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Sultan, A. A., Thathy, V., de Koning-Ward, T. F. & Nussenzweig, V. Complementation of Plasmodium berghei TRAP knockout parasites using human dihydrofolate reductase gene as a selectable marker. Mol. Biochem. Parasitol. 113, 151–156 (2001).

    CAS  PubMed  Google Scholar 

  153. de Koning-Ward T. F., Waters, A. P. & Crabb, B. S. Puromycin-N-acetyltransferase as a selectable marker for use in Plasmodium falciparum. Mol. Biochem. Parasitol. 117, 155–160 (2001).

    CAS  PubMed  Google Scholar 

  154. Duraisingh, M. T., Triglia, T. & Cowman, A. F. Negative selection of Plasmodium falciparum reveals targeted gene deletion by double crossover recombination. Int. J. Parasitol. 32, 81–89 (2002).

    CAS  PubMed  Google Scholar 

  155. Carvalho, T. G., Thiberge, S., Sakamoto, H. & Menard, R. Conditional mutagenesis using site-specific recombination in Plasmodium berghei. Proc. Natl Acad. Sci. USA 101, 14931–14936 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Ghanesan, S. M. et al. Yeast dihydroorate dehydrogenase as a new selectable marker for Plasmodium falciparum transfection. Mol. Biochem. Parasitol. 177, 29–34 (2011).

    Google Scholar 

Download references

Acknowledgements

The authors apologize to those whose work could not be cited owing to length restrictions. They would like to acknowledge support from the National Health and Medical Research Council, Australia and from the Victorian State Government Operational Infrastructure Support Scheme, Australia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tania F. de Koning-Ward, Paul R. Gilson or Brendan S. Crabb.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Glossary

Artemisinin

A rapid-acting antimalarial drug isolated from the plant Artemisia annua. Artemisinin-based combination therapies (ACTs) are recommended by the World Health Organisation as the first-line treatment for uncomplicated Plasmodium falciparum malaria.

Immunogens

Antigens that are capable of inducing an immune response.

Transfection

The process of introducing nucleic acids into cells.

Schizonts

Mature forms of malaria parasites that are present in the liver and blood, which in blood contain 12–16 individual merozoites.

Single-crossover recombination

A homologous recombination event that leads to the insertion of the entire vector backbone and duplication of targeting sequences.

Negative selection

A process used to deplete parasites that express a negative-selectable marker from a population, in order to enrich parasites that contain the desired genomic integration event.

Double-crossover recombination

A homologous recombination event that results in the replacement of a DNA sequence that is flanked by two targeting sequences.

Parasitophorous vacuole

A vacuole in the host cell, in which Plasmodium parasites reside and develop.

Cryptic polyadenylation sites

A processing site that is not normally used for the addition of a polyadenylic acid tail to mRNA.

Merosomes

Structures containing hundreds of infectious merozoites that are surrounded by a membrane that is derived from the hepatocyte host cell.

Ubiquitylation

A post-translational enzymatic modification involving the attachment of ubiquitin to a protein substrate.

Dominant negative transgenes

A gene that when expressed in trans causes an adverse effect on the normal, wild-type gene product that is expressed in the same cell.

Maurer's cleft

Single-membrane-bound structure that is present in the cytoplasm of erythrocytes that are infected with Plasmodium falciparum and that functions in transport of proteins from the parasite to the surface of the erythrocyte.

Viral 2A ribosomal skipping peptide

A peptide derived from foot-and-mouth disease virus 2A that, when introduced as a linker between two proteins, allows autonomous intraribosomal self-processing of the resulting polyproteins that are expressed from a single polycistronic mRNA transcript.

Ring-form parasites

The feeding stages of blood-stage parasites that show a ring-like morphology in Giemsa-stained blood smears.

Lambda Red recombination system

This tool enables targeted genetic changes to DNA in Escherichia coli expressing the lambda Red recombinase. This system has been used in conjunction with Gateway technology to convert Plasmodium berghei genomic DNA clones that have been maintained in E. coli into gene-targeting vectors.

Gateway cloning system

A molecular methodology that enables the transfer of DNA fragments between plasmids using attP recombination sequences and a mixture of commercial clonase enzymes.

Two-photon microscopy

A fluorescence imaging technique that absorbs two photons of infrared light to provide deeper tissue penetration, which enables living tissues to be imaged to a greater depth than conventional confocal microscopy.

Non-essential genes

Genes that can be deleted in the parasite without causing parasite death under certain conditions. These include genes that do not impart moderate or severe growth defects when mutated. However, genes that are termed 'non-essential' may in fact be essential to parasite growth when tested under different environmental conditions.

Hypnozoites

Dormant forms of Plasmodium spp. parasites that are present in the liver.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Koning-Ward, T., Gilson, P. & Crabb, B. Advances in molecular genetic systems in malaria. Nat Rev Microbiol 13, 373–387 (2015). https://doi.org/10.1038/nrmicro3450

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro3450

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing